JPH0265074A - Metal-bromine battery - Google Patents

Metal-bromine battery

Info

Publication number
JPH0265074A
JPH0265074A JP63216033A JP21603388A JPH0265074A JP H0265074 A JPH0265074 A JP H0265074A JP 63216033 A JP63216033 A JP 63216033A JP 21603388 A JP21603388 A JP 21603388A JP H0265074 A JPH0265074 A JP H0265074A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode side
electrolyte
storage tank
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63216033A
Other languages
Japanese (ja)
Inventor
Kyoichi Tange
恭一 丹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP63216033A priority Critical patent/JPH0265074A/en
Publication of JPH0265074A publication Critical patent/JPH0265074A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • H01M12/085Zinc-halogen cells or batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hybrid Cells (AREA)

Abstract

PURPOSE:To quickly remove the bromine complex compound stuck to a positive electrode and nearly completely prevent a self-discharge when a battery is not in use by providing a means once separating an electrolyte on the positive electrode side from a storage tank when the battery is not in use. CONSTITUTION:A valve means 42 is provided between a reaction tank 14 on the positive electrode side and an electrolyte storage tank 22 on the positive electrode side, an electrolyte is separated from the electrolyte storage tank 22 on the positive electrode side and independently circulated at a high speed when a battery is charged and left intact, thereby a complex compound stuck on the surface of a positive electrode is removed. The complex compound is recovered to a complex storage section in the electrolyte storage tank 22 on the positive electrode side by switching the valve means 42. The clogging of carbon powder generated from a positive electrode active layer processed on the surface of a positive electrode 10 to reduce the reaction resistance and the defective flow of an electrolyte caused by it can be effectively resolved. The electrode effective area can be invariably secured at the maximum, and the increase of the internal resistance of the battery and the reduction of the battery capacity due to it can be prevented.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電気自動車の駆動源等あるいは電力貯蔵用等と
して使用される金属−臭素電池の非使用時における自己
放電防止対策の改善に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to improvements in measures to prevent self-discharge of metal-bromine batteries used as drive sources for electric vehicles or for power storage when they are not in use.

[従来の技術] 電解液への溶解度が高く電極反応特性の優れた臭素を正
極活物質とし、亜鉛などの金属を負極活物質とする金属
−臭素電池が開発されており、貯蔵・取扱いの容易性や
高エネルギー密度等多くの利点から例えば電気自動車用
駆動源としての期待を集めている。
[Prior art] Metal-bromine batteries have been developed in which bromine, which has high solubility in electrolytes and excellent electrode reaction characteristics, is used as the positive electrode active material and metals such as zinc are used as the negative electrode active material, and are easy to store and handle. Due to its many advantages, such as high performance and high energy density, it is attracting attention as a driving source for electric vehicles, for example.

第3図に特開昭57−199167号公報に開示されて
いる一般的な金属−臭素電池の原理構成を示す。
FIG. 3 shows the principle structure of a general metal-bromine battery disclosed in Japanese Patent Application Laid-Open No. 57-199167.

図示例における負極側金属には亜鉛が用いられており、
正極10及び負極12がそれぞれ配設された正極側反応
槽14及び負極側反応槽16間で電解液18を介して次
式で示される電気化学反応が行われる。
Zinc is used as the metal on the negative electrode side in the illustrated example,
An electrochemical reaction expressed by the following formula is performed via an electrolytic solution 18 between a positive electrode side reaction tank 14 and a negative electrode side reaction tank 16 in which the positive electrode 10 and the negative electrode 12 are disposed, respectively.

(正極)2B「−二BrZ+2e (負極) Zn 2”+2 e   ;=:  Zn・
・・(1) 充電 2+ (全体)Zn  +2Br    二 Zn+Br2放
電 二のような金属−臭素電池では電解液18として臭化亜
鉛ZnBr2水溶液が用いられ、必要に応じて電導変向
上剤、臭素錯化剤、デンドライト抑制剤等が添加される
(Positive electrode) 2B"-2BrZ+2e (Negative electrode) Zn 2"+2 e ;=: Zn・
...(1) Charge 2+ (Overall) Zn + 2Br 2 In metal-bromine batteries such as Zn + Br2 Discharge 2, a zinc bromide ZnBr 2 aqueous solution is used as the electrolyte 18, and a conductivity improvement agent and a bromine complexing agent are added as necessary. , a dendrite inhibitor, etc. are added.

充電時には反応槽14.16内において前記第1式に−
で示す充電反応が行われ正極10側では臭素B r 2
が生成され電解液18内に溶解し、他方負極12側では
亜鉛Znが析出し負極12上に亜鉛の析出層が形成され
ていく。
During charging, in the reaction tank 14.16, the first equation -
A charging reaction shown by is performed, and on the positive electrode 10 side, bromine B r 2
is generated and dissolved in the electrolytic solution 18, and on the other hand, on the negative electrode 12 side, zinc Zn is precipitated and a deposited layer of zinc is formed on the negative electrode 12.

また、放電時には←で示す前記充電時と逆の反応か行わ
れ、正極10側では臭素B r 2が還元されて臭素イ
オンBr  となって電解液18中に溶解し、負極12
側では亜鉛の析出層が酸化されて亜鉛イオンZ n 2
+となって電解液18中に溶解する。
Furthermore, during discharging, a reaction opposite to that during charging is carried out, as indicated by ←, and bromine Br 2 is reduced on the positive electrode 10 side to become bromine ions Br 2 and dissolved in the electrolyte 18, and the negative electrode 12
On the side, the zinc precipitate layer is oxidized and zinc ions Z n 2
It becomes + and dissolves in the electrolytic solution 18.

このような電気反応が行われる反応槽14゜16内は充
電時に生成する臭素B r 2により自己放電を招くこ
とがないようその内部がセパレータ膜20により分離さ
れている。
The interiors of the reaction vessels 14 and 16 in which such electrical reactions occur are separated by separator membranes 20 to prevent self-discharge caused by bromine B r 2 generated during charging.

このセパレータ膜20は自己放電を防止するために電解
液18中の各種イオンは通すがこれに溶解している臭素
B r 2の透過は阻止するものである。セパレータ膜
20としては、一般にイオン交換膜あるいは多孔質膜が
用いられるが、電池の内部抵抗を少なくするという観点
からは多孔質膜が望ましい。
In order to prevent self-discharge, this separator film 20 allows various ions in the electrolytic solution 18 to pass through, but blocks the penetration of bromine B r 2 dissolved therein. An ion exchange membrane or a porous membrane is generally used as the separator membrane 20, but a porous membrane is desirable from the viewpoint of reducing the internal resistance of the battery.

そして、電解液循環型の電池では、充電時における化学
反応によって得たエネルギーを貯蔵するための正極側電
解液貯蔵槽22と負極側電解液貯蔵槽24とを含む。
The electrolyte circulation type battery includes a positive electrolyte storage tank 22 and a negative electrolyte storage tank 24 for storing energy obtained through a chemical reaction during charging.

前記正極側電解液貯蔵槽22は正極側反応槽14との間
で配管26.28を介して電解液循環経路を形成してお
り、循環経路に設けたポンプ30により正極側反応槽1
4内において反応した正極側電解液18aを貯蔵槽22
へ送り出し、貯蔵槽22内の電解液18aを反応槽14
に供給している。
The positive electrode side electrolyte storage tank 22 forms an electrolyte circulation path with the positive electrode side reaction tank 14 via piping 26, 28, and the positive electrode side reaction tank 1 is
The positive electrode side electrolyte 18a reacted in the storage tank 22
The electrolyte 18a in the storage tank 22 is sent to the reaction tank 14.
is supplied to.

ここにおいて、電解液18内に臭素錯化剤が添加されて
いる場合には、充電時に発生した臭素B r 2は錯体
化され、電解液18に不溶な錯体化合物32となって析
出し、該錯体化合物32は貯蔵槽22の底部を錯体貯蔵
部34として順次沈澱して貯蔵されていく。
Here, if a bromine complexing agent is added to the electrolytic solution 18, bromine B r 2 generated during charging is complexed and precipitated as a complex compound 32 insoluble in the electrolytic solution 18. The complex compound 32 is sequentially precipitated and stored in the bottom of the storage tank 22 as a complex storage section 34.

また、この錯体貯蔵部34と配管28との間はバルブ3
6を有する錯体供給管38により連絡されている。そし
て、このバルブ36は通常解放されており、錯体貯蔵部
34に沈澱した錯体化合物32を配管28を介して正極
側反応槽14に向けて放電用に送り出す。
Further, a valve 3 is connected between the complex storage section 34 and the pipe 28.
A complex feed tube 38 having 6. This valve 36 is normally open, and the complex compound 32 precipitated in the complex storage section 34 is sent out through the pipe 28 toward the positive electrode side reaction tank 14 for discharge.

また、前記負極側電解液貯蔵槽24は、同様にして負極
側反応槽16との間で配管40.42を介して電解液循
環経路を形成しており、循環経路に設けたポンプ44を
用い負極側反応槽16内にて反応した負極側電解液18
bを貯蔵槽24へ向は送り出し貯蔵槽24から新たな電
解液18bを反応槽16に向は供給している。
Further, the negative electrode side electrolyte storage tank 24 similarly forms an electrolyte circulation path with the negative electrode side reaction tank 16 via piping 40, 42, and uses a pump 44 provided in the circulation path. Negative electrode side electrolyte 18 reacted in negative electrode side reaction tank 16
b is sent out to the storage tank 24, and new electrolytic solution 18b is supplied from the storage tank 24 to the reaction tank 16.

このように、この金属−臭素電池は、貯蔵槽22.24
内に電解液18を充分に貯蔵し、該貯蔵電解液18を用
いて充電時には前記第1式に示す充電反応を行い、錯体
貯蔵部32に臭素の錯体化合物を貯蔵し負極12上に亜
鉛の析出層を形成して電力を貯蔵することができる。
Thus, this metal-bromine battery has a storage tank 22.24.
When charging using the stored electrolyte 18, the charging reaction shown in the first equation is carried out, and a complex compound of bromine is stored in the complex storage part 32, and zinc is deposited on the negative electrode 12. A deposited layer can be formed to store power.

また、放電時には錯体貯蔵部34に貯蔵されている臭素
の錯体化合物32を正極側反応槽14に向は送り出し、
該錯体化合物32と負極12上に形成されている亜鉛の
析出層とを用いて、前記第1式に示す放電反応を行いそ
の充電電力を放出することができる。
Also, during discharge, the bromine complex compound 32 stored in the complex storage section 34 is sent out to the positive electrode side reaction tank 14,
Using the complex compound 32 and the zinc deposited layer formed on the negative electrode 12, the discharge reaction shown in the first equation can be performed and the charging power can be released.

ところが、こうした従来の金属−臭素電池では充電時に
正極10で発生する臭素及び錯体化合物32が正極10
の表面に大量に付着し、充電状態で電池を放置した場合
に次の問題を生起してしまうという不都合があった。
However, in such conventional metal-bromine batteries, bromine and complex compounds 32 generated at the positive electrode 10 during charging are transferred to the positive electrode 10.
There was a problem in that a large amount of the battery adhered to the surface of the battery, causing the following problem if the battery was left in a charged state.

(1)放置中に臭素がセパレータ膜20を介して負極1
2側へ拡散し、負極12側に析出している金属と自己放
電を起こして電池容量の低下を引き起こす。1日の放置
で電池全容量の約10〜20%が減少してしまう。
(1) During storage, bromine passes through the separator film 20 to the negative electrode 1.
It diffuses to the negative electrode 12 side and causes self-discharge with the metal deposited on the negative electrode 12 side, causing a decrease in battery capacity. Approximately 10 to 20% of the total battery capacity will decrease if left unused for one day.

(2)自己放電の際に生じる発熱により反応槽14.1
6が温度上昇を起こし、部品の劣化及び電池寿命の低下
をもたらす。
(2) Due to the heat generated during self-discharge, the reaction tank 14.1
6 causes a rise in temperature, leading to deterioration of parts and shortening of battery life.

(3)電池放置中、錯体化合物32が徐々に沈下してい
くため特に電極下部に自己放電量が片寄り、電極内にお
ける自己放電が均等に行われないために所定期間放置後
の再使用に際し放電した場合電極有効面積が減少し、内
部抵抗の増大により十分な出力を得ることができない。
(3) When the battery is left unused, the complex compound 32 gradually sinks, so that the amount of self-discharge is concentrated especially at the bottom of the electrode, and self-discharge within the electrode is not evenly carried out. When discharged, the effective area of the electrode decreases and internal resistance increases, making it impossible to obtain sufficient output.

こうした問題を改善するため、現在以下のような対応措
置がとられている。
In order to improve these problems, the following measures are currently being taken.

(a)放置開始時に正極側電解液貯蔵槽22のバルブ3
6を閉止して臭素錯体化合物32の正極側反応槽14へ
の侵入を阻止し、この状態でポンプ30を駆動して正極
側反応槽14内の臭素錯体化合物32を正極側電解液貯
蔵槽22に回収する、いわゆるクリーンアウトを行う。
(a) Valve 3 of positive electrode side electrolyte storage tank 22 at the start of leaving
6 to prevent the bromine complex compound 32 from entering the positive electrode side reaction tank 14, and in this state, the pump 30 is driven to transfer the bromine complex compound 32 in the positive electrode side reaction tank 14 to the positive electrode side electrolyte storage tank 22. A so-called clean-out is performed.

(b)電解液18の液抜きを放置開始時に行う。(b) Draining the electrolytic solution 18 is performed at the start of leaving.

[発明が解決しようとする課題] しかしながら、上記(a)の方法では、通常のポンプ出
力においては、臭素錯体化合物32が正極にしっかりと
付着しているため、十分な量の回収が困難となる。
[Problems to be Solved by the Invention] However, in the method (a) above, at normal pump output, the bromine complex compound 32 is firmly attached to the positive electrode, making it difficult to recover a sufficient amount. .

このため、前記問題を招くことのないレベルにまで回収
するにはクリーンアウトの時間を延長するかあるいはポ
ンプの出力を上げて流速を増大させなければならない。
Therefore, the cleanout time must be extended or the pump output must be increased to increase the flow rate to recover to a level that does not cause the problems described above.

ところが、こうした一連の対応によっても電池の総合的
なエネルギー効率低下を回避することは困難であり、特
に何回も電池放置させるような使い方をしたような場合
には電池容量の大幅な低下を免れ得ない。
However, even with this series of measures, it is difficult to avoid a decrease in the overall energy efficiency of the battery, and especially if the battery is left unattended many times, it is difficult to avoid a significant decrease in battery capacity. I don't get it.

また、上記(b)の手法では、放置中の自己放電をほぼ
完全に防止可能であるが、再使用開始時に電解液18を
正極側反応槽14内に注入しなければならないために正
常に機能するまで1.2分を要し、実用性に劣る。加え
て、正極側反応槽14内の電解液量分だけ正極側反応槽
14外にスペースを確保しなければならず、電池の体積
増大を強いられることになる。
In addition, although the above method (b) can almost completely prevent self-discharge during storage, it is difficult to function properly because the electrolyte 18 must be injected into the positive electrode side reaction tank 14 at the start of reuse. It takes 1.2 minutes to complete the process, making it less practical. In addition, it is necessary to secure a space outside the positive electrode reaction tank 14 corresponding to the amount of electrolyte in the positive electrode reaction tank 14, which forces the volume of the battery to increase.

発明の目的 こうした状況の下、本発明は正極に付着している臭素錯
体化合物を迅速確実に除去し、電池非使用時における自
己放電をほぼ完全に防止可能な金属−臭素電池を提供す
ることにある。
Purpose of the Invention Under these circumstances, the present invention provides a metal-bromine battery that can quickly and reliably remove the bromine complex compound attached to the positive electrode and almost completely prevent self-discharge when the battery is not in use. be.

[課題を解決するための手段] 上記目的を達成するために本発明は、自己放電防止用の
セパレータ膜により互いに仕切られ電解液を介して所定
の充放電反応を行う正極側反応槽及び負極側反応槽と、
該正及び負極側反応槽にそれぞれ正及び負極側電解液を
循環させるよう両反応槽に各々連通形成された正極側電
解液貯蔵槽及び負極側電解液貯蔵槽と、を含み、正極側
電解液内に発生した臭素を錯化剤により錯体化して貯蔵
する金属−臭素電池において、電池非使用時に一旦正極
側電解液を正極側電解液貯蔵槽から切り離して正極側反
応槽へ独立循環させた後再び該正極側電解液貯蔵槽に接
続するための弁手段を前記正極側反応槽と正極側貯蔵槽
との間に介設し、正極に付着している錯化物を除去して
該錯化物が陰極側に向かう拡散による自己放電を防止可
能に構成したことを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a positive electrode side reaction tank and a negative electrode side reaction tank that are separated from each other by a separator film for self-discharge prevention and perform predetermined charging and discharging reactions via an electrolytic solution. a reaction tank;
a positive electrode side electrolyte storage tank and a negative electrode side electrolyte storage tank, each of which is formed in communication with both reaction tanks so as to circulate the positive and negative electrode side electrolytes in the positive and negative side reaction tanks, respectively; In a metal-bromine battery in which bromine generated within the battery is complexed and stored using a complexing agent, the positive electrode electrolyte is once separated from the positive electrode electrolyte storage tank and circulated independently to the positive electrode reaction tank when the battery is not in use. A valve means for connecting the positive electrode side electrolyte storage tank again is interposed between the positive electrode side reaction tank and the positive electrode side storage tank, and the complexes adhering to the positive electrode are removed and the complexes are removed. It is characterized in that it is configured to be able to prevent self-discharge due to diffusion toward the cathode side.

[作用] 以上のごとく構成される本発明によれば、電池を非使用
状態に放置する際に前記弁手段を切替え操作して正極側
反応槽を正極側電解液貯蔵槽から切り離し、所定のアク
チュエータによって正極側電解液を正極側反応槽を通路
の一部として含め高速循環させる。
[Function] According to the present invention configured as described above, when the battery is left unused, the valve means is switched to disconnect the positive electrode side reaction tank from the positive electrode side electrolyte storage tank, and the predetermined actuator is disconnected from the positive electrode side electrolyte storage tank. The positive electrode side electrolyte is circulated at high speed by including the positive electrode side reaction tank as a part of the passage.

このとき、正極表面に付着している臭素錯体化合物はこ
の急速流転する正極側電解液によって洗浄作用をうける
形となり正極面から分離して循環する正極側電解液内に
流れ込んでゆく。
At this time, the bromine complex compound adhering to the positive electrode surface is subjected to a cleaning action by the rapidly flowing positive electrode electrolyte, and is separated from the positive electrode surface and flows into the circulating positive electrode electrolyte.

こうした独立循環による洗い流し作業を所定時間継続し
た後、再度前記弁手段を切り替えて正極側反応槽と正極
側電解液貯蔵槽とをもとの接続状態に戻す。
After the washing operation by independent circulation continues for a predetermined period of time, the valve means is switched again to return the positive electrode side reaction tank and the positive electrode side electrolyte storage tank to the original connection state.

そして、この状態から再度電解液を循環させることによ
り、正極表面から離脱して正極側電解液内で浮遊状態に
ある臭素錯体化合物はその大きな比重によって正極側電
解液貯蔵槽内の臭素錯体貯蔵部に導かれ、正極側反応槽
内から一掃されることになる。
Then, by circulating the electrolyte again from this state, the bromine complex compound detached from the surface of the positive electrode and floating in the electrolyte on the positive electrode side is transferred to the bromine complex storage area in the electrolyte storage tank on the positive electrode side due to its large specific gravity. The positive electrode side reaction tank is swept away.

従って、以上の操作を電池の非使用放置前に施すことに
よって反応槽内における自己放電の発生並びにこれに伴
う電池性能の劣化その他一連の不都合は有効確実に未然
防止可能となる。
Therefore, by performing the above operations before leaving the battery unused, the occurrence of self-discharge in the reaction tank, the accompanying deterioration of battery performance, and a series of other problems can be effectively and reliably prevented.

[実施例] 以下、図面に基づき本発明の好適な実施例を説明する。[Example] Hereinafter, preferred embodiments of the present invention will be described based on the drawings.

第1図に本発明に係る金属−臭素電池の原理構成例を示
す。なお、図中前記第3図に係る従来装置と同等の構成
要素には同一符号を付し、その説明を省略する。
FIG. 1 shows an example of the basic structure of a metal-bromine battery according to the present invention. Components in the figure that are equivalent to those of the conventional device shown in FIG.

本発明において特徴的なことは、正極側反応槽14と正
極側電解液貯蔵槽22との間に正極側反応槽14に流出
入する電解液18aを独立循環させうる弁手段を介設し
たことであり、実施例においてこの弁手段には4ウエイ
バルブ42が用いられている。
A characteristic feature of the present invention is that a valve means is provided between the positive electrode side reaction tank 14 and the positive electrode side electrolyte storage tank 22 to independently circulate the electrolytic solution 18a flowing in and out of the positive electrode side reaction tank 14. In this embodiment, a four-way valve 42 is used as the valve means.

この4ウエイバルブ42は4個の流出入口a〜dを有し
、隣接する流入口相互の接続関係を図(B)及び(C)
に示す。a−b、c−dの2通りに所定の電動スイッチ
操作あるいは手動操作を以て任意に切り替えることがで
きる。この各流出入口a −dのうちa及びbに対して
は正極側反応槽4と直接連通する正極側電解液供給配管
26a及び213bが固定接続され、他方C及びdには
正極側電解液貯蔵槽22に直接連通ずる正極側電解液供
給配管26c及び28dがそれぞれ固定接続されている
ことが理解できる。
This 4-way valve 42 has four inlets a to d, and the connection relationship between adjacent inlets is shown in Figures (B) and (C).
Shown below. It is possible to arbitrarily switch between two modes, a-b and c-d, by operating a predetermined electric switch or by manual operation. Of these inlets a to d, positive electrode side electrolyte supply pipes 26a and 213b, which directly communicate with the positive electrode side reaction tank 4, are fixedly connected to a and b, while positive electrode side electrolyte solution storage pipes 26a and 213b are fixedly connected to the other inlets C and d. It can be seen that the positive electrode side electrolyte supply pipes 26c and 28d, which directly communicate with the tank 22, are fixedly connected to each other.

次に作用を説明する。Next, the action will be explained.

通常の充放電時には4ウエイバルブ42は第1図(C)
の状態に設定されており、正極側電解液18aは正極側
電解液貯蔵槽22→流出入口d −流出入ロb→ポンプ
30〜正極側反応槽14→流出入口a→流出入口Cの経
路で循環する。そして、従来の電池ではこの循環方法に
よって正極側反応槽14内の電極に付着した錯体化合物
の洗浄作用を実施していた。
During normal charging and discharging, the 4-way valve 42 is shown in Figure 1 (C).
The positive electrode side electrolyte 18a flows through the path of the positive electrode side electrolyte storage tank 22 -> the inlet/outlet d - the inlet/outlet b -> the pump 30 - the positive electrode side reaction tank 14 -> the inlet a -> the inlet/outlet C. circulate. In the conventional battery, the complex compound adhering to the electrode in the positive electrode side reaction tank 14 was cleaned by this circulation method.

これに対し、本発明において電池を充電状態で放置する
前には4ウエイバルブ42を第1図(B)の状態に設定
し、電解液18aを正極側電解液貯蔵槽8から切り離し
て、正極側反応槽14→流出入ロa→流出入ロb→ポン
プ30→正極側反応槽14の経路で独立循環させること
を特徴とする。
In contrast, in the present invention, before leaving the battery in a charged state, the four-way valve 42 is set to the state shown in FIG. It is characterized by independent circulation in the path of side reaction tank 14 -> outflow/inflow port a -> outflow/inflow port b -> pump 30 -> positive electrode side reaction tank 14.

この循環経路には電解液18aの高速流通を妨げる介在
物が存在しないためにクリーニング効果が画期的に上昇
し、従来の電池では電解液貯蔵槽22における圧損が全
体の圧損の約70〜80%を占めていたものが本発明に
よってその約3分の1から4分の1にまで減少させるこ
とができる。
Since there are no inclusions that impede the high-speed flow of the electrolyte 18a in this circulation path, the cleaning effect is dramatically improved.In conventional batteries, the pressure drop in the electrolyte storage tank 22 is about 70 to 80% of the total pressure drop. According to the present invention, this can be reduced to approximately one-third to one-fourth.

そして、ポンプ出力が同じであれば正極側反応槽14内
を通過する流速を約1.7〜2倍にまで増大可能になる
ことが実験により確認された。
It has been confirmed through experiments that the flow rate passing through the positive electrode side reaction tank 14 can be increased by about 1.7 to 2 times if the pump output is the same.

具体的には次のような手順で行う。Specifically, the steps are as follows.

(1)まず、電池を充電状態で放置する前にバルブ36
を閉止すると共に、ポンプ30をオン状態のままにおく
(1) First, before leaving the battery in a charged state, close the valve 36
is closed, and the pump 30 is left in the on state.

(2)4ウエイバルブ42を第1図(B)の状態に設定
する。この操作により正極側電解液18aは正極側反応
槽14と4ウエイバルブ42との間で正極側電解液貯蔵
槽22から独立して高速循環を始める。
(2) Set the 4-way valve 42 to the state shown in FIG. 1(B). By this operation, the positive electrode side electrolyte 18a starts to circulate at high speed between the positive electrode side reaction tank 14 and the four-way valve 42 independently from the positive electrode side electrolyte storage tank 22.

(3)約数10秒から1分経過後、4ウエイバルブ42
を切り替えて第1図(C)の状態に切換える。これによ
り、前記高速循環によって電解液18a中に洗い流され
た正極10の表面に付着していた錯体化合物32は正極
側電解液貯蔵槽22の錯体貯蔵部34内に回収されてゆ
く。
(3) After approximately several tens of seconds to one minute, the 4-way valve 42
is switched to the state shown in FIG. 1(C). As a result, the complex compound 32 attached to the surface of the positive electrode 10 washed away into the electrolytic solution 18a by the high-speed circulation is recovered into the complex storage section 34 of the positive electrode side electrolytic solution storage tank 22.

(4)上記(2)及び(3)を数回繰り返す。(4) Repeat (2) and (3) above several times.

以上の操作を実行した結果、従来の洗浄方法では約10
分間における正極側反応槽14内の錯体化合物32の正
極側電解液貯蔵槽22への回収率は約30〜40%程度
に過ぎなかったものが本発明方法によって50〜709
6にまで向上できることが判明した。
As a result of performing the above operations, it was found that the conventional cleaning method
The recovery rate of the complex compound 32 in the positive electrode side reaction tank 14 to the positive electrode side electrolyte storage tank 22 per minute was only about 30 to 40%, but by the method of the present invention, the recovery rate was 50 to 70%.
It turns out that it can be improved to 6.

更に、電解液18aの流れを逆転できるポンプを用いれ
ば洗浄時に電解液の流れ方向を数秒〜数十秒毎に逆転切
替えすることによってより一層効果的に錯体化合物32
を回収することが可能となり回収率は70〜80%にま
で引き上げることができる。
Furthermore, if a pump capable of reversing the flow of the electrolytic solution 18a is used, the flow direction of the electrolytic solution can be reversed every few seconds to several tens of seconds during cleaning, thereby making it possible to more effectively remove the complex compound 32.
can be recovered, and the recovery rate can be raised to 70-80%.

第2図は電解液18aの流れの向きの変更をポンプでは
なくバルブ操作によって可能とした構成例を示すもので
、この実施例において特徴的なことは前記第1実施例に
おける4ウエイバルブ42と正極側反応槽14との間に
更に新たな4ウエイバルブ44を追加設置したことであ
る。
FIG. 2 shows an example of a configuration in which the flow direction of the electrolytic solution 18a can be changed by operating a valve instead of a pump.The characteristic feature of this embodiment is that the four-way valve 42 in the first embodiment is different from the one described above. This is because a new four-way valve 44 is additionally installed between the positive electrode side reaction tank 14 and the positive electrode side reaction tank 14.

この装置によれば、上述した電解液の流通方向逆転操作
はこの4ウエイバルブ44を第2図(B)及び(C)と
に切り替えることで実現され、同様に優れた錯体化合物
32の回収効果を得ることができる。
According to this device, the above-mentioned operation of reversing the flow direction of the electrolytic solution is realized by switching the four-way valve 44 to those shown in FIGS. can be obtained.

[発明の効果コ 以上説明したように本発明によれば、正極側反応槽と正
極側電解液貯蔵槽との間に弁手段を設けて電池の充電放
置の際に正極側電解液貯蔵槽から切り離して高速で独立
循環させることによって正極表面に付着した錯体化合物
を除去してこれをお互いの弁手段の切替えによって正極
側電解液貯蔵槽内の錯体貯蔵部に回収する構成をとつた
ので、正極の表面に反応抵抗を低減させるために処理し
ている正極活性槽から生じるカーボンの粉による電極内
における詰まり及びそれに起因する電解液の流れ不良を
有効に解消しうる。
[Effects of the Invention] As explained above, according to the present invention, a valve means is provided between the positive electrode side reaction tank and the positive electrode side electrolyte storage tank, so that the valve means is provided between the positive electrode side reaction tank and the positive electrode side electrolyte storage tank to prevent the battery from leaving the positive electrode side electrolyte storage tank. By separating the complex compound and circulating it independently at high speed, the complex compound adhering to the surface of the positive electrode is removed, and this is collected into the complex storage section in the positive electrode side electrolyte storage tank by switching the valve means of each other. It is possible to effectively eliminate clogging in the electrode due to carbon powder generated from the positive electrode activation tank, which is treated to reduce reaction resistance on the surface of the electrode, and the poor flow of the electrolyte caused by the clogging.

この結果、電極有効面積を常に最大限に確保可能となり
、電池の内部抵抗増大やこれに伴う電池容量の低下を未
然に防止できる。
As a result, the effective electrode area can always be maximized, and an increase in internal resistance of the battery and a concomitant decrease in battery capacity can be prevented.

そして、高速洗浄を実行できるので作業時間が大幅に短
縮され全体としてのエネルギー効率を著しく高めること
を実現できる。
In addition, since high-speed cleaning can be performed, working time can be significantly shortened, and overall energy efficiency can be significantly increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る金属−臭素電池の原理構成図、 第2図は本発明の第2実施例に係る金属−臭素電池の原
理構成図、 第3図は従来装置の構成図である。 ・・・ 負極側電解液貯蔵槽 28.40.42  ・・・ 配管 ・・・ 錯体化合物 ・・・ 錯体貯蔵部 ・・・ バルブ ・・・ 錯体供給管 ・・・ 4ウエイバルブ
Figure 1 is a diagram showing the principle configuration of a metal-bromine battery according to the present invention, Figure 2 is a diagram showing the principle configuration of a metal-bromine battery according to a second embodiment of the invention, and Figure 3 is a diagram showing the configuration of a conventional device. . ... Negative electrode side electrolyte storage tank 28.40.42 ... Piping ... Complex compound ... Complex storage section ... Valve ... Complex supply pipe ... 4-way valve

Claims (1)

【特許請求の範囲】[Claims] (1)自己放電防止用のセパレータ膜により互いに仕切
られ電解液を介して所定の充放電反応を行う正極側反応
槽及び負極側反応槽と、 該正及び負極側反応槽にそれぞれ正及び負極側電解液を
循環させるよう両反応槽に各々連通形成された正極側電
解液貯蔵槽及び負極側電解液貯蔵槽と、を含み、 正極側電解液内に発生した臭素を錯化剤により錯体化し
て貯蔵する金属−臭素電池において、電池非使用時に一
旦正極側電解液を正極側電解液貯蔵槽から切り離して高
速で正極側反応槽へ独立循環させた後再び該正極側電解
液貯蔵槽に接続するための弁手段を前記正極側反応槽と
正極側電解液貯蔵槽との間に介設し、正極上に付着して
いる錯化物を洗浄除去して錯化物が負極側へ向かう拡散
に起因する自己放電を防止することを特徴とする金属−
臭素電池。
(1) A positive electrode side reaction tank and a negative electrode side reaction tank that are separated from each other by a separator film for self-discharge prevention and perform predetermined charging and discharging reactions via an electrolytic solution, and a positive electrode side and a negative electrode side in the positive and negative electrode side reaction tanks, respectively. A positive electrode side electrolyte storage tank and a negative electrode side electrolyte storage tank are respectively formed in communication with both reaction tanks so as to circulate the electrolyte, and the bromine generated in the positive electrode side electrolyte is complexed with a complexing agent. In metal-bromine batteries to be stored, when the battery is not in use, the positive electrode electrolyte is once separated from the positive electrode electrolyte storage tank, circulated independently to the positive electrode reaction tank at high speed, and then connected to the positive electrode electrolyte storage tank again. A valve means is interposed between the positive electrode side reaction tank and the positive electrode side electrolyte storage tank, and the complexes adhering to the positive electrode are washed away and the complexes are caused by diffusion toward the negative electrode side. Metal characterized by preventing self-discharge
Bromine battery.
JP63216033A 1988-08-30 1988-08-30 Metal-bromine battery Pending JPH0265074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63216033A JPH0265074A (en) 1988-08-30 1988-08-30 Metal-bromine battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63216033A JPH0265074A (en) 1988-08-30 1988-08-30 Metal-bromine battery

Publications (1)

Publication Number Publication Date
JPH0265074A true JPH0265074A (en) 1990-03-05

Family

ID=16682239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63216033A Pending JPH0265074A (en) 1988-08-30 1988-08-30 Metal-bromine battery

Country Status (1)

Country Link
JP (1) JPH0265074A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5288982A (en) * 1990-06-11 1994-02-22 Canon Kabushika Kaisha Method for changing a file name of a directory in a non-rewritable record medium
WO2006081514A3 (en) * 2005-01-28 2006-11-30 Premium Power Corp Flowing electrolyte battery with electric potential neutralization
US7898125B2 (en) 2005-05-25 2011-03-01 Mitsuba Corporation Electric motor and method of producing electric motor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5288982A (en) * 1990-06-11 1994-02-22 Canon Kabushika Kaisha Method for changing a file name of a directory in a non-rewritable record medium
WO2006081514A3 (en) * 2005-01-28 2006-11-30 Premium Power Corp Flowing electrolyte battery with electric potential neutralization
JP2008529241A (en) * 2005-01-28 2008-07-31 プレミアム パワー コーポレイション Flowing electrolyte battery with potential neutralization
AU2006207991B2 (en) * 2005-01-28 2010-09-02 Largo Clean Energy Corp. Flowing electrolyte battery with electric potential neutralization
EP2320498A1 (en) * 2005-01-28 2011-05-11 Premium Power Corporation Flowing electrolyte battery with electric potential neutralization
JP2012169283A (en) * 2005-01-28 2012-09-06 Premium Power Corp Flowing electrolyte battery with electric potential neutralization
US7898125B2 (en) 2005-05-25 2011-03-01 Mitsuba Corporation Electric motor and method of producing electric motor
JP4876072B2 (en) * 2005-05-25 2012-02-15 株式会社ミツバ Electric motor and method for manufacturing electric motor

Similar Documents

Publication Publication Date Title
JP2007188729A (en) Method of regenerating vanadium redox flow battery
JP2023501285A (en) Method and system for redox flow battery performance recovery
US4321312A (en) Metal-halogen secondary battery system
EP1364423A1 (en) Process for operating a regenerative fuel cell
JPH0265074A (en) Metal-bromine battery
JP3425060B2 (en) Electrolyte flow battery with internal resistance recovery mechanism
JPS61156641A (en) Zinc-bromine battery
CN115917801A (en) Flow battery purification
JPH0282467A (en) Metal-bromine battery
JP2003123808A (en) Redox flow cell
JPH02109275A (en) Metal-bromine battery
CN113067017B (en) Electrolyte circulation system applied to metal-air battery
JPH0282468A (en) Electrolytic solution circulation type metal-bromine battery
JPH02189868A (en) Cleanout method for metal-bromine battery
JPH0722026B2 (en) Electrolyte circulation type metal-halogen battery
JP2000200615A (en) Reactivating method of electrode and redox-flow secondary battery
JPH03147278A (en) Zinc-bromine battery
JPH03272573A (en) Zinc-bromine battery
JPS6380486A (en) Circulating electrolyte type metal-halogen battery
JPH0364870A (en) Electrolyte circulation type metal-halogen battery
JPH0449823Y2 (en)
JP2513622Y2 (en) Electrolyte circulation type metal halogen battery
JPH03152882A (en) Zinc-bromine battery
JPS6145573A (en) Method of operating zinc-bromine battery
JPH0582034B2 (en)