JPH0264499A - Cooling apparatus of nuclear reactor - Google Patents

Cooling apparatus of nuclear reactor

Info

Publication number
JPH0264499A
JPH0264499A JP63215153A JP21515388A JPH0264499A JP H0264499 A JPH0264499 A JP H0264499A JP 63215153 A JP63215153 A JP 63215153A JP 21515388 A JP21515388 A JP 21515388A JP H0264499 A JPH0264499 A JP H0264499A
Authority
JP
Japan
Prior art keywords
reactor
cooling water
wall
dry well
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63215153A
Other languages
Japanese (ja)
Inventor
Takashi Saito
隆 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63215153A priority Critical patent/JPH0264499A/en
Publication of JPH0264499A publication Critical patent/JPH0264499A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

PURPOSE:To omit the arrangement of dynamic machinery by providing a cooling water supply tank to the upper part of the dry well of a reactor container as a heat sink and allowing the cooling water from said tank to flow on the basis of the density difference of cooling water. CONSTITUTION:A reactor shield wall 10 made of steel constituted of a double cylinder is provided to a reactor pressure vessel and cooling water is supplied to said reactor shield wall 10 from the cooling water tank 11 arranged to the upper part of a dry well 3 through a falling pipe 13 to cool the reactor shield wall 10 by the heat transfer of said cooling water. The falling pipe 13 is connected to the lower part of the reactor shield wall from the lower part of the cooling water supply tank 11 to communicate with said wall 10. A cooling water flow passage 20 is provided in the reactor shield wall 10. In this case, as a means for removing core decay heat after a loss-of-coolant accident (LOCA), a pump and a heat exchanger are not required and equipment can be simplified.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は原子炉の冷却装置に係り、特に原子力発電所の
圧力抑制型原子炉格納容器における非常用炉心冷却系設
備に使用する原子炉の冷却装置に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a cooling system for a nuclear reactor, and particularly to an emergency core cooling system equipment in a pressure suppression type reactor containment vessel of a nuclear power plant. Concerning the cooling system for the nuclear reactor used.

(従来の技術) 原子炉格納容器は燃料等の炉心を収納した原子炉圧力容
器を内蔵するドライウェルと、このドライウェル内で原
子炉圧力容器に接続する配管の破断を想定事故とした時
に原子炉格納容器内の圧力を低減させると共に炉心の崩
壊熱を吸収するヒートシンクとしての役目をもった水を
収納した圧力抑制子から肴成されている。
(Prior technology) The reactor containment vessel includes a dry well that houses the reactor pressure vessel that houses the reactor core containing fuel, etc., and a nuclear reactor in the event of a hypothetical accident in which the piping connected to the reactor pressure vessel inside this dry well ruptures. It is made up of a pressure suppressor containing water that reduces the pressure inside the reactor containment vessel and acts as a heat sink that absorbs the decay heat of the reactor core.

また、ドライウェル内での原子炉圧力容器に接続した配
管想定破断事故時には原子炉圧力容器から炉心の冷却水
が溢水し、ひいては炉心損傷につながることになる。こ
れを防止するため、予示の水を有する圧力抑制子および
別置の水源からポンプにより冷却水を原子炉圧力容器内
に注入する非常用炉心冷却設備が設けられている。
In addition, in the event of a hypothetical rupture of piping connected to the reactor pressure vessel in the dry well, core cooling water will overflow from the reactor pressure vessel, leading to damage to the reactor core. In order to prevent this, an emergency core cooling facility is provided which injects cooling water into the reactor pressure vessel using a pump from a pressure suppressor containing pre-existing water and a separate water source.

最近、この非常用炉心冷却系設備のポンプ等動的な設備
をなくし、重力で原子炉圧力容器へ水源の水を注入する
単純な原子炉の冷却装置が開発され、提案されている。
Recently, a simple nuclear reactor cooling system has been developed and proposed that eliminates dynamic equipment such as pumps in the emergency core cooling system equipment and uses gravity to inject water from the water source into the reactor pressure vessel.

すなわち、原子炉格納容器内のドライウェルの下部およ
び周囲に圧力抑制室を設け、この圧ノj抑制室には配管
破断事故時にベント管を通じてドライウェルから圧力抑
制室に放出される蒸気を凝縮する等ヒートシンクとして
のプール水を有している。また、原子炉圧力容器内の炉
心より上部に設けられているドライウェルの上部に上部
プールを有してあり、この上部プールには非常用炉心冷
却系としての水源となる上部プール水を有している。
In other words, a pressure suppression chamber is provided below and around the dry well in the reactor containment vessel, and this pressure suppression chamber condenses steam that is released from the dry well into the pressure suppression chamber through a vent pipe in the event of a pipe rupture accident. etc. Having pool water as a heat sink. Additionally, there is an upper pool above the dry well located above the core in the reactor pressure vessel, and this upper pool contains water from the upper pool that serves as a water source for the emergency core cooling system. ing.

上部プール水は非常用炉心冷却系配管によって原子炉圧
力容器内に注水できるようになっている。
Water from the upper pool can be injected into the reactor pressure vessel through emergency core cooling system piping.

ざらに、圧力抑制室の空間部と上部プールの空間部の間
は連絡管により連通されている。ここで、ドライウェル
内の配管破断事故時に、ドライウェルから圧力抑制室に
放出される非凝縮性ガスによる圧力抑制室の空間部の圧
力を上部プールに伝え、非常用炉心冷却系としての上部
プール水が原子炉圧力容器に注水されるための駆動圧と
しての役割を果すようになっている。
Roughly speaking, the space of the pressure suppression chamber and the space of the upper pool are communicated by a communication pipe. Here, in the event of a pipe rupture accident in the dry well, the pressure in the space of the pressure suppression chamber due to non-condensable gas released from the dry well into the pressure suppression chamber is transmitted to the upper pool, and the upper pool serves as an emergency core cooling system. The water serves as the driving pressure for water to be injected into the reactor pressure vessel.

(発明が解決しようとする課題) 従来の技術においては冷却材喪失事故(LOCA)後の
炉心崩壊熱を除去するためにドライウェルに溜った水と
ヒートシンクとしての圧力抑制室内の水を冷却する手段
として残留熱除去系を必要とする。したがって、この系
統を動かすために、ポンプおよび熱交換器等の動的機器
を必要とする。
(Problem to be Solved by the Invention) In the conventional technology, there is no means for cooling water accumulated in a dry well and water in a pressure suppression chamber as a heat sink to remove core decay heat after a loss of coolant accident (LOCA). As such, a residual heat removal system is required. Therefore, dynamic equipment such as pumps and heat exchangers is required to operate this system.

本発明はこれらの点に鑑みてなされたものでおり、上述
したポンプ、熱交換器等の動的機器を必要としない原子
炉格納tIIA設冷却膜冷却設備する原子炉の冷却装置
を提供するものでおる。
The present invention has been made in view of these points, and provides a cooling device for a nuclear reactor equipped with a reactor containment tIIA cooling film cooling system that does not require the above-mentioned dynamic equipment such as a pump or a heat exchanger. I'll go.

[発明の構1戊] (課題を解決するための手段) 本発明は原子炉格納容器内に原子炉圧ツノ容器が格納さ
れ、前記原子炉格納容器内のドライウェルに露呈した前
記原子炉圧力容器の周囲に筒形鋼製原子炉じゃへい壁を
配置し、この原子炉し・昏へい壁に冷却水を流す冷却水
流路を設け、前記ドライウェルの上部に冷却水プールを
設置し、この冷却水プールと前記原子炉じゃへい壁の冷
却水流路とを下降管および上昇管を介して接続してなり
、前記原子炉じゃへい型は前記冷却水プール内の冷却水
が密度差で前記下降管原子炉じゃへい壁の冷却水流路お
よび上昇管内を流れる循環流で冷却されることを特徴と
する。
[Structure 1 of the Invention] (Means for Solving the Problems) The present invention provides for a reactor pressure horn vessel to be stored in a reactor containment vessel, and to reduce the pressure of the reactor exposed to a dry well in the reactor containment vessel. A cylindrical steel reactor barrier wall is placed around the vessel, a cooling water channel for flowing cooling water is provided in this reactor barrier wall, a cooling water pool is installed above the dry well, and this The cooling water pool and the cooling water flow path of the reactor wall are connected through a downcomer pipe and a riser pipe, and in the reactor wall type, the cooling water in the cooling water pool flows downward due to the density difference. It is characterized by being cooled by a circulating flow that flows through the cooling water flow path in the tube reactor wall and inside the riser pipe.

(作 用) 本発明に係る原子炉の冷却装置は冷却材喪失事故(LO
CA)後の炉心崩壊熱を除去する手段として、原子炉じ
ゃへい壁に冷却水を通流することによって原子炉じゃへ
い壁に冷却機能をもたけている。この冷却水の通流方法
としては原子炉格納容器内のドライウェル上部にピー1
〜シンクとしての冷却水供給タンクを設け、このタンク
からの冷却水の駆動力としては原子炉じゃへい壁内の上
下の温度差に伴う冷却水の密度差により通流させる。
(Function) The nuclear reactor cooling system according to the present invention prevents loss of coolant accidents (LO
CA) As a means of removing the subsequent core decay heat, the reactor wall is provided with a cooling function by passing cooling water through the reactor wall. As a method of circulating this cooling water, there is a pipe 1 installed above the dry well inside the reactor containment vessel.
- A cooling water supply tank is provided as a sink, and the driving force for the cooling water from this tank is caused by the difference in density of the cooling water due to the difference in temperature between the upper and lower sides of the reactor wall.

これにより動的な機器を設ける必要はない。This eliminates the need for dynamic equipment.

また、冷却水供給タンクには必要に応じ冷却水が補給さ
れる。
Further, the cooling water supply tank is replenished with cooling water as needed.

ざらに、ドライウェルを冠水させる水源とじては圧力抑
制室内の水を用いる。従って圧力抑制室はトイウェルの
上部に位置するが、燃料交換時の作業性を考慮し、圧力
抑制室エア(空間)部はドライウェルの下部および周囲
に設け、必要以上に燃料交換作業床レベルを上げる必要
はない。
In general, the water in the pressure suppression chamber is used as the water source for flooding the drywell. Therefore, the pressure suppression chamber is located at the top of the toy well, but in consideration of workability during fuel exchange, the pressure suppression chamber air (space) is located below and around the dry well, making the fuel exchange work floor level higher than necessary. There's no need to raise it.

(実施例) 第1図から第3図を参照しながら本発明に係る原子炉の
冷F!1装置の一実施例を説明する。なお第2図は第1
図のA−A矢視断面で、第3図は第1図にあける原子炉
し1)へい壁の片方のみを示している。
(Example) With reference to FIGS. 1 to 3, let us explain the cold F of the nuclear reactor according to the present invention! An example of one device will be described. Note that Figure 2 is the same as Figure 1.
In the cross section taken along the line A-A in the figure, FIG. 3 shows only one side of the reactor wall 1) which is opened in FIG. 1.

すなわら、第1図において符号1は原子炉格納容器を示
しており、この原子炉格納容器1の中央部に炉心2aを
収納した原子炉圧力容器2が格納されている。原子炉圧
力容器2はペースマット1aから立設したペデスタル2
bで支えられている。原子炉格納容器1内に設けられた
ドライウェル3の上部に圧力抑制¥4が設けられている
。この圧力抑制室4内には配管破断時にベント管5を通
じてドライウェル3から圧力抑制室4内に放出される蒸
気を緊縮する等ヒートシンクとしてのプール水6を有し
ている。ドライウェル3の下部および周囲には圧ツノ抑
制至のエア(空間)部7が設けられている。このエア部
7は上部の圧力抑制室4と連通管8でつながれている。
That is, in FIG. 1, reference numeral 1 indicates a reactor containment vessel, and a reactor pressure vessel 2 containing a reactor core 2a is housed in the center of the reactor containment vessel 1. The reactor pressure vessel 2 is a pedestal 2 erected from the pacemat 1a.
It is supported by b. A pressure suppressor 4 is provided above the dry well 3 provided in the reactor containment vessel 1. This pressure suppression chamber 4 has pool water 6 as a heat sink, which constricts the steam released into the pressure suppression chamber 4 from the dry well 3 through the vent pipe 5 when the pipe is broken. An air (space) portion 7 is provided below and around the dry well 3 to suppress pressure horns. This air section 7 is connected to the upper pressure suppression chamber 4 through a communication pipe 8.

圧力抑制室4内のプール水6は非常用炉心冷却系配管9
によって原子炉圧力容器2内に注水できるようになって
いる。プール水6が全てドライウェル3内にドローダウ
ンし、炉心2aの崩壊熱によって、この水が温度上昇す
る。その温度上昇を防止する冷却用として、原子炉圧力
容器2の周囲に二重円筒で構成された鋼製原子炉じゃへ
い壁10を設ける。この原子炉し15へい壁10にドラ
イウェル3の上部に設置した冷却水供給タンク11から
下降管13を通して冷却水12を供給する。その冷却水
の熱伝達により原子炉じゃへい壁10は冷却される。
The pool water 6 in the pressure suppression chamber 4 is connected to the emergency core cooling system piping 9
This allows water to be injected into the reactor pressure vessel 2. All of the pool water 6 is drawn down into the dry well 3, and the temperature of this water rises due to the decay heat of the reactor core 2a. A steel reactor baffle wall 10 made of a double cylinder is provided around the reactor pressure vessel 2 for cooling purposes to prevent the temperature from rising. Cooling water 12 is supplied from a cooling water supply tank 11 installed above the dry well 3 to the wall 10 of the reactor 15 through a downcomer pipe 13. The reactor wall 10 is cooled by heat transfer of the cooling water.

冷却水供給タンク11の下部から下降管13が原子炉じ
ゃへい壁10下部に接続して連絡されている。
A downcomer pipe 13 is connected from the lower part of the cooling water supply tank 11 to the lower part of the reactor baffle wall 10 for communication.

原子炉じゃへい壁10内には冷却水が流れる流路20が
設けられ、また、流路20の出口側に接続した上昇管1
4がその上部から冷却水供給タンク11上部に連絡され
ている。冷却水供給タンク11内には炉心崩壊熱を充分
に除去できる冷却水12が貯溜されており、下降管13
→原子炉じゃへい壁内の流路20→上昇管14の順で冷
却水12が循環通水される。なお、冷却水供給タンク1
1には必要に応じ、冷却水を補給できるように、補給水
ライン15が設けられている。
A flow path 20 through which cooling water flows is provided in the reactor baffle wall 10, and a riser pipe 1 connected to the outlet side of the flow path 20 is provided.
4 is connected from its upper part to the upper part of the cooling water supply tank 11. Cooling water 12 capable of sufficiently removing core decay heat is stored in the cooling water supply tank 11, and the downcomer pipe 13
Cooling water 12 is circulated in the order of → flow path 20 in the reactor jacket wall → riser pipe 14 . In addition, cooling water supply tank 1
1 is provided with a makeup water line 15 so that cooling water can be replenished as needed.

また、通常運転時のドライウェル3内の冷却にも用いら
れるように上昇管14.下降管13には通常運転時に用
いられる原子炉補機冷却水16が通水できるようになっ
ている。
The riser pipe 14. is also used for cooling the inside of the dry well 3 during normal operation. Reactor auxiliary cooling water 16 used during normal operation can flow through the downcomer pipe 13 .

なお、第1図中、(A)で示した部分はドライウェル内
の冠水レベルを示している。
In addition, in FIG. 1, the part shown by (A) shows the submergence level in the dry well.

原子炉じゃへい壁10は第2図に拡大して示したように
同じ円筒形の鋼製内筒17および外筒18からなる二重
円筒体で、内部に空間19を有し、その空間19内に冷
却水12が流れる流路20を有する流路管21が多数本
挿入されたものからなっている。また、第3図に示した
ように内筒17および外筒18には原子炉圧力容器2お
よびドライウェル3の熱交換を良好にするためのフィン
22.23が取着されている。
As shown in an enlarged view in FIG. 2, the reactor wall 10 is a double cylindrical body consisting of an inner cylinder 17 and an outer cylinder 18 made of the same cylindrical steel, and has a space 19 inside. It consists of a large number of flow pipes 21 each having a flow path 20 through which cooling water 12 flows. Further, as shown in FIG. 3, fins 22 and 23 are attached to the inner cylinder 17 and the outer cylinder 18 to improve heat exchange between the reactor pressure vessel 2 and the dry well 3.

% a3、原子炉し15へい壁10の上下部にはそれぞ
れ上部開口25および下部開口26が設けられ、また原
子炉じゃへい壁10の上下両端には下降管13および上
界管14が接続されている。
% a3, an upper opening 25 and a lower opening 26 are provided at the upper and lower parts of the reactor shield wall 10, respectively, and a downcomer pipe 13 and an upper tube 14 are connected to both the upper and lower ends of the reactor shield wall 10. ing.

第4図は原子炉じゃへい壁の他の例を示したもので、第
2図と同一部分には同一符号で示し重複する部分の説明
を省略する。この例では内筒17と外筒18との空間1
9に軸方向に沿ってたて長のリブ24を補強材として挿
着したものである。空間19は冷却水が流れる流路20
も兼ねているためリブ24には部分的に図示していない
貫通孔が設けられている。この貫通孔を通して冷却材の
一部が流れ原子炉じゃへい壁を良好に冷却する。
FIG. 4 shows another example of the reactor barrier wall, in which the same parts as in FIG. 2 are denoted by the same reference numerals and the explanation of the overlapping parts will be omitted. In this example, the space 1 between the inner cylinder 17 and the outer cylinder 18
9, a vertically long rib 24 is inserted along the axial direction as a reinforcing material. Space 19 is a channel 20 through which cooling water flows.
The rib 24 also has a through hole (not shown) partially provided therein. A portion of the coolant flows through this through hole and cools the reactor wall well.

第5図は原子炉じゃへい壁のざらに他の例を示したもの
で、第3図と同一部分には同一符号を付して重複する部
分の説明を省略する。この例は原子炉圧力容器2の周囲
に第1および第2の原子炉じゃへい壁10.10aを二
重に設けて原子炉圧力容器2およびドライウェル3の冷
却効果をさらに高めたことにおる。この第2の原子炉し
ゃへい壁10aの内筒17aおよび外筒18aは第1の
原子炉しやへい壁10の内筒17および外@18よりも
直径か大きいほかは、構成と作用効果は前述した例とほ
ぼ同様である。
FIG. 5 shows another example of the roughness of the reactor wall, in which the same parts as in FIG. 3 are given the same reference numerals, and the explanation of the overlapping parts is omitted. In this example, first and second reactor baffle walls 10.10a are provided twice around the reactor pressure vessel 2 to further enhance the cooling effect of the reactor pressure vessel 2 and dry well 3. . The structure and operation effects are as described above, except that the inner cylinder 17a and the outer cylinder 18a of the second reactor shielding wall 10a are larger in diameter than the inner cylinder 17 and the outer cylinder 18 of the first reactor shielding wall 10. This is almost the same as the example above.

[発明の効果] 本発明によれば次に述べる効果がおる。[Effect of the invention] According to the present invention, the following effects can be achieved.

(1)冷却材喪失事故(LOCA)後の炉心崩壊熱を除
去する手段として残留熱除去系としてのポンプ、熱交換
器を必要とせず、すなわら動的は器を必要としないこと
から、設備の単純化が可能である。
(1) As a means of removing core decay heat after a loss of coolant accident (LOCA), there is no need for pumps or heat exchangers as a residual heat removal system, in other words, no dynamic equipment is required. Equipment can be simplified.

(2)従来、ポンプ、熱交換器を配置するために必要と
したスペースを削除できる。
(2) The space conventionally required for arranging pumps and heat exchangers can be eliminated.

(3)ドライウェル内の通常冷却に原子炉じゃへい壁の
冷却機能を代用することが期待できることから、従来設
けていたドライウェル冷却空調機の機数削減ないしは削
除が期待できる。
(3) Since the cooling function of the reactor wall can be expected to be substituted for normal cooling in the dry well, it is expected that the number of conventional dry well cooling air conditioners will be reduced or eliminated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る原子炉の冷却装置の一実施例を一
部概略的に示す縦断面図、第2図は第1図にあけるA−
A矢視方向を切断し拡大して示す横断面図、第3図は第
1図における原子炉じゃへい壁の片側のみ示す縦断面図
、第4図は原子炉じゃへい壁の他の例を示す横断面図、
第5図は原子炉じゃへい壁のざらに他の例を片側のみを
示す縦断面図である。 1・・・原子炉格納容器 2・・・原子炉圧力容器 2a・・・炉心 2b・・・ペデスタル 3・・・ドライウェル 4・・・圧力抑制下 5・・・ベント管 6・・・プール水 7・・・圧力抑制至エア部 8・・・連通管 9・・・非常用炉心冷却系配管 10・・・原子炉じゃへい壁 11・・・冷却水供給タジク 12・・・冷却水。 14・・・上賛管。 16・・・原子炉補機冷却水 17・・・内筒。 19・・・空間。 21・・・流路管。 24・・・リブ A・・・ドライウェル内冠水レベル 13・・・下降管 15・・・補給水ライン 18・・・外筒 20・・・流路 22、23・・・フィン (8733)代理人
FIG. 1 is a vertical cross-sectional view partially schematically showing an embodiment of a cooling device for a nuclear reactor according to the present invention, and FIG.
3 is a cross-sectional view showing only one side of the reactor barrier wall in FIG. 1; FIG. 4 is a cross-sectional view showing another example of the reactor barrier wall in FIG. 1. A cross-sectional view showing,
FIG. 5 is a vertical sectional view showing only one side of another example of the roughness of the reactor wall. 1...Reactor containment vessel 2...Reactor pressure vessel 2a...Reactor core 2b...Pedestal 3...Dry well 4...Under pressure suppression 5...Vent pipe 6...Pool Water 7...Pressure suppression air section 8...Communication pipe 9...Emergency core cooling system piping 10...Reactor jacket wall 11...Cooling water supply tank 12...Cooling water. 14...Joshankan. 16... Reactor auxiliary cooling water 17... Inner cylinder. 19...Space. 21...Flow path pipe. 24... Rib A... Dry well submersion level 13... Descending pipe 15... Make-up water line 18... Outer tube 20... Channels 22, 23... Fin (8733) substitute Man

Claims (1)

【特許請求の範囲】[Claims] 原子炉格納容器内に原子炉圧力容器が格納され、前記原
子炉格納容器内のドライウェルに露呈した前記原子炉圧
力容器の周囲に筒形鋼製原子炉しやへい壁を配設し、こ
の原子炉しゃへい壁に冷却水を流す冷却水流路を設け、
前記ドライウェルの上部に冷却水プールを設置し、この
冷却水プールと前記原子炉しやへい壁の冷却水流路とを
下降管および上昇管を介して接続してなり、前記原子炉
しやへい壁は前記冷却水プール内の冷却水が密度差で前
記下降管原子炉しやへい壁の冷却水流路および上昇管内
を流れる循環流で冷却されることを特徴とする原子炉の
冷却装置。
A reactor pressure vessel is stored in a reactor containment vessel, and a cylindrical steel reactor shielding wall is provided around the reactor pressure vessel exposed to a dry well in the reactor containment vessel. A cooling water channel is installed in the reactor shielding wall to allow cooling water to flow.
A cooling water pool is installed in the upper part of the dry well, and this cooling water pool is connected to the cooling water passage in the reactor shield wall through a downcomer pipe and a riser pipe. A cooling device for a nuclear reactor, wherein the cooling water in the cooling water pool is cooled by a circulating flow flowing through the cooling water passage of the downcomer reactor wall and the riser pipe due to a density difference between the cooling water in the cooling water pool.
JP63215153A 1988-08-31 1988-08-31 Cooling apparatus of nuclear reactor Pending JPH0264499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63215153A JPH0264499A (en) 1988-08-31 1988-08-31 Cooling apparatus of nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63215153A JPH0264499A (en) 1988-08-31 1988-08-31 Cooling apparatus of nuclear reactor

Publications (1)

Publication Number Publication Date
JPH0264499A true JPH0264499A (en) 1990-03-05

Family

ID=16667546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63215153A Pending JPH0264499A (en) 1988-08-31 1988-08-31 Cooling apparatus of nuclear reactor

Country Status (1)

Country Link
JP (1) JPH0264499A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009300251A (en) * 2008-06-13 2009-12-24 Toshihisa Shirakawa Bwr fuel pool (7)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009300251A (en) * 2008-06-13 2009-12-24 Toshihisa Shirakawa Bwr fuel pool (7)

Similar Documents

Publication Publication Date Title
US4367194A (en) Emergency core cooling system
US5102616A (en) Full pressure passive emergency core cooling and residual heat removal system for water cooled nuclear reactors
US5272737A (en) Nuclear reactor installation
US20040196948A1 (en) Integral pwr with diverse emergency cooling and method of operating same
KR960008859A (en) Method and apparatus for improving the performance of air-cooled systems in nuclear reactors
CA2150275C (en) Passive emergency water system for water-cooled nuclear reactors
US5887043A (en) Passive emergency water system for water-cooled nuclear reactors
US4959193A (en) Indirect passive cooling system for liquid metal cooled nuclear reactors
JPH04230893A (en) Passive cooling apparatus for storing space of atomic reactor using isolated condenser
US20140241484A1 (en) Pressurized water reactor depressurization system
GB1484093A (en) Liquid cooled nuclear reactor
JPS58146891A (en) Reactor device
JP2983290B2 (en) Heat release equipment for nuclear reactors, especially pressurized water reactors
JPH0238893A (en) Pressurized water type nuclear reactor
JP2934341B2 (en) Reactor containment cooling system
JPH0264499A (en) Cooling apparatus of nuclear reactor
JPH0334835B2 (en)
JPS63113394A (en) Emergency cooling device for fast neutron reactor
JPH05172979A (en) Pressure suppression device for reactor container
JPS6375594A (en) Natural radiation type container
JPH0271193A (en) Nuclear reactor containment vessel
JPH0282194A (en) Nuclear reactor storage facility
JPH07159563A (en) Liquid metal-cooled atomic reactor
JPS59131801A (en) Secondary heat transmission circuit for liquid metal nuclearreactor
JPH0283495A (en) Core cooling apparatus for emergency