JPH0261524B2 - - Google Patents

Info

Publication number
JPH0261524B2
JPH0261524B2 JP59241949A JP24194984A JPH0261524B2 JP H0261524 B2 JPH0261524 B2 JP H0261524B2 JP 59241949 A JP59241949 A JP 59241949A JP 24194984 A JP24194984 A JP 24194984A JP H0261524 B2 JPH0261524 B2 JP H0261524B2
Authority
JP
Japan
Prior art keywords
metal
base metal
melting
metal surface
locally
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59241949A
Other languages
Japanese (ja)
Other versions
JPS61119615A (en
Inventor
Seishiro Yoshihara
Takao Kawanami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP59241949A priority Critical patent/JPS61119615A/en
Publication of JPS61119615A publication Critical patent/JPS61119615A/en
Publication of JPH0261524B2 publication Critical patent/JPH0261524B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は金属表層を局部的に溶融することおよ
び成形するによつてその表層を改質する技術に関
するものである。 (従来の技術) 従来技術のうちいわゆる金属の熱処理は溶融点
を超えて加熱することはなく、成分偏析の改善や
結晶組織の微細化には自ら限界があり、新たな成
分の添加は表面から拡散できるわずかな量と深さ
に限定されていた。また、異種金属を表層に付着
させるメツキや溶射は母材との付着力が弱く、使
用性能向上には限界があつた。さらに、最近レー
ザビームにより金属表層を溶融する試みが知られ
ているが、この方法はブローホールや亀裂を生じ
また表面に著るしいおうとつを生じ実用化される
に至つていない。 (発明が解決しようとする問題点) 本発明は金属の表層を溶融し、その凝固組織を
改質すること、および異種金属を添加し合金化す
ること、さらにこれらの方法においてブローホー
ルや亀裂を生じさせず表面を平滑で緻密な組織と
する加工法を提供することを目的とする。 (問題点を解決するための手段) 本発明はつぎのように構成される。 (1) 母材金属の表面に、該母材金属よりも酸化さ
れ易い物質と前記母材よりも融点の低い金属に
よつて構成される添加剤を存在させて、前記母
材金属表面を不活性ガスによる保護下に局部的
に急速加熱して溶融せしめ、該溶融部を凝固完
了前に押圧ローラによつて押圧成形するととも
に急冷することを特徴とする金属表面溶融加工
法。 (2) 母材金属表面を局部的に急速加熱する手段
が、レーザビーム或は電子ビームを適用するも
のである前記(1)項記載の金属表面溶融加工法。 (3) 母材金属の表面に、該母材金属よりも酸化さ
れ易い物質と前記母材よりも融点の低い金属に
よつて構成される添加剤を合金成分とともに存
在させて、前記母材金属表面を不活性ガスによ
る保護下に局部的に急速加熱して溶融せしめ、
該溶融部を凝固完了前に押圧ローラによつて押
圧成形するとともに急冷することを特徴とする
金属表面溶融加工法。 (4) 母材金属表面を局部的に急速加熱する手段
が、レーザビーム或は電子ビームを適用するも
のである前記(3)項記載の金属表面の溶融加工
法。 次に本発明を詳細に説明する。 母材金属の表層を局部的に急速加熱して溶解す
ると凝固組織は細かくなり、偏析も小さくなり、
耐熱亀裂性や耐摩耗性が向上する。しかしなが
ら、凝固過程でブローホールや内部割れが発生し
やすく、表面はおうとつを生じやすい。これらの
欠点は、表層溶解直後に該部を押圧成形すること
によつて、凝固過程で生ずる引張応力を圧縮応力
に変化せしめて防止することができる。特に押圧
成形が凝固完了前に始まつた時はその効果が大き
い。急速加熱溶解部をただちに押圧成形すること
によつて、該溶解部を押圧工具によつて急速冷却
し、凝固組織を一層小さくすること、また押圧工
具によつて成形し、平滑にすること、さらには加
工を加えることによつて凝固組織の再結晶を促進
させることができる。 多くの金属は溶融によつて酸化反応が急速に進
行し、ガスを発生し、ブローホールをつくりやす
い。本発明において母材金属より酸化されやすい
物質を含むいわゆる脱酸剤を共存せしめることに
よつて溶融金属の酸化反応およびリミングアクシ
ヨを鎮静せしめ、この時生ずる脱酸生成物を浮上
せしめて溶融金属から分離せしめることが望まし
い。母材金属が鋼または鋼合金の場合には脱酸物
質としては周知のアルミ、けい素、マンガン、チ
タン、ジルコニウム、バナジウムまたはその合金
の一種以上を含むものか適当である。これらの脱
酸物質を添加する方法としては、該脱酸物質を含
む添加剤を粉末とし樹脂と溶剤によつて母材金属
に塗布し乾燥したのち母材とともに溶融するか、
該脱酸物質を線状とし線材供給装置によつて母材
溶融部に連続的に供給するか、または脱酸物質を
薄板状とし母材表面を覆い母材とともに溶融する
のがよい。このようにして溶融金属中でのガスの
発生を防止し、脱酸生成物を密度の差によつて分
離浮上させるかまたは微小に分散して無害な状態
とする。合金成分を添加しようとする場合には添
加剤に脱酸剤とともに合金元素を混合し、同様に
して母材とともに溶融せしめるか、このほか添加
剤を溶融または半溶融の状態で母材金属の表面に
付着せしめ、該付着金属の凝固後あるいは凝固を
待たずに母材とともに溶融することもできる。以
上の脱酸剤および合金元素の添加に際し、添加剤
に母材金属より融点の低い金属を加えておくと脱
酸剤および合金元素の飛散を防止することができ
る。 本発明の熱源には母材金属および添加元素を溶
融できる熱源、例えば燃焼ガス、誘導加熱、電
弧、プラズマ、電子ビーム、あるいはレーザビー
ムなどを用いることができるが、エネルギ密度の
高い熱源、例えば電子ビームあるいはレーザビー
ムが局部加熱溶解と急速冷却効果による結晶微細
化が著るしいので材質特性向上の点から最も好ま
しい。また本発明法においては溶融金属の空気酸
化および空気巻込みをさけるために溶融部をアル
ゴン、ヘリウムなどの不活性気体あるいは窒素な
どの反応しにくい気体によつておおうことが好ま
しい。 本発明の押圧成形する方法を説明すると、第1
図に示すように、円柱状被加工物1の円柱面を加
工する場合には、該円柱状被加工物1を矢印2の
方向に回転せしめながらレーザビーム3を照射
し、その表層部4を局部的に急速加熱して溶融部
5を形成せしめ、その進行方向に押圧ローラ6を
配設して該溶融部5を押圧成形する。押圧力と押
圧量はシリンダ7によつて調節する。 (実施例) 表に実施例を従来法と比較して示す。 第1図に示すような装置を用い、直径200mmの
円柱状被加工物の表面にレーザビームを直径4mm
に絞つて照射し、表層を溶融し、進行方向に30mm
離れた位置に待機した直径50mm、幅10mmの押圧ロ
ーラーに2Kgの力を加えて該部を成形した。母材
金属は炭素0.31%、けい素0.41%、マンガン0.60
%、クロム2.88%、ニツケル1.17%の低合金鋼の
鋳造品である。従来法では脱酸剤と母材より低融
点の金属を含まない場合であつて、モリブデンの
粉末をシリコン樹脂をビヒクルとし、シンナーに
より粘度調整、刷毛で塗膜厚さ0.7mmに塗布した
のち、該塗膜面に10kWのレーザビームを相対速
度40mm/秒で照射し、ビーム幅の2分の1が重な
るように隣接部を溶融しつづけたものである。比
較法では脱酸剤としてチタンを用いたほかは従来
法に同じである。比較法によつてブローホールが
改善されている。比較法は公知ではないが、熱亀
裂が発生しているためこのままでは技術としては
未完成である。本発明法ではすべて溶解部をロー
ラーによつて押圧成形し凝固せしめている。本発
明法1では脱酸剤としてチタンを、母材より低融
点の金属としてアルミを用いており、その他の条
件は従来法と同じである。本発明法2ではアルミ
が脱酸剤と母材より低融点の金属を兼ねている場
合で、その他の条件は従来法と同じである。本発
明法3では脱酸剤としてけい素、母材より低融点
の金属にすずを用いた場合である。これらの本発
明法においてはブローホールと熱亀裂は皆無又
は、実用的に無害な程度に小さく、すなわち0.5
mm以下であり良好といえる。また表層の溶融され
た部分のデンドライト間隔はいずれも約5μであ
り母材の50〜100μに比して著るしく微細化され
良好といえる。脱酸剤の効果は脱酸反応として良
く知られているとうりであり、鋼中のブローホー
ル発生を防止する。低融点金属の効果は温度上昇
にともなつて樹脂による塗膜密着性が劣るので、
これに代る高温での塗膜密着剤となること、およ
び高密度エネルギの熱シヨツクをやわらげること
さらには母材と添加合金の酸化を防止することで
ある。添加剤には低融点金属の広がりを良くする
物質を加えることができる。 (実施例)
(Industrial Application Field) The present invention relates to a technique for modifying a metal surface layer by locally melting and molding the surface layer. (Conventional technology) Among the conventional techniques, so-called heat treatment of metals does not involve heating beyond the melting point, and there are limits to improving component segregation and refining the crystal structure, and adding new components is only possible from the surface. It was limited to a small amount and depth that could be spread. Furthermore, plating and thermal spraying, which attach dissimilar metals to the surface layer, have weak adhesion to the base material, which limits the ability to improve performance. Furthermore, attempts have recently been made to melt the metal surface layer with a laser beam, but this method causes blowholes and cracks, as well as significant cavities on the surface, so it has not been put into practical use. (Problems to be Solved by the Invention) The present invention involves melting the surface layer of metal, modifying its solidified structure, adding different metals to form an alloy, and further eliminating blowholes and cracks in these methods. The purpose of the present invention is to provide a processing method that provides a smooth and dense structure on the surface without causing the formation of oxidation. (Means for solving the problems) The present invention is configured as follows. (1) An additive composed of a substance that is more easily oxidized than the base metal and a metal whose melting point is lower than that of the base metal is present on the surface of the base metal to make the surface of the base metal impure. 1. A method for melting a metal surface, which comprises rapidly heating and melting the melted portion locally under the protection of an active gas, and pressing the melted portion with a pressure roller and rapidly cooling the melted portion before solidification is completed. (2) The metal surface melting processing method according to item (1) above, wherein the means for locally rapidly heating the base metal surface applies a laser beam or an electron beam. (3) An additive composed of a substance that is more easily oxidized than the base metal and a metal with a melting point lower than that of the base metal is present on the surface of the base metal together with an alloy component, and the base metal is The surface is rapidly heated locally under the protection of an inert gas to melt it.
A metal surface melt processing method characterized in that the molten portion is press-formed by a pressure roller and rapidly cooled before completion of solidification. (4) The method for melting a metal surface according to item (3) above, wherein the means for locally rapidly heating the base metal surface applies a laser beam or an electron beam. Next, the present invention will be explained in detail. When the surface layer of the base metal is heated locally and melted, the solidified structure becomes finer and segregation becomes smaller.
Improves heat cracking resistance and wear resistance. However, blowholes and internal cracks are likely to occur during the solidification process, and the surface is prone to pitting. These drawbacks can be prevented by press-molding the part immediately after the surface layer is melted, thereby converting the tensile stress generated during the solidification process into compressive stress. This effect is particularly great when pressure forming begins before solidification is complete. Immediately pressing and molding the rapidly heated melted part, the melted part is rapidly cooled by a pressing tool to further reduce the solidified structure; can promote recrystallization of the solidified structure by processing. Many metals undergo rapid oxidation reactions when melted, generating gas and easily creating blowholes. In the present invention, by coexisting a so-called deoxidizing agent containing a substance that is more easily oxidized than the base metal, the oxidation reaction and rimming action of the molten metal are suppressed, and the deoxidized products generated at this time are floated and separated from the molten metal. It is desirable to force them to do so. When the base metal is steel or a steel alloy, suitable deoxidizing substances include one or more of the well-known aluminum, silicon, manganese, titanium, zirconium, vanadium, or alloys thereof. These deoxidizing substances can be added by powdering the additive containing the deoxidizing substance, applying it to the base metal using a resin and a solvent, drying it, and then melting it together with the base metal;
It is preferable that the deoxidizing substance is in the form of a wire and continuously supplied to the melting part of the base material by a wire feeding device, or that the deoxidizing substance is in the form of a thin plate and that it covers the surface of the base material and melts together with the base material. In this way, the generation of gas in the molten metal is prevented, and the deoxidized products are separated and floated due to the density difference, or are finely dispersed and rendered harmless. When adding alloying components, the alloying element is mixed with the additive along with a deoxidizing agent, and the alloying element is melted together with the base metal in the same way, or the additive is melted or semi-molten and applied to the surface of the base metal. It is also possible to deposit the deposited metal on the base metal and melt it together with the base material after or without waiting for the solidification of the deposited metal. When adding the above deoxidizing agent and alloying element, if a metal having a melting point lower than that of the base metal is added to the additive, scattering of the deoxidizing agent and alloying element can be prevented. The heat source of the present invention can be a heat source capable of melting the base metal and additive elements, such as combustion gas, induction heating, electric arc, plasma, electron beam, or laser beam, but heat sources with high energy density, such as electron A beam or a laser beam is most preferable from the viewpoint of improving material properties, since local heating melts and crystal refinement is remarkable due to rapid cooling effects. Further, in the method of the present invention, it is preferable that the melting zone be filled with an inert gas such as argon or helium or a gas that is difficult to react with, such as nitrogen, in order to avoid air oxidation of the molten metal and air entrainment. To explain the press molding method of the present invention, the first
As shown in the figure, when processing the cylindrical surface of a cylindrical workpiece 1, a laser beam 3 is irradiated while the cylindrical workpiece 1 is rotated in the direction of an arrow 2, and its surface layer 4 is A molten portion 5 is formed by rapid local heating, and a pressure roller 6 is disposed in the direction of movement of the molten portion 5 to press-form the molten portion 5. The pressing force and amount are adjusted by the cylinder 7. (Example) Examples are shown in the table in comparison with the conventional method. Using the device shown in Figure 1, a laser beam of 4 mm in diameter is applied to the surface of a cylindrical workpiece with a diameter of 200 mm.
The surface layer is melted by irradiation, and the surface layer is irradiated 30mm in the direction of travel.
The part was molded by applying a force of 2 kg to a pressing roller with a diameter of 50 mm and a width of 10 mm that was waiting at a separate position. Base metal is carbon 0.31%, silicon 0.41%, manganese 0.60
%, 2.88% chromium, and 1.17% nickel. In the conventional method, which does not contain a deoxidizing agent and a metal with a lower melting point than the base material, molybdenum powder is used as a vehicle in silicone resin, the viscosity is adjusted with thinner, and the coating is applied with a brush to a thickness of 0.7 mm. The coating surface was irradiated with a 10 kW laser beam at a relative speed of 40 mm/sec, and adjacent parts were continuously melted so that one-half of the beam width overlapped. The comparative method is the same as the conventional method except that titanium is used as a deoxidizing agent. Blowholes have been improved by comparative methods. Although the comparative method is not publicly known, it is an incomplete technology as it is because thermal cracks occur. In the method of the present invention, the melted portion is all pressed and solidified using rollers. In Method 1 of the present invention, titanium is used as a deoxidizing agent and aluminum is used as a metal with a lower melting point than the base material, and other conditions are the same as in the conventional method. In Method 2 of the present invention, aluminum serves both as a deoxidizing agent and as a metal having a lower melting point than the base material, and other conditions are the same as in the conventional method. In Method 3 of the present invention, silicon is used as a deoxidizing agent and tin is used as a metal having a lower melting point than the base material. In these methods of the present invention, there are no blowholes and thermal cracks, or they are so small that they are practically harmless, that is, 0.5
It can be said to be good as it is less than mm. Furthermore, the dendrite spacing in the molten portion of the surface layer is approximately 5μ, which is significantly finer than the 50 to 100μ of the base material, and can be said to be good. The effect of the deoxidizing agent is well known as a deoxidizing reaction, which prevents the occurrence of blowholes in steel. The effect of low melting point metals is that as the temperature rises, the adhesion of the resin coating deteriorates.
Its purpose is to serve as an alternative coating adhesive at high temperatures, to soften the thermal shock of high-density energy, and to prevent oxidation of the base material and additive alloys. Additives can include substances that improve the spread of the low melting point metal. (Example)

【表】【table】

【表】 本発明法の実施例として電子ビームを用いて表
と全く同じ条件で比較実験し、全く同一の結果を
得た。ただしこのときの電子ビームの出力は
10kW、被加工物の移動速度は60mm/秒、溶込深
さは7mmであつた。また本発明法の他の実施例と
して直径2.3mmのアルミ管内にモリブデン粉末を
封入し、これを10kWのレーザビームを照射する
溶融部に送り込み、深さ6mmのモリブデン含有量
5%の合金層を得、ブローホールと熱亀裂は良好
であつた。また700℃の溶融アルミ内にモリブデ
ン粉末を混入し、これを被加工物表面に薄層上に
流し、10kWのレーザビームによつて表層の6mm
を溶融しモリブデン含有量5%の合金層を得、ブ
ローホールと熱亀裂は良好であつた。なお以上の
比較はモリブデンのほか、ニツケル、クロム、タ
ングステン、コバルトについても行なつたがブロ
ーホールと熱亀裂に対する改善効果は同様に認め
られた。 以上の結果はレーザビームと電子ビームに基づ
くものであり、局部加熱溶解と急速冷却効果によ
る結晶の微細化効果が最も優れている。その他の
エネルギ密度の高い熱源、例えば燃焼ガス、誘導
加熱、電弧、プラズマなどでも、発明の効果はレ
ーザビームと電子ビームに劣るが、従来の溶射法
よりははるかに優れた性能を得ることができる。 (発明の効果) 以上のように本発明は母材金属にブローホール
や熱亀裂を生じさせずに金属表層部の凝固組織を
微細化し、あるいは合金成分を添加でき、産業上
裨益するところが極めて大である。
[Table] As an example of the method of the present invention, a comparative experiment was conducted using an electron beam under exactly the same conditions as in the table, and exactly the same results were obtained. However, the output of the electron beam at this time is
The power was 10kW, the workpiece movement speed was 60mm/sec, and the penetration depth was 7mm. As another example of the method of the present invention, molybdenum powder is sealed in an aluminum tube with a diameter of 2.3 mm, and this is fed into a melting zone that is irradiated with a 10 kW laser beam to form an alloy layer with a depth of 6 mm and a molybdenum content of 5%. The results showed that the blowholes and thermal cracks were good. In addition, molybdenum powder is mixed into molten aluminum at 700℃, poured onto the surface of the workpiece in a thin layer, and a 10kW laser beam is applied to the surface layer by 6mm.
An alloy layer with a molybdenum content of 5% was obtained by melting, and the blowholes and thermal cracks were good. In addition to molybdenum, the above comparison was also made for nickel, chromium, tungsten, and cobalt, and the same improvement effects on blowholes and thermal cracks were observed. The above results are based on laser beams and electron beams, and the crystal miniaturization effect due to local heating melting and rapid cooling effects is the most excellent. With other energy-dense heat sources, such as combustion gases, induction heating, electric arcs, and plasmas, the invention is less effective than laser beams and electron beams, but still provides much better performance than traditional thermal spraying methods. . (Effects of the Invention) As described above, the present invention can refine the solidified structure of the metal surface layer or add alloy components without causing blowholes or thermal cracks in the base metal, and has extremely large industrial benefits. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例法の説明図である。 1:円柱状被加工物、2:回転方向矢印、3:
レーザビーム、4:レーザビーム照射表層部、
5:溶融部、6:押圧ローラ、7:押圧シリン
ダ。
FIG. 1 is an explanatory diagram of an embodiment of the present invention. 1: Cylindrical workpiece, 2: Rotation direction arrow, 3:
Laser beam, 4: Laser beam irradiation surface layer part,
5: Melting part, 6: Pressing roller, 7: Pressing cylinder.

Claims (1)

【特許請求の範囲】 1 母材金属の表面に、該母材金属よりも酸化さ
れ易い物質と前記母材よりも融点の低い金属によ
つて構成される添加剤を存在させて、前記母材金
属表面を不活性ガスによる保護下に局部的に急速
加熱して溶融せしめ、該溶融部を凝固完了前に押
圧ローラによつて押圧成形するとともに急冷する
ことを特徴とする金属表面溶融加工法。 2 母材金属表面を局部的に急速加熱する手段
が、レーザビーム或は電子ビームを適用するもの
である特許請求の範囲第1項記載の金属表面溶融
加工法。 3 母材金属の表面に、該母材金属よりも酸化さ
れ易い物質と前記母材よりも融点の低い金属によ
つて構成される添加剤を合金成分とともに存在さ
せて、前記母材金属表面を不活性ガスによる保護
下に局部的に急速加熱して溶融せしめ、該溶融部
を凝固完了前に押圧ローラによつて押圧成形する
とともに急冷することを特徴とする金属表面溶融
加工法。 4 母材金属表面を局部的に急速加熱する手段
が、レーザビーム或は電子ビームを適用するもの
である特許請求の範囲第3項記載の金属表面の溶
融加工法。
[Scope of Claims] 1. Additives composed of a substance that is more easily oxidized than the base metal and a metal having a lower melting point than the base metal are present on the surface of the base metal, 1. A method for melting a metal surface, which is characterized in that the metal surface is locally rapidly heated to melt the metal surface while being protected by an inert gas, and before solidification is completed, the molten portion is press-formed with a pressure roller and rapidly cooled. 2. The metal surface melting processing method according to claim 1, wherein the means for locally rapidly heating the base metal surface applies a laser beam or an electron beam. 3. Additives consisting of a substance that is more easily oxidized than the base metal and a metal with a melting point lower than that of the base metal are present on the surface of the base metal, together with alloy components, to improve the surface of the base metal. 1. A metal surface melt processing method characterized by rapidly heating locally to melt the metal under protection with an inert gas, and before solidification is completed, the melted portion is press-formed with a pressure roller and rapidly cooled. 4. The method of melting and processing a metal surface according to claim 3, wherein the means for locally rapidly heating the base metal surface applies a laser beam or an electron beam.
JP59241949A 1984-11-16 1984-11-16 Melt-working method of metallic surface Granted JPS61119615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59241949A JPS61119615A (en) 1984-11-16 1984-11-16 Melt-working method of metallic surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59241949A JPS61119615A (en) 1984-11-16 1984-11-16 Melt-working method of metallic surface

Publications (2)

Publication Number Publication Date
JPS61119615A JPS61119615A (en) 1986-06-06
JPH0261524B2 true JPH0261524B2 (en) 1990-12-20

Family

ID=17081964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59241949A Granted JPS61119615A (en) 1984-11-16 1984-11-16 Melt-working method of metallic surface

Country Status (1)

Country Link
JP (1) JPS61119615A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61296973A (en) * 1985-06-24 1986-12-27 Toyota Motor Corp Formation of ceramic particle dispersed composite metallic layer
JPS63216979A (en) * 1987-03-04 1988-09-09 Inoue Japax Res Inc Surface treatment
AT500561B1 (en) * 2004-05-26 2006-12-15 Miba Sinter Austria Gmbh PROCESS FOR WELDING A SINTERED FORM BODY

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52148752A (en) * 1976-06-07 1977-12-10 Hitachi Ltd Fluid static pressure bearing
JPS55148752A (en) * 1979-05-11 1980-11-19 Nippon Steel Corp Formation method of coating on metal surface
JPS5980728A (en) * 1982-10-29 1984-05-10 Toshiba Corp Heat treatment of thin sheet
JPS5980727A (en) * 1982-10-27 1984-05-10 Kawasaki Steel Corp Manufacture of cold rolled steel sheet with high drawability by continuous annealing
JPS59121008A (en) * 1982-12-27 1984-07-12 Tokyo Inst Of Technol Three-dimensional optical integrated circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52148752A (en) * 1976-06-07 1977-12-10 Hitachi Ltd Fluid static pressure bearing
JPS55148752A (en) * 1979-05-11 1980-11-19 Nippon Steel Corp Formation method of coating on metal surface
JPS5980727A (en) * 1982-10-27 1984-05-10 Kawasaki Steel Corp Manufacture of cold rolled steel sheet with high drawability by continuous annealing
JPS5980728A (en) * 1982-10-29 1984-05-10 Toshiba Corp Heat treatment of thin sheet
JPS59121008A (en) * 1982-12-27 1984-07-12 Tokyo Inst Of Technol Three-dimensional optical integrated circuit

Also Published As

Publication number Publication date
JPS61119615A (en) 1986-06-06

Similar Documents

Publication Publication Date Title
US4750947A (en) Method for surface-alloying metal with a high-density energy beam and an alloy metal
US3051822A (en) Welding with blanket and gas arc-shield
JPS6037176B2 (en) Surface alloying and heat treatment methods
JPS6125779B2 (en)
US3989091A (en) Method for electroslag remelting of titanium or its alloys and a device for effecting same
EP0190378A1 (en) Method for surface-alloying metal with a high-density energy beam and an alloy steel
US4806721A (en) Wire electrode for wire-cut electrical discharge machining
US4839487A (en) Wire electrode for wire-cut electrical discharge machining
JPH0261524B2 (en)
US2496971A (en) Thermite coating process
US2191472A (en) Method of making coated articles
JPS61296976A (en) Formation of carbide ceramic particle dispersed composite metallic layer
KR960000411B1 (en) Method of welding and product obtained therefrom
JPH0261006A (en) Additive for steelmaking
US2399356A (en) Method of welding plates
JPH0372707B2 (en)
JP3588137B2 (en) Metal material surface coating method
JPS6247932B2 (en)
US3609287A (en) Method and apparatus for electron beam welding
US3671314A (en) Tungsten electrical switching contacts
JPS61124516A (en) Method for alloying cut section
JPH0245705B2 (en)
JPH0149598B2 (en)
US1171856A (en) Process for making compound metallic articles.
JPS61115676A (en) Surface hardening build up welding