JPH0261407B2 - - Google Patents

Info

Publication number
JPH0261407B2
JPH0261407B2 JP60011719A JP1171985A JPH0261407B2 JP H0261407 B2 JPH0261407 B2 JP H0261407B2 JP 60011719 A JP60011719 A JP 60011719A JP 1171985 A JP1171985 A JP 1171985A JP H0261407 B2 JPH0261407 B2 JP H0261407B2
Authority
JP
Japan
Prior art keywords
drying
particles
powder
solid content
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60011719A
Other languages
Japanese (ja)
Other versions
JPS61171533A (en
Inventor
Goro Sato
Jusaku Arima
Michio Komatsu
Hirokazu Tanaka
Yoshitsune Tanaka
Takeo Shimada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP60011719A priority Critical patent/JPS61171533A/en
Publication of JPS61171533A publication Critical patent/JPS61171533A/en
Publication of JPH0261407B2 publication Critical patent/JPH0261407B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は微小球状無機酸化物の製造方法に関す
るものである。さらに詳しくは噴霧乾燥法により
微小球状無機酸化物を製造するに当り、その乾燥
を異つた条件下の2段階で行うことにより、非常
に球形度が高く、分散の良い粒子を製造する方法
に関するものである。 噴霧乾燥法により球形粒子を得ることは古くか
ら食品、医薬品、触媒工業などの分野で行われて
おり、数十ミクロン〜数百ミクロンの広い幅での
球状粒子が得られている。 これらの乾燥法は噴霧された液滴を100〜500℃
の直接又は間接加熱された熱風と接触させ、液滴
表面から急速に溶媒を蒸発乾燥させることにより
球状粉末を得る方法である。また上記液滴製造法
は大別して次の2種類の方法に分けられる。1つ
は、供給液を高圧下に微細孔を通過させて液滴と
する方法(ノズル型式)で、他は高速回転板によ
り、液を遠心力で液滴とする方法(アトマイザー
型式、デイスク式)であり、これらはいずれも液
に直接力を加えて細分断する形式の液滴製造法で
ある。 しかしながら、30μ以下の微小球形粒子を得る
ためにはいずれの方法にも問題がある。その第1
は微小液滴の連続発生法であり、その第2は乾燥
して得られる粉体の形状である。ノズル形式で微
小球形粒子を得ようとすれば、当然噴霧圧力を大
幅に高くするか、微細孔の径を極端に小さくする
必要があるが、ポンプ、配管、接続部の耐圧構
造、材質、無機懸濁物による摩耗、塊状物や異物
によるノズルの詰りなど多大な問題が発生し、長
期安定生産は望めない。アトマイザー形式での回
転による液滴製造では、回転数の増加がその手段
となるが、回転伝達機構の摩耗、破損、発熱の除
去など多くの問題があり、やはり長期安定運転は
望めない。 本発明者らは第1の問題、即ち微小液滴の連続
発生法には二流体ノズルによる噴霧法(同一ノズ
ルの中へ液体と高速気体を供給し、気体のせん断
力で液を霧状まで微細に噴霧する方法、きりふき
原理の応用)を採用することで目的を達成するこ
とを見出した。この方法によれば、気体圧力1〜
10Kg/cm2、ノズルよりの流出速度300m/sec以上
での運転で、30μ以下の微小粒子を得ることが可
能である。 第2のさらに大きな問題は、この二流体ノズル
による噴霧法によつても30μ以下粒子の製造は可
能であるが、球形度が高く中空でない粒子を得る
ことは困難である。 まず第一に噴霧された微小液滴は粉末やコロイ
ド粒子が液滴内部でも流動性や移動自由度をも
ち、第二に液滴からの初期の水分蒸発は液滴表面
のみから行われることである。微小液滴では比表
面積が大きく、通常の100〜500℃のガス雰囲気に
噴霧された液滴は急速な表面からの蒸発が起り、
表面部分のみが固化し易く、その結果得られる粒
子は球形度を損うばかりでなく、中空やへその発
生、極端な場合はひずめ状など雑多な非球形粒子
となる。またノズルが高温域に直接されされるこ
とにより、ノズルの閉塞やそれに伴う偏流が起り
やすく、長期安定運転は困難であつた。 本発明者等は球形度の高い密な微小粒子を得べ
く鋭意研究を重ねた結果、二流体ノズル式噴霧法
による液滴を、第1段階として低速乾燥速度で乾
燥し、第2段階として高速乾燥速度で乾燥するこ
とにより、形状、密度において満足すべき微小球
状粒子が得られることを見出した。本発明はこの
知見に基くものである。 以下本発明を工程順を追つて説明する。 本発明の原料は、ゾル、ヒドロゲル、酸化物微
粉懸濁液、酸化物キセロゲル懸濁液などが用いら
れるが、微小球形粒子を得る目的からして、ゾル
又は懸濁液の粘度は500cp以下、好ましくは50cp
以下が望ましい、 そして原料としては例えば、シリカゾル、アル
ミナゾル、鉄ゾル、チタニヤゾル、ジルコニヤゾ
ルなどの高濃度で低粘度液状であるコロイド液、
有機シリコン、有機チタン、有機アルミニウム、
有機ジルコニウムなどの化合物溶液又はその加水
分解懸濁液、ケイ酸液、ビドロゲルなどの低分子
量加水分解液などが使用可能であり、この中でも
高濃度で低粘度のゾル液が最も適している。また
目的に応じ、これらの原料を混合して供すること
も可能である。 本発明に用いられる微小液適製造設備として
は、二流体ノズル式噴霧法が適している。これは
“霧吹き”と称せられる液適製造法の総称である
が、液単味を高圧や高速回転で切断し液滴を製造
するのに比較し、高速の気体で液をせん断し液滴
化するため微細な液滴を製造し易いからである。
本法で噴霧する場合、気体の圧力は1〜10Kg/
cm2、好ましくは2.5〜8.0Kg/cm2、ノズルより噴出
する気液混合体の線速度は300m/sec以上、好ま
しくは400〜700m/secが良い。 本発明の第1段階の乾燥は気液二流体混合ノズ
ルで噴霧された微小液滴を低速乾燥速度で乾燥す
ることにある。乾燥用の気流は噴霧流に対し平行
流又は直角流であることが必要である。第1段階
の乾燥に於ては、乾燥用ガスは予め加熱され、温
度は10〜100℃、好ましくは30〜60℃であり、そ
のノズルより供給される噴霧用気体との流量の比
は11000〜500、好ましくは5000〜900であること
が必要である。乾燥用ガスはLNG、LPG、油状
燃料を燃焼したガスそのままでもよく、又、予め
これらの燃焼や電気などにより間接加熱された空
気によつてもよい。 本発明の目的は中空や異形でない微小球形粒子
を得るにあり、そのためには第1段階の乾燥をゆ
るやかに行なう必要がある。本発明によれば低温
乾燥域での乾燥速度は0.02Kg水分/秒.Kg固型分
以下、好ましくは0.016Kg水分/秒.Kg固型分以
下である必要がある。 この乾燥速度は便宜上次式で表わされる。 供給液の水分量(Kg水分/Hr)−第1乾燥域通過後の粉
体の含む水分量(Kg水分/Hr)/噴霧された液滴の第1
乾燥域での滞留時間(秒)×供給液中の固型分(Kg固型
分/Hr) 得られる粉体の径が30μ以上の場合、本条件下
でも非常に中空度が高く、へその多い粉末が得ら
れる。また、乾燥速度が本発明より大きい場合、
中空やへその多い粉末が得られるばかりか、ひづ
め状やかけら状の軽質な非球形粒子が得られる。 このようにして得られる第1乾燥を経た粉末
は、その水分含有量は12%以上であり、これは過
剰な乾燥雰囲気にさらされていないことを示して
いる。 本発明の第1段階の乾燥に於て、乾燥用気体は
予め加湿して湿度を調節したものでも構わさな
い。また既に用いられた気体より粉体を除去した
後の気体の一部を循環使用することは好ましいこ
とである。 本発明の第2段階の乾燥は、第1段階の乾燥で
得られた粉末を高速で乾燥することにある。第1
段階の乾燥で得られた粉末は多量の水分を含んで
おり、可能な限り早急に脱水する必要がある。さ
もなければ、粉末同志の接触による凝集粉体の発
生や、蒸発水の凝固による液滴による濡れの発
生、管壁や乾燥室壁への衝突による非球形化、ス
ケール化などのトラブルの原因となる。 本発明によれば、第1段階の乾燥で得られた粉
末を110〜400℃、好ましくは150〜300℃の気体と
接触させて、乾燥速度を0.04Kg水分/秒.Kg固型
分以上、好ましくは0.05Kg水分/秒.Kg固型分と
することにより、凝集粒子や衝突による異形粒子
がほとんど無い製品が得られ連続生産が可能とな
つた。 第2段階の乾燥により得られた粉体は湿式、乾
式捕集など任意の方法で捕集されるが、乾式バグ
フイルターを用いる方法が最も簡便で好ましい。
さらに得られた微小球粉末は必要に応じ、分級や
焼成などの工程を得た後、目的の用途に供せられ
る。 本発明で得られる微小球状粒子は、次の性状を
もつている。 真球度 0.85以上 嵩密度 0.7〜1.5g/cm3 サイズ範囲 0.5〜30μ 次に本発明の実施例を比較例と共に示す。 実施例及び比較例 市販のシリカゾル、チタニヤゾル、アルミナゾ
ルを原料とし二流体ノズル式噴霧法を用いて微粉
末乾燥品を得た。試料A、B、Cは低乾燥速度域
と高乾燥続度域の2段の乾燥段階を経る方法を用
いた本発明の実施例である。また試料D、Eは高
乾燥速度域に直接噴霧方法を用いた。 各試料の製造条件を表−1に示す。
The present invention relates to a method for producing microspherical inorganic oxides. More specifically, it relates to a method for producing particles with extremely high sphericity and good dispersion by performing drying in two stages under different conditions when producing microspherical inorganic oxides by spray drying. It is. Obtaining spherical particles by spray drying has been practiced for a long time in the fields of food, medicine, catalyst industry, etc., and spherical particles with a wide width of several tens of microns to several hundred microns have been obtained. These drying methods dry the atomized droplets at 100-500°C.
In this method, a spherical powder is obtained by bringing the droplet into contact with directly or indirectly heated hot air and rapidly evaporating the solvent from the surface of the droplet to dryness. Further, the above-mentioned droplet manufacturing method can be roughly divided into the following two types of methods. One is a method in which the supplied liquid is made into droplets by passing through fine holes under high pressure (nozzle type), and the other is a method in which the liquid is made into droplets by centrifugal force using a high-speed rotating plate (atomizer type, disk type). ), and both of these are droplet production methods in which force is directly applied to the liquid to break it into small pieces. However, each method has problems in obtaining microspherical particles of 30 μm or less. The first
is a method of continuously generating micro droplets, and the second method is the shape of the powder obtained by drying. In order to obtain microspherical particles using a nozzle, it is naturally necessary to significantly increase the spray pressure or make the diameter of the micropores extremely small. Many problems occur, such as wear due to suspended matter and nozzle clogging due to lumps and foreign matter, and long-term stable production cannot be expected. The method of producing droplets through rotation in an atomizer format is to increase the number of rotations, but there are many problems such as wear and tear of the rotation transmission mechanism, removal of heat generation, etc., and long-term stable operation cannot be expected. The present inventors solved the first problem, that is, a method for continuously generating microdroplets, by using a two-fluid nozzle atomization method (supplying liquid and high-speed gas into the same nozzle, and using the shear force of the gas to turn the liquid into a mist). It was discovered that the objective could be achieved by adopting a method of finely spraying (an application of the Kirifuki principle). According to this method, the gas pressure 1~
It is possible to obtain microparticles of 30μ or less by operating at a flow rate of 10Kg/cm 2 and a flow rate of 300m/sec or more from the nozzle. The second and more serious problem is that although it is possible to produce particles of 30 μm or less using this two-fluid nozzle atomization method, it is difficult to obtain particles that are highly spherical and are not hollow. First of all, the powder or colloid particles in the sprayed micro droplets have fluidity and freedom of movement even inside the droplet, and secondly, the initial water evaporation from the droplet occurs only from the droplet surface. be. Micro droplets have a large specific surface area, and droplets sprayed into a normal gas atmosphere of 100 to 500°C undergo rapid evaporation from the surface.
Only the surface portion is likely to solidify, and the resulting particles not only lose their sphericity, but also become miscellaneous non-spherical particles, such as hollows, navels, and in extreme cases, hob-like shapes. Furthermore, since the nozzle is exposed directly to a high temperature region, nozzle clogging and resulting drifting flow are likely to occur, making stable long-term operation difficult. As a result of intensive research in order to obtain dense microparticles with high sphericity, the present inventors dried droplets using a two-fluid nozzle atomization method at a low drying speed in the first step, and at a high speed in the second step. It has been found that by drying at a drying speed, microspherical particles with satisfactory shape and density can be obtained. The present invention is based on this knowledge. Hereinafter, the present invention will be explained step by step. The raw materials used in the present invention include sol, hydrogel, oxide fine powder suspension, oxide xerogel suspension, etc., but for the purpose of obtaining microspherical particles, the viscosity of the sol or suspension is 500 cp or less, Preferably 50cp
The following are desirable, and raw materials include colloidal liquids with high concentration and low viscosity such as silica sol, alumina sol, iron sol, titania sol, and zirconia sol;
Organic silicon, organic titanium, organic aluminum,
Compound solutions such as organic zirconium or their hydrolyzed suspensions, silicic acid liquids, low molecular weight hydrolyzed liquids such as hydrogels, etc. can be used, and among these, high concentration and low viscosity sol liquids are most suitable. Furthermore, depending on the purpose, it is also possible to provide a mixture of these raw materials. A two-fluid nozzle spray method is suitable for the micro-liquid manufacturing equipment used in the present invention. This is a general term for a liquid manufacturing method called "atomizing," but compared to producing droplets by cutting a single liquid with high pressure or high-speed rotation, this method uses high-speed gas to shear the liquid and converts it into droplets. This is because it is easy to produce fine droplets.
When spraying with this method, the gas pressure is 1 to 10 kg/
cm 2 , preferably 2.5 to 8.0 Kg/cm 2 , and the linear velocity of the gas-liquid mixture jetted from the nozzle is 300 m/sec or more, preferably 400 to 700 m/sec. The first step of drying in the present invention is to dry the minute droplets sprayed by the gas-liquid two-fluid mixing nozzle at a low drying speed. The drying air flow needs to be parallel or perpendicular to the spray flow. In the first stage of drying, the drying gas is preheated to a temperature of 10 to 100°C, preferably 30 to 60°C, and the flow rate ratio with the atomizing gas supplied from the nozzle is 11000. ~500, preferably 5000-900. The drying gas may be a gas obtained by burning LNG, LPG, or oily fuel, or may be air that has been indirectly heated in advance by combustion of these or by electricity. The purpose of the present invention is to obtain microspherical particles that are neither hollow nor irregularly shaped, and for this purpose it is necessary to perform the first step of drying slowly. According to the present invention, the drying rate in the low temperature drying range is 0.02Kg moisture/sec. Kg solid content or less, preferably 0.016 Kg water/sec. Must be less than Kg solid content. For convenience, this drying rate is expressed by the following formula. Moisture content of the feed liquid (Kg moisture/Hr) - Moisture content of the powder after passing through the first drying zone (Kg moisture/Hr)/First sprayed droplet
Residence time in the drying area (seconds) × Solid content in the feed liquid (Kg solid content/Hr) If the diameter of the powder obtained is 30 μ or more, it has a very high degree of hollowness even under these conditions, and the umbilicus A large amount of powder can be obtained. Moreover, when the drying speed is higher than that of the present invention,
Not only can a powder with many hollow holes and navels be obtained, but also light non-spherical particles in the shape of hooves or pieces can be obtained. The powder thus obtained after the first drying has a moisture content of 12% or more, indicating that it has not been exposed to an excessive drying atmosphere. In the first stage of drying of the present invention, the drying gas may be humidified in advance to adjust its humidity. Further, it is preferable to recycle a part of the gas after powder has been removed from the gas that has already been used. The second stage of drying of the present invention consists in drying the powder obtained in the first stage of drying at high speed. 1st
The powder obtained in the step drying contains a large amount of water and needs to be dehydrated as soon as possible. Otherwise, problems such as agglomerated powder due to contact between powders, wetting caused by droplets due to solidification of evaporated water, non-spherical shape and scaling due to collision with pipe walls and drying chamber walls may occur. Become. According to the present invention, the powder obtained in the first stage of drying is brought into contact with a gas at 110-400°C, preferably 150-300°C, and the drying rate is set to 0.04 kg moisture/sec. Kg solid content or more, preferably 0.05Kg water/sec. By setting the solid content to Kg, a product with almost no agglomerated particles or irregularly shaped particles due to collisions can be obtained, making continuous production possible. The powder obtained in the second stage of drying can be collected by any method such as wet or dry collection, but the method using a dry bag filter is the simplest and preferred.
Furthermore, the obtained microsphere powder is subjected to a process such as classification or firing as required, and then used for the intended purpose. The microspherical particles obtained by the present invention have the following properties. Sphericity: 0.85 or more Bulk density: 0.7 to 1.5 g/cm 3 Size range: 0.5 to 30 μ Next, examples of the present invention will be shown together with comparative examples. Examples and Comparative Examples Using commercially available silica sol, titania sol, and alumina sol as raw materials, fine powder dried products were obtained using a two-fluid nozzle spray method. Samples A, B, and C are examples of the present invention using a method that involves two drying stages: a low drying speed region and a high drying duration region. For samples D and E, a direct spray method was used in the high drying speed range. Table 1 shows the manufacturing conditions for each sample.

【表】 噴霧乾燥された粉末を500℃で1時間焼成して
得られた粉末の性状は表−2のようであつた。 なお下記表に言う真球度とは走査型電子顕微鏡
(SEM)で2000倍拡大し、単一粒子が重ならない
様分散した電子顕微鏡写真を取り、これを島津製
作所(株)のイメージアナライザーで画像解析し、単
一粒子1ケ1ケの投影面の面積と円周を測定し、
面積から真円と仮定して得られる相当直経をHD
とし、又円周から真円と仮定して得られる相当直
径をHdとしたときのこれらの2つの比即ち 真球度=HD(面積からの相当直径)/Hd(円周からの相
当直径) のことである。 そしてこの真球度の値が0.850〜1.00のものを
真球とした。かつサンプリングしたもののうち、
真球が90%以上認められるものを真球状微粒子と
名付けた。又、表面上に小さい粒子の附着、陥没
なとの認められる粒子は真球とはしない。
[Table] Table 2 shows the properties of the powder obtained by firing the spray-dried powder at 500°C for 1 hour. The sphericity mentioned in the table below refers to an electron micrograph taken with a scanning electron microscope (SEM) magnified 2000 times, in which single particles are dispersed without overlapping, and then imaged with a Shimadzu Image Analyzer. Analyze and measure the area and circumference of the projected surface of each single particle,
HD is the equivalent direct meridian obtained from the area assuming that it is a perfect circle.
And when the equivalent diameter obtained from the circumference assuming a perfect circle is Hd, the ratio of these two, ie, sphericity = HD (equivalent diameter from area) / Hd (equivalent diameter from circumference) It is about. A ball with a sphericity value of 0.850 to 1.00 was defined as a true sphere. And among those sampled,
Particles with 90% or more true sphericity were named true spherical particles. In addition, particles that are found to have small adhesion or depression on the surface are not considered to be true spheres.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第5図は何れも本発明方法による
粒子及び比較例の方法による粒子の顕微鏡写真で
ある。
1 to 5 are microscopic photographs of particles obtained by the method of the present invention and particles obtained by the method of the comparative example.

Claims (1)

【特許請求の範囲】 1 無機酸化物又は水酸化物のゾル、ゲル、懸濁
液を噴霧乾燥して平均粒子径0.5〜30μの球状粒子
を得るに当り乾燥を a 低乾燥速度で乾燥する段階とこれに続く b 高乾燥速度で乾燥する段階 の2段の乾燥段階で行うことを特徴とする微小球
状無機酸化物粒子の製造方法。 2 低乾燥速度域での乾燥速度が0.02Kg水分/
秒.Kg固型分以下であり、高乾燥速度域での乾燥
速度が0.04Kg水分/秒.Kg固型分以上である特許
請求の範囲第1項記載の方法。
[Scope of Claims] 1. A step of drying at a low drying speed in spray drying a sol, gel, or suspension of an inorganic oxide or hydroxide to obtain spherical particles with an average particle size of 0.5 to 30 μm. A method for producing microspherical inorganic oxide particles, characterized in that the process is carried out in two drying steps: (b) followed by a step of drying at a high drying rate. 2 The drying speed in the low drying speed range is 0.02Kg moisture/
Seconds. Kg solid content or less, and the drying rate in the high drying speed range is 0.04 Kg moisture/sec. The method according to claim 1, wherein the solid content is more than Kg solid content.
JP60011719A 1985-01-23 1985-01-23 Preparation of minute spherical particle Granted JPS61171533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60011719A JPS61171533A (en) 1985-01-23 1985-01-23 Preparation of minute spherical particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60011719A JPS61171533A (en) 1985-01-23 1985-01-23 Preparation of minute spherical particle

Publications (2)

Publication Number Publication Date
JPS61171533A JPS61171533A (en) 1986-08-02
JPH0261407B2 true JPH0261407B2 (en) 1990-12-20

Family

ID=11785846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60011719A Granted JPS61171533A (en) 1985-01-23 1985-01-23 Preparation of minute spherical particle

Country Status (1)

Country Link
JP (1) JPS61171533A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1908512A1 (en) 2002-07-15 2008-04-09 Asahi Glass Company, Limited Process for producing inorganic spheres

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH075292B2 (en) * 1986-08-20 1995-01-25 株式会社資生堂 Spherical clay mineral and its manufacturing method
JP5019020B2 (en) * 2005-03-31 2012-09-05 セイコーエプソン株式会社 Dielectric film manufacturing method, piezoelectric element manufacturing method, and liquid jet head manufacturing method
JP2010120842A (en) * 2008-10-24 2010-06-03 Soshin Kagaku Sangyo Kk Method for producing tri-metal tetraoxide
JP2010105833A (en) * 2008-10-28 2010-05-13 Sekko Seiho Kogokin Shinzairyo Kk Method for producing tricobalt tetroxide
KR20120061343A (en) * 2010-12-03 2012-06-13 삼성엘이디 주식회사 Method for producing phosphor and light emitting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1908512A1 (en) 2002-07-15 2008-04-09 Asahi Glass Company, Limited Process for producing inorganic spheres

Also Published As

Publication number Publication date
JPS61171533A (en) 1986-08-02

Similar Documents

Publication Publication Date Title
Liu et al. On the spray drying of uniform functional microparticles
US4147766A (en) Macrospherical particles of anti-perspirants
JP3284218B2 (en) Apparatus and method for granulating powdery material
US5632100A (en) Process and a spray drying apparatus for producing an agglomerated powder
Senuma et al. Alginate hydrogel microspheres and microcapsules prepared by spinning disk atomization
US4131542A (en) Spray dried silica for chromatography
Herrero et al. Development of a new technology for the production of microcapsules based in atomization processes
US4392987A (en) Alumina spheroids with controlled small particle size and a process for producing them
JPH0351459B2 (en)
JPH0365233A (en) Method for producing stable aggregate of particles and spray drier
JPH0261406B2 (en)
US7237679B1 (en) Process for sizing particles and producing particles separated into size distributions
WO1999052822A1 (en) Method for producing spherical silica particles
JP2003510168A (en) Method and apparatus for aggregating powder
JPH0261407B2 (en)
Chahal et al. Effect of process conditions on spray dried calcium carbonate powders for thermal spraying
CN112221438A (en) Superfine microsphere powder material and preparation method thereof
JPH0343201B2 (en)
CN2794622Y (en) Low temperature jet flow spray drier
JPH0343202B2 (en)
JPS61168520A (en) Production of fine spherical silica powder
WO2019208612A1 (en) Metahalloysite powder and metahalloysite powder production method
JP2019194147A (en) Halloysite powder and method for producing halloysite powder
US2641583A (en) Process for producing silica gel spheres in oil
Reverberi et al. Inorganic nanoparticles synthesis by an aerosol-assisted wet chemical method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees