JPH0261235B2 - - Google Patents

Info

Publication number
JPH0261235B2
JPH0261235B2 JP58106164A JP10616483A JPH0261235B2 JP H0261235 B2 JPH0261235 B2 JP H0261235B2 JP 58106164 A JP58106164 A JP 58106164A JP 10616483 A JP10616483 A JP 10616483A JP H0261235 B2 JPH0261235 B2 JP H0261235B2
Authority
JP
Japan
Prior art keywords
output
circuit
current
command value
alternating current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58106164A
Other languages
Japanese (ja)
Other versions
JPS59230468A (en
Inventor
Ryoichi Kurosawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP58106164A priority Critical patent/JPS59230468A/en
Publication of JPS59230468A publication Critical patent/JPS59230468A/en
Publication of JPH0261235B2 publication Critical patent/JPH0261235B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/25Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M5/27Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means for conversion of frequency

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Ac-Ac Conversion (AREA)

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は電力変換器によつて交流電動機のよう
な負荷に流す交流電流を制御する交流電流制御装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an alternating current control device that controls alternating current flowing through a load such as an alternating current motor using a power converter.

[発明の技術的背景とその問題点] 最近、交流電動機の電源として電力変換器を使
つて、電圧、周波数を制御することにより回転速
度を制御する交流電動機の可変速制御が広く行な
われ始めた。このような交流電動機の制御を行な
う場合、交流電動機に流す電流波形が正弦波と異
なると出力トルクに脈動を発生して好ましくな
く、より正弦波に近い波形に電流制御することが
要求される。
[Technical background of the invention and its problems] Recently, variable speed control of AC motors has begun to be widely used, which uses a power converter as a power source for AC motors to control the rotation speed by controlling voltage and frequency. . When controlling such an AC motor, if the waveform of the current flowing through the AC motor differs from a sine wave, pulsations will occur in the output torque, which is undesirable, so it is required to control the current to a waveform that is closer to a sine wave.

第1図に大容量に適した電力変換器として広く
使用されているサイクロコンバータを示す。サイ
クロコンバータは2組のサイリスタブリツジ2,
3を逆向き並列に接続した構成で、負荷4に流れ
る電流方向に応じてどちらかのサイリスタブリツ
ジを選択して制御することにより交流電流を出力
することが可能である。
FIG. 1 shows a cycloconverter that is widely used as a power converter suitable for large capacity. The cycloconverter consists of two sets of thyristor bridges 2,
3 connected in parallel in opposite directions, it is possible to output alternating current by selecting and controlling one of the thyristor bridges depending on the direction of current flowing through the load 4.

各サイリスタブリツジのサイリスタは交流電源
1の位相に合わせて点弧制御する位相制御が行な
われ、サイリスタの消弧は交流電源の電圧を利用
した自然転流によつて行なわれる。負荷電流の極
性を切りかえるため、今まで電流を流していたサ
イリスタブリツジに対して点弧パルスを与えるの
を中止するいわゆるゲートブロツクを行なつて
も、すでに通電しているサイリスタはすぐには消
弧せず、交流電源の電圧の作用によつて負荷電流
が減少して零になつた後に消弧する。この後に逆
側のサイリスタブリツジを動作させないと2組の
サイリスタブリツジが同時に通電して電源を短絡
する電流経路ができ制御が不能になる電源短絡を
生ずる。したがつて、負荷電流の極性の切換えに
伴ないサイリスタブリツジの切換動作を行なうに
は、今まで電流を流していたサイリスタブロツク
をゲートブリツジしてから適当な時間、一般には
数mSから十数mSの時間経過してから逆側のサ
イリスタブリツジに点弧パルスを与えるようにし
ている。
The thyristors of each thyristor bridge are subjected to phase control for firing in accordance with the phase of the AC power supply 1, and extinguishing of the thyristors is performed by natural commutation using the voltage of the AC power supply. Even if a so-called gate block is performed to switch the polarity of the load current by stopping the application of firing pulses to the thyristor bridges that have been conducting current, the thyristors that are already conducting current will not immediately turn off. The arc does not arc, and the arc is extinguished after the load current decreases to zero due to the action of the AC power supply voltage. If the thyristor bridge on the opposite side is not operated after this, the two sets of thyristor bridges will be energized at the same time, creating a current path that short-circuits the power supply, resulting in a power supply short-circuit that makes control impossible. Therefore, in order to perform the switching operation of the thyristor bridge in conjunction with switching the polarity of the load current, it is necessary to wait an appropriate amount of time, generally from several milliseconds to more than ten milliseconds, after the gate bridge is applied to the thyristor block through which current has been flowing. The ignition pulse is given to the thyristor bridge on the opposite side after the time has elapsed.

第2図に従来のサイクロコンバータによる電流
制御装置の構成を示す。1は交流電源、2は正側
サイリスタブリツジ、3は負側サイリスタブリツ
ジ、4は負荷で、サイリスタブリツジについては
省略した形で示してあるが第1図のサイクロコン
バータと同一である。5は電流検出器、6は交流
電流指令値を発生する指令値回路、7は制御増幅
器、8,9は位相制御回路でそれぞれ正側サイリ
スタブリツジ用、負側サイリスタブリツジ用であ
る。10は切換回路で極性検出回路11、極性変
化検出回路12、単安定回路13、反転回路1
4、論理積回路15,16で構成される。指令値
回路6の出力と電流検出器5の出力は制御増幅器
7に入力され、制御増幅器7の出力は位相制御回
路8,9に入力される。一方、指令回路6の出力
は切換回路10にも入力されて電流指令値の極性
に応じた選択信号が出力される。この選択信号に
よつて選択された位相制御回路の出力から、サイ
リスタブリツジの出力電圧が制御増幅器7の出力
に比例するようなタイミングで、各サイリスタに
与える点弧パルスが出力される。
FIG. 2 shows the configuration of a current control device using a conventional cycloconverter. 1 is an AC power supply, 2 is a positive side thyristor bridge, 3 is a negative side thyristor bridge, and 4 is a load. Although the thyristor bridge is omitted, it is the same as the cycloconverter shown in FIG. 5 is a current detector, 6 is a command value circuit for generating an alternating current command value, 7 is a control amplifier, and 8 and 9 are phase control circuits for the positive side thyristor bridge and the negative side thyristor bridge, respectively. 10 is a switching circuit, which includes a polarity detection circuit 11, a polarity change detection circuit 12, a monostable circuit 13, and an inversion circuit 1.
4. Consists of AND circuits 15 and 16. The output of the command value circuit 6 and the output of the current detector 5 are input to a control amplifier 7, and the output of the control amplifier 7 is input to phase control circuits 8 and 9. On the other hand, the output of the command circuit 6 is also input to the switching circuit 10, and a selection signal corresponding to the polarity of the current command value is output. The output of the phase control circuit selected by this selection signal outputs a firing pulse to be applied to each thyristor at a timing such that the output voltage of the thyristor bridge is proportional to the output of the control amplifier 7.

第3図に切換回路のタイミングと負荷電流の関
係を示す。17は電流指令の波形、18は極性検
出回路11の出力波形、19は極性変化検出回路
12の出力波形で極性検出回路の出力の立上がり
と立ち下がりの時点でパルスを出力する。20は
単安定回路13の出力で、極性変化検出回路の出
力でトリガされ一定時間Tgbの間出力が低レベル
となる。21,21はそれぞれ論理積回路15,
16の出力波形である。論理積回路15の出力が
高レベルの時は位相制御回路8が点弧パルスを出
力し、論理積回路16の出力が高レベルの時は位
相制御回路9が点弧パルスを出力する。単安定回
路13の出力が低レベルの期間はどちらの位相制
御回路も点弧パルスを出力しないゲートブロツク
の期間である。この結果、負荷電流の波形は23
に示すように正弦波の立ち上がりの部分にかけて
歪んだ波形となる。
FIG. 3 shows the relationship between the timing of the switching circuit and the load current. 17 is the waveform of the current command, 18 is the output waveform of the polarity detection circuit 11, and 19 is the output waveform of the polarity change detection circuit 12, which outputs pulses at the rising and falling points of the output of the polarity detection circuit. 20 is the output of the monostable circuit 13, which is triggered by the output of the polarity change detection circuit and remains at a low level for a certain period of time Tgb. 21 and 21 are AND circuits 15 and 21, respectively.
16 output waveforms. When the output of the AND circuit 15 is at a high level, the phase control circuit 8 outputs a firing pulse, and when the output of the AND circuit 16 is at a high level, the phase control circuit 9 outputs a firing pulse. The period in which the output of the monostable circuit 13 is at a low level is a gate block period in which neither phase control circuit outputs a firing pulse. As a result, the waveform of the load current is 23
As shown in the figure, the waveform becomes distorted at the rising edge of the sine wave.

[発明の目的] 本発明の目的は上記事情に鑑みなされ、サイク
ロコンバータなどの電流極性によつて切換動作が
必要な電力変換器の切換動作時の負荷電流波形の
歪を減少させることが出来る交流電流制御装置を
提供することにある。
[Object of the Invention] The object of the present invention was to provide an alternating current that can reduce the distortion of the load current waveform during the switching operation of a power converter such as a cycloconverter that requires switching operation depending on the current polarity. An object of the present invention is to provide a current control device.

[発明の概要] 本発明は、電流指令値を遅延させ、この遅延さ
れた信号を電流指令値として用いて電流を制御す
ることにより、負荷電流の波形歪を改善したもの
である。
[Summary of the Invention] The present invention improves waveform distortion of a load current by delaying a current command value and controlling the current using this delayed signal as the current command value.

[発明の実施例] 第4図に本発明の一実施例を示す。1〜16ま
では第2図に示した従来例と全く同一で、24で
示した遅延回路のみが従来例に対して追加された
回路である。遅延回路24は指令値回路6で発生
された電流指令値を一定時間遅延して遅延された
電流指令値を出力するものである。第5図に切換
回路のタイミングと負荷電流の関係を示す。電流
指令値17に対する極性検出回路11の出力1
8、極性変化検出回路12の出力19、単安定回
路13の出力20、論理積回路15,16の出力
21,22は従来例と同一関係である。電流の制
御は遅延された電流指令値25に対して行なわ
れ、負荷電流波形は36に示したような波形とな
る。遅延回路24の遅延時間としては単安定回路
13の出力が低レベルになつているゲートブロツ
ク期間Tgbの半分に選んである。遅延された電流
指令値25に対してTgb/2だけ穿孔して切換回路 が動作することになり、同一のゲートブロツク期
間としているにもかかわらず、負荷電流波形36
の立ち上がり部分の波形歪が半減する。電流指令
値17に対して、負荷電流36はTgb/2だけ遅れ て制御されることになるが、誘導電動機のような
負荷に対しては電流が遅れても周波数が変化しな
いので回転速度が変化するような悪影響はない。
[Embodiment of the Invention] FIG. 4 shows an embodiment of the present invention. 1 to 16 are completely the same as the conventional example shown in FIG. 2, and only the delay circuit shown at 24 is added to the conventional example. The delay circuit 24 delays the current command value generated by the command value circuit 6 by a certain period of time and outputs the delayed current command value. FIG. 5 shows the relationship between the timing of the switching circuit and the load current. Output 1 of polarity detection circuit 11 for current command value 17
8. The output 19 of the polarity change detection circuit 12, the output 20 of the monostable circuit 13, and the outputs 21 and 22 of the AND circuits 15 and 16 have the same relationship as in the conventional example. Current control is performed with respect to the delayed current command value 25, and the load current waveform becomes a waveform as shown in 36. The delay time of the delay circuit 24 is selected to be half of the gate block period Tgb during which the output of the monostable circuit 13 is at a low level. The switching circuit operates by puncturing Tgb/2 for the delayed current command value 25, and the load current waveform 36
The waveform distortion at the rising edge of is halved. The load current 36 will be controlled with a delay of Tgb/2 with respect to the current command value 17, but for loads such as induction motors, the frequency will not change even if the current is delayed, so the rotation speed will change. There are no adverse effects.

遅延回路24は信号をアナログ信号で取扱う場
合は市販の遅延線、BBD素子が利用でき、信号
をデジタル信号で扱う場合はシフトレジスタを利
用すれば良い。
For the delay circuit 24, a commercially available delay line or BBD element can be used when the signal is handled as an analog signal, and a shift register can be used when the signal is handled as a digital signal.

前述の説明は単相出力の正弦波サイクロコンバ
ータについて行なつたが、その他の切換動作を必
要とする電力変換器に対して実施することがで
き、三相出力の正弦波サイクロコンバータなどの
多相出力電力変換器に対しても同様に実施でき
る。
Although the above description was made for a sine wave cycloconverter with a single phase output, it can be implemented for other power converters that require switching operations, and can be applied to multiphase cycloconverters such as sine wave cycloconverters with a three phase output. The same can be applied to the output power converter.

[発明の効果] 以上、述べた本発明によれば、従来の交流電流
制御装置に遅延回路を付加するのみで付加電流の
波形の歪を半減でき、交流電動機の制御に用いた
場合には発生するトルク脈動を低減でき、その効
果は大きい。
[Effects of the Invention] According to the present invention described above, distortion of the waveform of the additional current can be reduced by half simply by adding a delay circuit to a conventional AC current control device, and when used to control an AC motor, the distortion in the waveform of the additional current can be reduced by half. It is possible to reduce the torque pulsation caused by the engine, and the effect is significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は電力変換器の一例としてのサイクロコ
ンバータの構成図、第2図は従来の交流電流制御
装置の構成図、第3図は従来の交流電流制御装置
の動作を説明する図、第4図は本発明の一実施例
を示す構成図、第5図は本発明の動作を説明する
図である。 1:交流電源、2,3:サイリスタブリツジ、
4:負荷、5:電流検出器、6:指令値回路、
7:制御増幅器、8,9:位相制御回路、10:
切換回路、11:極性検出回路、12:極性変化
検出回路、13:単安定回路、14:反転回路、
15,16:論理積回路、24:遅延回路。
Fig. 1 is a block diagram of a cycloconverter as an example of a power converter, Fig. 2 is a block diagram of a conventional AC current control device, Fig. 3 is a diagram explaining the operation of a conventional AC current control device, and Fig. 4 is a block diagram of a cycloconverter as an example of a power converter. The figure is a block diagram showing one embodiment of the present invention, and FIG. 5 is a diagram explaining the operation of the present invention. 1: AC power supply, 2, 3: thyristor bridge,
4: Load, 5: Current detector, 6: Command value circuit,
7: Control amplifier, 8, 9: Phase control circuit, 10:
switching circuit, 11: polarity detection circuit, 12: polarity change detection circuit, 13: monostable circuit, 14: inversion circuit,
15, 16: AND circuit, 24: Delay circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 出力電流の極性により切換動作を必要とする
電力変換器によつて負荷に流れる交流電流を制御
する交流電流制御装置において、少なくとも交流
電流指令値を発生する指令値回路、負荷電流検出
器、遅延回路、制御増幅器を具備し、前記交流電
流指令値の極性により前記電力変換器の切換動作
を指令し、前記交流電流指令値を前記遅延回路に
入力して適当な時間だけ遅延した出力と前記負荷
電流検出器の出力とを前記制御増幅器に入力して
得られた出力に応じて電力変換器の出力電圧を制
御することを特徴とする交流電流制御装置。
1. In an alternating current control device that controls alternating current flowing to a load by a power converter that requires switching operations depending on the polarity of the output current, at least a command value circuit that generates an alternating current command value, a load current detector, and a delay are provided. The circuit includes a control amplifier, which commands the switching operation of the power converter according to the polarity of the alternating current command value, inputs the alternating current command value to the delay circuit, and outputs the output delayed by an appropriate time and the load. An alternating current control device, characterized in that the output voltage of the power converter is controlled according to the output obtained by inputting the output of the current detector to the control amplifier.
JP58106164A 1983-06-14 1983-06-14 Ac current controller Granted JPS59230468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58106164A JPS59230468A (en) 1983-06-14 1983-06-14 Ac current controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58106164A JPS59230468A (en) 1983-06-14 1983-06-14 Ac current controller

Publications (2)

Publication Number Publication Date
JPS59230468A JPS59230468A (en) 1984-12-25
JPH0261235B2 true JPH0261235B2 (en) 1990-12-19

Family

ID=14426636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58106164A Granted JPS59230468A (en) 1983-06-14 1983-06-14 Ac current controller

Country Status (1)

Country Link
JP (1) JPS59230468A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2662229B2 (en) * 1987-12-16 1997-10-08 株式会社日立製作所 Non-circulation type cyclo converter controller
JPH083199Y2 (en) * 1988-10-31 1996-01-29 株式会社東芝 Power converter

Also Published As

Publication number Publication date
JPS59230468A (en) 1984-12-25

Similar Documents

Publication Publication Date Title
US4954726A (en) Switching an inverter with stored signal sequences
US4357655A (en) Three-phase inverter
US3523236A (en) Circuit to control inverter switching for reduced harmonics
JPH0261235B2 (en)
US3944907A (en) Zero deadband four-quadrant full-wave converter
US8072171B2 (en) Motor control
JPH088774B2 (en) Inverter device parallel operation circuit
JP2681883B2 (en) Inverter device
Rahman et al. A Digital Self-Compensating Method for Integral-Cycle Power Control of RL Loads
JP3062900B2 (en) Inverter control device
JPS5930034B2 (en) static power converter
JPS5820235B2 (en) Bidirectional thyristor reverse firing prevention circuit
JPS5831828B2 (en) Power converter control device
RU2202850C2 (en) Method for controlling phase-wound motor
JPH0332301B2 (en)
SU655021A1 (en) Reactive power control arrangement
SU1131018A1 (en) Multichannel device for adjusting rectifier converter
JPH0134559Y2 (en)
JPH08322251A (en) Frequency converter for ac power
JPH0612959B2 (en) Induction motor controller with pulse width modulation inverter
JPH07222434A (en) Phase control circuit
JPS6139861A (en) Controller of anti-parallel connection power converter
JPS62293963A (en) Controller for continuously connected power converter
JPH0461589B2 (en)
JPH05328766A (en) Motor starter