JPH0261082A - Electrolytic cell - Google Patents

Electrolytic cell

Info

Publication number
JPH0261082A
JPH0261082A JP63210428A JP21042888A JPH0261082A JP H0261082 A JPH0261082 A JP H0261082A JP 63210428 A JP63210428 A JP 63210428A JP 21042888 A JP21042888 A JP 21042888A JP H0261082 A JPH0261082 A JP H0261082A
Authority
JP
Japan
Prior art keywords
gas
electrode
anode
cathode
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63210428A
Other languages
Japanese (ja)
Other versions
JPH0548312B2 (en
Inventor
Tokuyuki Iwanaga
岩永 徳幸
Isao Harada
功 原田
Toshiaki Yamaguchi
俊明 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP63210428A priority Critical patent/JPH0261082A/en
Publication of JPH0261082A publication Critical patent/JPH0261082A/en
Publication of JPH0548312B2 publication Critical patent/JPH0548312B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To safely produce gaseous nitrogen trifluoride at an excellent current efficiency by specifying the longitudinal size of any one of the electrodes positioned downward from the bottom end of a diaphragm of the electrolytic cell for producing the gaseous NF3 by a fused salt electrolysis method. CONSTITUTION:The front end of either an anode 5 or cathode 6 is positioned at 100 to 1000mm downward from the bottom end of the diaphragm 10 which isolates the two electrodes and the front end of the other is positioned at >=100mm downward from the bottom end of the diaphragm 10. Although the electrode of only the part downward from the bottom end of the diaphragm 10 plays the role of an electrode, the part positioned downward from the bottom end of the shorter length does not produce the gas and does not play the role of an electrode if the longitudinal lengths of the two electrodes vary. The distribution of the current density of the electrodes increases and the current efficiency degrades drastically when the positions of the front ends of the both electrodes exceed 1000mm from the bottom end. In addition, the gaseous H2 generated in the cathode 6 is liable to intrude into the gaseous NF3 generated in the anode 5, by which the danger of explosion is generated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、溶融塩電解法による三弗化窒素ガスの製造の
際に使用される、電解槽に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an electrolytic cell used in the production of nitrogen trifluoride gas by molten salt electrolysis.

〔従来の技術及び発明が解決しようとする課題〕三弗化
窒素(NF+)ガスは半導体のドライエンチング剤やC
vD装置のクリーニンクーガスとして、近年需要が増加
している。
[Problems to be solved by the prior art and the invention] Nitrogen trifluoride (NF+) gas is used as a dry etching agent for semiconductors and C
Demand has been increasing in recent years as a cleaning gas for vD equipment.

NF、ガスは種々の方法で製造されるが、中でも溶融塩
電解法は収率がよく、しかも量産が他の方法より容易で
あるので工業的な製造方法として有力視されている。
NF and gas can be produced by various methods, but among them, the molten salt electrolysis method has a good yield and is easier to mass produce than other methods, so it is considered to be a promising industrial production method.

この溶融塩電解法によるNF、ガスの製造は酸性弗化ア
ンモニウムまたは弗化アンモニウムと弗化水素を原料と
するN)I4F −11F系や、これに更に酸性弗化カ
リウムまたは弗化カリウムを原料として加えたKF −
NH,F・IIF系溶融溶融塩解する方法によって行な
われる。
This molten salt electrolysis method is used to produce NF and gas using the N)I4F-11F system, which uses acidic ammonium fluoride or ammonium fluoride and hydrogen fluoride as raw materials, and further uses acidic potassium fluoride or potassium fluoride as raw materials. Added KF −
This is carried out by the NH,F·IIF-based molten salt dissolution method.

しかしながら、この溶融塩電解法によるNF、ガスの製
造において工業的規模にスケールアップする場合の電解
槽の検討は殆どなされておらず、特にスケールアップ時
の電極の具体的構造についての報告例は知られていない
However, in the production of NF and gas using this molten salt electrolysis method, there has been little study on electrolytic cells when scaled up to an industrial scale, and in particular, there are no reports on the specific structure of electrodes during scale-up. It has not been done.

ところで電解槽をスケールアップする場合、電解槽の断
面積の拡大は極力押さえ、高さを拡大するのが電解槽の
床面積が小さくてすむので有利であると共に、溶融塩中
のHFの蒸発量も相対的に小さくなる等の点でも好まし
い。
By the way, when scaling up an electrolytic cell, it is advantageous to suppress the expansion of the cross-sectional area of the electrolytic cell as much as possible and increase the height because the floor area of the electrolytic cell is small, and the amount of evaporation of HF in the molten salt is It is also preferable in that it is also relatively small.

溶融塩電解法によるNhガスの製造においては、陽極か
らはNF、ガスと窒素(N2)ガスが発生し、陰極から
は水素(N2)ガスが発生する、いわゆる両電極共にガ
ス発生反応である。そして発生したNF3ガスとN2ガ
スが混合すると爆発を引き起こすので、従って、この爆
発を防止するため電解槽には第1図及び第2図に示すよ
うに、陽極と陰極を隔離するための隔板が設けられてい
る。このような隔板を備えた電解槽においては、隔板で
隔てられた部分では陽極から陰極へは電流は殆ど流れず
、隔板の下端より下に位置する部分のみ電極の役割を果
たす。
In the production of Nh gas by molten salt electrolysis, NF, gas, and nitrogen (N2) gas are generated from the anode, and hydrogen (N2) gas is generated from the cathode, which is a so-called gas generation reaction for both electrodes. If the generated NF3 gas and N2 gas mix, it will cause an explosion, so in order to prevent this explosion, the electrolytic cell is equipped with a partition plate to separate the anode and cathode, as shown in Figures 1 and 2. is provided. In an electrolytic cell equipped with such a diaphragm, almost no current flows from the anode to the cathode in the part separated by the diaphragm, and only the part located below the lower end of the diaphragm serves as an electrode.

また隔板は腐食及び隔板自体が電極化するのを防止する
ため、通常弗素系樹脂を用いるか、あるいは弗素系樹脂
で被覆するのが好ましい。隔板がこのように弗素系樹脂
製または弗素系樹脂で被覆しである場合は、隔板で隔て
られた部分では陽極から陰極へは電流は全く流れない。
Further, in order to prevent corrosion and the partition plate itself from becoming an electrode, it is usually preferable to use a fluorine-based resin or to coat it with a fluorine-based resin. When the partition plate is made of fluorine-based resin or coated with fluorine-based resin as described above, no current flows from the anode to the cathode in the portion separated by the partition plate.

この溶融塩電解法において、電極で発生したNF、ガス
とI!、ガスは夫々の電極に添って電解浴を浮上して行
くことになるが、電解浴の上部になる程電解浴中を浮上
するガスの量が多くなるので、電流が発生ガスで遮断さ
れて流れにくくなる。この結果、電極の上下方向におい
て電流密度は下の方が大きくて上の方が小さいという分
布が生じることとなる。そして甚だしい場合には、電極
の上(曜板より下に位置する部分の)の部分では電解が
殆ど行なわれないこととなる。
In this molten salt electrolysis method, NF, gas and I! , the gas floats through the electrolytic bath along with each electrode, but the higher the upper part of the electrolytic bath, the greater the amount of gas floating in the electrolytic bath, so the current is blocked by the generated gas. It becomes difficult to flow. As a result, a distribution occurs in which the current density is higher at the bottom and lower at the top in the vertical direction of the electrode. In extreme cases, almost no electrolysis takes place above the electrode (the part located below the day plate).

このようなことから電解槽のスケールアンプを図る場合
、前記の如く電解槽の床面積を小さく抑える目的で電解
槽の断面積の拡大は極力押さえ、高さを拡大する方法は
、電極がその分だけ縦に長くなり電極の上下方向の電流
密度の分布が大きくなって、その結果電流効率(通電量
に対するNF。
For this reason, when trying to scale up the electrolytic cell, the expansion of the cross-sectional area of the electrolytic cell is suppressed as much as possible in order to keep the floor area of the electrolytic cell small, as described above, and the method of increasing the height is that the electrodes As the electrode becomes longer vertically, the distribution of current density in the vertical direction of the electrode becomes larger, resulting in current efficiency (NF relative to the amount of current flowing).

生成に消費された電力量の割合)が低下するので限度が
ある。
There is a limit because the ratio of electricity consumed for generation) decreases.

また、電極が縦に長くなると自動的に電極の下端と隔板
との距離が長くなるので、電解により発生したガスがそ
の分だけ拡散されてNF3ガスとI2ガスが混合されや
すく、その結果爆発の可能性が生ずるという不都合もあ
る。
In addition, as the electrode becomes longer vertically, the distance between the lower end of the electrode and the partition plate automatically becomes longer, so the gas generated by electrolysis is diffused to that extent, making it easier for NF3 gas and I2 gas to mix, resulting in an explosion. There is also the disadvantage that there is a possibility that

尚、溶融塩電解法による〜F3I3ガス造においては、
原料溶融塩中に水分が存在すると、生成した弗素と水分
が反応して叶2ガスと112ガスが生成すると考えられ
る。
In addition, in ~F3I3 gas production by molten salt electrolysis method,
It is thought that when moisture is present in the raw material molten salt, the generated fluorine reacts with the moisture to generate Kano 2 gas and 112 gas.

溶融塩電解によるNF、ガスの生成機構は文献(J、M
assome、 Chem、Ing、Techn、、 
41,695(1969))によれば次の如くである。
The generation mechanism of NF and gas by molten salt electrolysis is described in the literature (J, M
assome, Chem, Ing, Techn.
41, 695 (1969)), it is as follows.

即ち、下記1)式により陽極で生成した弗素が溶融塩中
のアンモニウムイオンと反応して、下記2)式に示すよ
うに陽極からはNhガスが、陰極からは11□ガスが発
生する。
That is, fluorine generated at the anode reacts with ammonium ions in the molten salt according to the following equation 1), and Nh gas is generated from the anode and 11□ gas is generated from the cathode as shown in the following equation 2).

6f” −6F +6e−−−−−一−−−−〜−−1
)6F+ N1(4”→Nh↑+4!(” +3F−−
−m−−2)しかし本発明者の知見では、溶融塩中に水
分が存在すると下記3)式及び4)式によりOF2ガス
とN2ガスが生成するものと考えられ、そしてこのOF
2ガスとN2ガスは生成したNFiガスに含存される。
6f” −6F +6e−−−−−1−−−−−−1
)6F+ N1(4”→Nh↑+4!(” +3F−-
-m--2) However, according to the present inventor's findings, it is thought that OF2 gas and N2 gas are generated according to the following equations 3) and 4) when water is present in the molten salt, and this OF2 gas and N2 gas are
2 gas and N2 gas are contained in the generated NFi gas.

2F十H20→OF! +211”  −・−・−・・
−・−・−3)2P+Il、Q→OF2 +Hz↑ −
−−−−−−−−・・−・−一−−−−−4)上記3)
式及び4)式の反応については電解時間が長くなるにつ
れて、陽極からの発生ガス中のOF2濃度と11□濃度
が共に低下することからも支持される。このように陽極
からの発生ガス中にOF2 とN2が混在すると、爆発
の危険性が生ずるので極めて不都合である。
2F 10H20→OF! +211” −・−・−・・
−・−・−3) 2P+Il, Q→OF2 +Hz↑ −
−−−−−−−−・・−・−1−−−−−4) Above 3)
The reactions of equations and 4) are also supported by the fact that as the electrolysis time increases, both the OF2 concentration and the 11□ concentration in the gas generated from the anode decrease. If OF2 and N2 coexist in the gas generated from the anode as described above, there is a risk of explosion, which is extremely inconvenient.

ところが11)1.F −IF系溶融塩は非常に吸湿性
が強いので、原料調製の段階でどうしても空気中の水分
を吸湿する。従ってNhの製造に際しては、予め本電解
時の電流密度よりも低い電流を流して行なう、脱水電解
が不可欠であり、脱水電解終了後引続いて本電解に移行
する。
However, 11)1. Since the F-IF type molten salt is extremely hygroscopic, it inevitably absorbs moisture from the air during the raw material preparation stage. Therefore, in the production of Nh, dehydration electrolysis is indispensable in which a current lower than the current density during main electrolysis is passed in advance, and after the dehydration electrolysis is completed, the main electrolysis is carried out.

しかしながら、この脱水電解においても上記1)式及び
2)式の反応による陽極からのNPffガスの発生と共
に、3)式及び4)式の反応も起きるので、電極を縦長
にした場合には、陰極から発生する112ガスの拡散に
よる陽極からの発生ガス中への11□ガスの混入と相俟
って、爆発の危険性が生ずるのである。むしろ本電解時
よりも脱水電解時の方が溶融塩中の水分が多いので、こ
の爆発の危険性はより高いのである。
However, in this dehydration electrolysis, as well as the generation of NPff gas from the anode due to the reactions of equations 1) and 2) above, the reactions of equations 3) and 4) also occur, so if the electrodes are made vertically long, the cathode Combined with the mixing of 11□ gas into the gas generated from the anode due to the diffusion of 112 gas generated from the anode, there is a risk of explosion. In fact, since there is more water in the molten salt during dehydration electrolysis than during main electrolysis, the risk of explosion is higher.

尚、溶融塩電解法によるNhガスの製造においては、上
記電流効率は通常60〜70%である。
In the production of Nh gas by molten salt electrolysis, the current efficiency is usually 60 to 70%.

〔問題を解決するための手段] 本発明者等は上記状況に鑑み熔融塩電解法によるNF3
製造用電解槽において、電解槽をスケールアップした場
合の電極の縦方向の長さについて種々検討を重ねた結果
、隔板の下端より下に位置する電極の何れか一方の縦方
向の長さを一定の範囲に限定すれば、安全に、かつ電流
効率がよ< NF3ガスが製造可能であることを見出し
、本発明を完成するに至ったものである。
[Means for Solving the Problem] In view of the above situation, the present inventors developed NF3 by molten salt electrolysis method.
As a result of various studies regarding the vertical length of the electrodes when scaling up the electrolytic cell for production, we found that the vertical length of one of the electrodes located below the bottom edge of the diaphragm was The inventors have discovered that NF3 gas can be produced safely and with high current efficiency if limited to a certain range, leading to the completion of the present invention.

即ち本発明は、溶融塩電解法による三弗化窒素ガス製造
用電解槽において、陽極または陰極の何れか一方の電極
の先端は陽極と陰極を隔離する隔板の下端より100〜
1000mm下に位置してあり、他の一方の電極の先端
は該隔板の下端より100 mm以上下に位置する構造
からなることを特徴とするものである。
That is, the present invention provides an electrolytic cell for producing nitrogen trifluoride gas by molten salt electrolysis, in which the tip of either the anode or the cathode is located 100-100 m from the lower end of the partition plate separating the anode and the cathode.
The electrode is located 1000 mm below, and the tip of the other electrode is located 100 mm or more below the lower end of the partition plate.

〔発明の詳細な開示〕[Detailed disclosure of the invention]

以下、本発明を添付する図面を参照しながら詳細に説明
する。
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

本発明で最も重要な点は、NF3を安全にかつ電流効率
よく製造するための電解槽における電極の縦方向の長さ
である。
The most important point in the present invention is the length in the vertical direction of the electrode in the electrolytic cell for safely and current-efficiently producing NF3.

第1図及び第2図は本発明の実施に好適な、NF3ガス
製造用電解槽の一例を示す縦断面図であり、第3図は第
1図及び第2図におけるA−A’矢視図を示す。
1 and 2 are longitudinal sectional views showing an example of an electrolytic cell for producing NF3 gas suitable for carrying out the present invention, and FIG. 3 is a longitudinal sectional view taken along the line A-A' in FIGS. Show the diagram.

本発明においては、電極の先端は陽極5または陰極6の
何れか一方の先端が隔板10の下端より100〜100
0mm下に位置してあり、他の一方の電極の先端は該隔
板10の下端より1001以上下に位置している。従っ
て、陽極5及び陰極6の先端は第1図に示すように隔板
10の下端より 100〜1000mm下の範囲におい
て同一の位置であってもよく、また、第2図に示すよう
に陽極5及び陰極6の先端の位置が上記の範囲内で異な
っていてもよい。更に、陽極5の先端が隔板10の下端
より100−1000fflIIl下に位置してあり、
陰極6の先端が隔板10の下端より1000mmを越え
て下に位置していてもよい。
In the present invention, the tip of the electrode is such that the tip of either the anode 5 or the cathode 6 is 100 to 100 mm from the bottom end of the partition plate 10.
The tip of the other electrode is located 100 mm or more below the lower end of the partition plate 10. Therefore, the tips of the anode 5 and the cathode 6 may be at the same position within a range of 100 to 1000 mm below the lower end of the partition plate 10, as shown in FIG. And the position of the tip of the cathode 6 may be different within the above range. Furthermore, the tip of the anode 5 is located 100-1000fflIIl below the lower end of the partition plate 10,
The tip of the cathode 6 may be located more than 1000 mm below the lower end of the partition plate 10.

更にまた、第2図において、陽極5と陰極6の先端の位
置が逆であっても差し支えない。
Furthermore, in FIG. 2, the positions of the tips of the anode 5 and cathode 6 may be reversed.

本発明の溶融塩電解においては前述の通り、電極は隔板
10の下端より下に位置する部分のみ電極の役割を果た
すが、また、第2図に示すように陽極5と陰極6の縦方
向の長さが異なる場合は、長さの短い方の電極の先端よ
り下に位置する他方の電極の部分(第2図で示せば陽極
5の先端より下に位置する陰極6の部分)からはガスが
発生せず電極の役割を果たさない。
In the molten salt electrolysis of the present invention, as described above, only the portion of the electrode located below the lower end of the partition plate 10 serves as an electrode, but as shown in FIG. If the lengths of the two electrodes are different, from the part of the other electrode located below the tip of the shorter electrode (the part of the cathode 6 located below the tip of the anode 5 as shown in FIG. 2) No gas is generated and it does not function as an electrode.

本発明の電解槽の電極は以上の如き構成であるが、陽極
5及び陰極6の先端の位置が何れも隔板10の下端より
1000mmを越える位置となると、電極の電流密度の
分布が大きくなり、従って電流効率が大きく低下すると
共に、陽極5で発生するNF3ガス中に陰極6で発生す
る11□ガスが混入し易くなり、爆発の危険性が生ずる
ので不都合である。
The electrode of the electrolytic cell of the present invention has the above-mentioned configuration, but if the tips of the anode 5 and cathode 6 are both located more than 1000 mm from the lower end of the partition plate 10, the current density distribution of the electrode becomes large. Therefore, the current efficiency is greatly reduced, and the 11□ gas generated at the cathode 6 is likely to be mixed into the NF3 gas generated at the anode 5, creating a risk of explosion, which is disadvantageous.

また、陽極5または/及び陰極6の先端の位置が隔板1
0の下端より下に1001未満であると、電極の有効面
積が不足するので、これまた不都合である。
In addition, the position of the tip of the anode 5 and/or cathode 6 is
If it is less than 1001 below the lower end of 0, the effective area of the electrode will be insufficient, which is also disadvantageous.

尚、溶融塩電解法によるNF3ガス製造用電解槽におい
ては、電解槽本体の底板部には通常弗素系樹脂の板が敷
いてあり、これにより該底板部の腐食を防止しているが
、本発明の電解槽においても、第1図及び第2図に示す
ように弗素系樹脂板2が設けである。更に、電解槽は底
板部のみならず溶融塩及び電解により発生したガスと接
する部分は、弗素系樹脂で被覆(ライニングまたはコー
ティング)することが電解槽の腐食を防止する上で好ま
しい。
In addition, in an electrolytic cell for producing NF3 gas using the molten salt electrolysis method, a fluorine-based resin plate is usually placed on the bottom plate of the electrolytic cell body to prevent corrosion of the bottom plate. Also in the electrolytic cell of the invention, a fluorine-based resin plate 2 is provided as shown in FIGS. 1 and 2. Furthermore, in order to prevent corrosion of the electrolytic cell, it is preferable that not only the bottom plate but also the parts that come into contact with the molten salt and the gas generated by electrolysis be coated (lined or coated) with a fluorine-based resin.

このような弗素系樹脂を例示すると、例えばポリテトラ
フルオロエチレン、ポリクロロトリフルオロエチレン、
ポリビニリデンフルオライド、ポリビニルフルオライド
、テトラフルオロエチレンへキサフルオロプロピレン共
重合体、テトラフルオロエチレン−エチレン共重合体、
テトラフルオロエチレン−パーフルオロアルキルビニル
エーテル共重合体、クロロトリフルオロエチレン−エチ
レン共重合体等通常公知のものが何れも使用可能である
が、これらの中でもポリテトラフルオロエチレン及びテ
トラフルオロエチレン−パーフルオロアルキルビニルエ
ーテル共重合体が耐熱性、耐酸性が優れているので、特
に好ましい。
Examples of such fluorine-based resins include polytetrafluoroethylene, polychlorotrifluoroethylene,
Polyvinylidene fluoride, polyvinyl fluoride, tetrafluoroethylene hexafluoropropylene copolymer, tetrafluoroethylene-ethylene copolymer,
Any commonly known products such as tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer and chlorotrifluoroethylene-ethylene copolymer can be used, but among these, polytetrafluoroethylene and tetrafluoroethylene-perfluoroalkyl copolymer can be used. Vinyl ether copolymers are particularly preferred because they have excellent heat resistance and acid resistance.

〔実施例〕〔Example〕

以下、実施例により本発明を更に具体的に説明する。尚
、以下において平均電流密度とは、電流値を隔板の下端
より下に位置する電極の部分の表面積で除した値で(た
だし第2図に示す如く陽極と陰極の縦方向の長さが異な
る場合は、上記表面積は短い方の電極で計算した値を採
用する。)、電2a密度分布がなく均一な電流密度であ
ると仮定した場合の値である。また、%は特記しない限
り容量%を表わす。
Hereinafter, the present invention will be explained in more detail with reference to Examples. In the following, the average current density is the value obtained by dividing the current value by the surface area of the part of the electrode located below the lower end of the diaphragm (however, as shown in Figure 2, the vertical length of the anode and cathode is If different, the value calculated using the shorter electrode is used for the above surface area.) This value is based on the assumption that there is no electric current density distribution and that the current density is uniform. Moreover, % represents capacity % unless otherwise specified.

実施例1 NF、F −HF系の溶融塩を用い、(IIF/NF4
Fモル比−1,8)これを第1図に示す陽極5と陰極6
の先端の位置が共に隔板10の下端より500mm下に
位置する電解槽を使用して、50アンペア(A)の電流
を流して(平均電流密度2.0^/dボ)脱水電解を開
始した。脱水電解開始後1時間経過した時点で、陽極発
生ガス中のH2及びOFz 6度をガスクロマトグラフ
ィーで分析したところ、2.7%及び1.2%であり、
爆発を生ずることなく安全に脱水電解を行うことができ
た。
Example 1 Using NF, F-HF-based molten salt, (IIF/NF4
F molar ratio -1,8) This is the anode 5 and cathode 6 shown in Fig.
Using an electrolytic cell in which the tips of both are located 500 mm below the lower end of the partition plate 10, dehydration electrolysis is started by flowing a current of 50 amperes (A) (average current density 2.0^/d Bo). did. One hour after the start of dehydration electrolysis, H2 and OFz 6 degrees in the anode generated gas were analyzed by gas chromatography and found to be 2.7% and 1.2%,
Dehydration electrolysis could be performed safely without causing an explosion.

脱水が完了したと考えられる200時間後に引続いて本
電解に移行し、電流25OA (平均電流密度10、O
A/drd)で200時間電解を行なったが爆発を生ず
ることもなかった。尚、本電解により発生したNF3ガ
ス量と通電量から電流効率を計算したところ、その値は
65%と高い値であった。
After 200 hours, when dehydration is considered to have been completed, main electrolysis begins, with a current of 25 OA (average current density 10, O
Electrolysis was carried out for 200 hours at A/drd), but no explosion occurred. When the current efficiency was calculated from the amount of NF3 gas generated by this electrolysis and the amount of current applied, the value was as high as 65%.

実施例2〜4 陽極5及び陰極6の先端の位置が隔板10の下端より下
に第1表に示す数値である外は、実施例1と同様にして
第1表に示す条件で脱水電解及び本電解を行なった(溶
融塩は実施例1と同一のものを使用した)。
Examples 2 to 4 Dehydration electrolysis was carried out in the same manner as in Example 1 under the conditions shown in Table 1, except that the positions of the tips of the anode 5 and cathode 6 were below the lower end of the partition plate 10 at the values shown in Table 1. And main electrolysis was performed (the same molten salt as in Example 1 was used).

脱水電解開始後1時間経過した時点での、陽極発生ガス
中の11□及びOF24度は第1表に示す通りであり、
実施例1と同様に爆発はなかった。
The 11□ and OF24 degrees in the gas generated at the anode one hour after the start of dehydration electrolysis are as shown in Table 1.
As in Example 1, there was no explosion.

脱水電解を200時間行なった後、引続いて第1表に示
す条件で200時間本電解を行なった。その結果は第1
表に示す通りであり、電流効率は満足すべき値であった
。また、何れも爆発を生ずることなく安全にNF’lの
製造ができた。
After performing dehydration electrolysis for 200 hours, main electrolysis was subsequently performed for 200 hours under the conditions shown in Table 1. The result is the first
As shown in the table, the current efficiency was a satisfactory value. In addition, NF'l could be produced safely in all cases without causing any explosion.

比較例1〜3 陽極5及び陰極6の先端の位置が隔板10の下端より下
に第2表に示す数値のもの(本発明で規定する数値を越
えるもの)を使用して、実施例1と同様にして脱水電解
を開始したところ、間もなく電解槽内で爆発音を発した
ため、それ以上の電解続行は不可能と判断し、直ちに電
解を中止した。
Comparative Examples 1 to 3 Using the anodes 5 and cathodes 6 whose tips are positioned below the lower end of the partition plate 10 and have the values shown in Table 2 (those exceeding the values specified in the present invention), Example 1 When dehydration electrolysis was started in the same manner as above, an explosion sound was soon emitted in the electrolytic cell, so it was determined that it was impossible to continue electrolysis any further, and the electrolysis was immediately stopped.

第1表 第 表 陰極の先端が位置するまでの長さを示す。Table 1 No. table Indicates the length to where the tip of the cathode is located.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、本発明は溶融塩電解法によ
るNh製造用電解槽であって、電極の縦方向の長さを特
定することにより、NF、ガスを安全かつ効率よく製造
することを可能にしたものである。
As explained in detail above, the present invention is an electrolytic cell for Nh production using molten salt electrolysis, and it is possible to safely and efficiently produce NF and gas by specifying the length of the electrode in the vertical direction. It made it possible.

本発明者等はこの発明により、Nh製造用電解槽の電極
において、電極の縦方向の長さの最適値を得ることに成
功したが、これは電解槽を工業的規模までスケールアッ
プする上で掻めて有意義なことである。
Through this invention, the present inventors succeeded in obtaining an optimal value for the length of the electrode in the vertical direction in the electrode of an electrolytic cell for Nh production, but this is difficult to achieve when scaling up the electrolytic cell to an industrial scale. It's something meaningful to consider.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の実施に好適な、NFユガス
製造用電解槽の一例を示す両断面図であり、第3回は第
1図及び第2図におけるA−A矢視図を示す。 図において、 ■−−−−電解槽本体、  2−−m−弗素系樹脂板、
3−−−一蓋板、     4−−−一電解浴、5−−
m−陽極、     6−−−−陰極、接続棒、  8
a、8b 接続棒固定用袋ナンド、 隔板、 隔板固定用蓋板、 一0陽極発生ガス出口管、 陰極発生ガス出口管、 バンキング、 蓋板用ボルトナンド、 隔板固定用ボルト、 a  7b a  9b O を示す。 絶縁材、
1 and 2 are both sectional views showing an example of an electrolytic cell for producing NF Yugas, which is suitable for carrying out the present invention, and the third section is a view taken along the line A-A in FIGS. 1 and 2. shows. In the figure, ■----electrolytic cell body, 2--m-fluorine resin plate,
3---One cover plate, 4---One electrolytic bath, 5---
m-anode, 6--cathode, connecting rod, 8
a, 8b Connection rod fixing bag nut, partition plate, cover plate for fixing the partition plate, 10 anode generated gas outlet pipe, cathode generated gas outlet pipe, banking, bolt nut for the cover plate, bolt for fixing the partition plate, a 7b a 9b O is shown. Insulating material,

Claims (1)

【特許請求の範囲】[Claims] 1)溶融塩電解法による三弗化窒素ガス製造用電解槽に
おいて、陽極または陰極の何れか一方の電極の先端は陽
極と陰極とを隔離する隔板の下端より100〜1000
mm下に位置してあり、他の一方の電極の先端は該隔板
の下端より100mm以上下に位置する構造からなるこ
とを特徴とする電解槽。
1) In an electrolytic cell for producing nitrogen trifluoride gas by molten salt electrolysis, the tip of either the anode or the cathode is located 100 to 1000 meters from the lower end of the partition plate separating the anode and cathode.
mm below, and the tip of the other electrode is located 100 mm or more below the lower end of the partition plate.
JP63210428A 1988-08-26 1988-08-26 Electrolytic cell Granted JPH0261082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63210428A JPH0261082A (en) 1988-08-26 1988-08-26 Electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63210428A JPH0261082A (en) 1988-08-26 1988-08-26 Electrolytic cell

Publications (2)

Publication Number Publication Date
JPH0261082A true JPH0261082A (en) 1990-03-01
JPH0548312B2 JPH0548312B2 (en) 1993-07-21

Family

ID=16589153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63210428A Granted JPH0261082A (en) 1988-08-26 1988-08-26 Electrolytic cell

Country Status (1)

Country Link
JP (1) JPH0261082A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6193549B1 (en) 1999-04-13 2001-02-27 Sumitomo Wiring Systems, Ltd. Waterproof connector for electrical terminals
CN104962946A (en) * 2015-06-09 2015-10-07 中国船舶重工集团公司第七一八研究所 Electrolytic tank for preparing nitrogen trifluoride gas and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6193549B1 (en) 1999-04-13 2001-02-27 Sumitomo Wiring Systems, Ltd. Waterproof connector for electrical terminals
CN104962946A (en) * 2015-06-09 2015-10-07 中国船舶重工集团公司第七一八研究所 Electrolytic tank for preparing nitrogen trifluoride gas and application thereof

Also Published As

Publication number Publication date
JPH0548312B2 (en) 1993-07-21

Similar Documents

Publication Publication Date Title
US6183623B1 (en) Electrochemical conversion of anhydrous hydrogen halide to halogen gas using an ionically conducting membrane
WO1995014797A1 (en) Anode useful for electrochemical conversion of anhydrous hydrogen halide to halogen gas
US5085752A (en) Electrolytic cell
NL2023775B1 (en) Compact electrochemical stack using corrugated electrodes
Hepel et al. Chlorine Evolution and Reduction Processes at Oriented Single‐crystal RuO2 Electrodes
US4321313A (en) Electrogenerative reduction of nitrogen oxides
JPH0261082A (en) Electrolytic cell
KR100742484B1 (en) The electrolyzer for manufacturing nitrogen tri-fluoride to minimize the amount of a vaporized hydrogen flouride and the manufacturing method using the same
EP0077982B1 (en) An electrolysis process and electrolytic cell
JPH02213487A (en) Manufacture of electrolytic manganese dioxide
JP7170061B2 (en) Hydrogen production method
Gonzalez et al. The kinetics of the hydrogen chloride oxidation
Cairns et al. High activity platinum electrocatalysts for the direct anodic oxidation of saturated hydrocarbons
JPH03140488A (en) Electrolyzer
JP2854934B2 (en) Method for producing nitrogen trifluoride gas
KR20150137321A (en) Advanced fluorine gas generator
JP2698457B2 (en) Electrolytic cell
MXPA97008397A (en) Electrochemical conversion of hydrogenoanhydro halide to halogen gas using a transportation member cation
JP2854952B2 (en) Method for producing nitrogen trifluoride gas
JPS63130790A (en) Improved electrolytic cell
Williams et al. Electrodeposition of silver from dense gaseous solutions of silver nitrate in ammonia
JPH02263988A (en) Production of gaseous nitrogen trifluoride
JPS62122071A (en) Methanol reforming type fuel cell
JPH0665754B2 (en) Method for producing electrolytic manganese dioxide
JPH11335882A (en) Production of gaseous nitrogen trifluoride

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080721

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 16