JPH0259848B2 - - Google Patents

Info

Publication number
JPH0259848B2
JPH0259848B2 JP4398385A JP4398385A JPH0259848B2 JP H0259848 B2 JPH0259848 B2 JP H0259848B2 JP 4398385 A JP4398385 A JP 4398385A JP 4398385 A JP4398385 A JP 4398385A JP H0259848 B2 JPH0259848 B2 JP H0259848B2
Authority
JP
Japan
Prior art keywords
rolling
steel
ridging
strain rate
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4398385A
Other languages
Japanese (ja)
Other versions
JPS61204332A (en
Inventor
Susumu Sato
Saiji Matsuoka
Takashi Obara
Kozo Sumyama
Toshio Irie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP60043983A priority Critical patent/JPS61204332A/en
Priority to DE8686301469T priority patent/DE3672853D1/en
Priority to AT86301469T priority patent/ATE54949T1/en
Priority to US06/835,053 priority patent/US4676844A/en
Priority to EP86301469A priority patent/EP0194118B1/en
Priority to CA000503242A priority patent/CA1249958A/en
Priority to AU54386/86A priority patent/AU564448B2/en
Priority to CN86102258A priority patent/CN1014501B/en
Priority to BR8600963A priority patent/BR8600963A/en
Priority to KR1019860001579A priority patent/KR910001606B1/en
Priority to ZA861683A priority patent/ZA861683B/en
Publication of JPS61204332A publication Critical patent/JPS61204332A/en
Publication of JPH0259848B2 publication Critical patent/JPH0259848B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Metal Rolling (AREA)
  • Coating With Molten Metal (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 耐リジング性と加工性と溶融金属めつき密着性
に優れる薄鋼板の製造に関しこの明細書で述べる
ところは、圧延条件の規制により冷間圧延工程を
含まない省工程が可能となることの実験的知見に
基づく開発研究の発展的成果に関連している。 建材、自動車車体材、缶材ないしは各種表面処
理原板などの用途に使用される板厚およそ2mm以
下の薄鋼板では、その機械的特性として良好な曲
げ加工性、張り出し成形性、および絞り加工性を
得るために、高い延性と高いランクフオード値
(r値)が要求される。さらにこれら材料は最終
加工製品の最外側に使用されることが主なので、
加工後の表面状況がとくに重要になつてきてい
る。 また近年加工用薄鋼板の耐食性に対する要求は
厳しくなる一方であり表面処理板の使用が急激に
増加している。 とくに自動車の場合は北欧・北米で使用される
ものには融雪用の塩剤による腐食に耐えるためよ
り厳しい耐食性が要求される。 一方せつかく表面処理鋼板を使用しても加工時
に損傷を受けやすい場合には耐食性が劣化するか
ら、表面処理鋼板には素地の鋼板と表面処理層と
の密着性がきわめて重要である。 これら加工用薄鋼板の一般的な製造手順は以下
のとおりである。 まず鋼素材としてはおもに、低炭素鋼を用い、
連続鋳造法もしくは造塊−分塊圧延法により約
200mm板厚の鋼片となしそれを熱間圧延工程によ
り板厚がおよそ3mmの熱延鋼帯とし、ひき続き酸
洗後冷間圧延にて所定板厚の鋼帯とし、その後箱
焼鈍法又は連続焼鈍法により再結晶処理を行つて
最終製品とする。 この慣行は、工程が長いことに最大の欠点があ
り、製品にするまでに要するエネルギー、要員、
時間がぼう大であるのみならずこれら長い工程中
に、製品の品質とくに表面特性上種々の問題を生
じさせる不利も加わる。 上記のように、加工用薄鋼板の製造手順には、
冷間圧延工程(圧延温度300℃未満)を含むこと
が必須であつた。 この冷間圧延工程は単に所望の減厚を意図する
だけに止まらず、冷間加工によつて導入される塑
性ひずみを利用することにより最終焼鈍工程にお
いて、深絞り性に有利な(111)方位の結晶粒の
成長を促進させるのに役立つ。 ところが、冷間での加工は熱間での加工に比べ
て鋼帯の変形抵抗が著しく高いために圧延に要す
るエネルギーも莫大なほか、圧延ロールの摩耗が
ひどく、加えてスリツプなどの圧延トラブルも生
じ易い。 これに対し、300℃以上800℃以下の比較的高温
域(いわゆる温間域)にて、圧延できしかも特に
良好な加工性が得られれば、上記問題点は一掃で
き、製造上のメリツトは大きいといえよう。 ところが温間圧延による製造には大きな問題が
ある。それはリジングである。 リジングとは製品の加工時に生じる表面の凹凸
の欠陥であつて、加工製品の最外側に使用される
ことが主であるこの種の鋼板には致命的な欠陥で
ある。 リジングは金属学的には加工−再結晶過程を経
ても容易には分割されない結晶方位粒群(例えば
{100}方位粒群)が圧延方向に伸ばされたまま残
留することに起因するものであり、一般に温間圧
延のようにフエライト(α)域の比較的高温で加
工された状況で生じやすくとくに温間域での圧下
率が高い場合(すなわち薄鋼板の製造のような場
合)には顕著である。 また最近はこれら加工用鋼板が、加工製品の複
雑化、高級化に伴い、厳しい加工を受けることが
多くなり、優れた耐リジング性が要求される。 ところで近年鉄鋼材料の製造工程は著しく変化
し、加工用薄鋼板の場合も例外ではない。 すなわち溶鋼を造塊−分塊圧延にて250mm板厚
程度の鋼片とし後加熱炉にて加熱均熱処理し、粗
熱延工程により約30mm板厚のシートバーとし、さ
らに仕上熱延工程により所定板厚の熱延鋼帯とし
ていた在来の慣例に対し、近年まず連続鋳造プロ
セスの導入によつて分塊圧延工程が省略可能とな
り、また材質向上と省エネルギーを目的として鋼
片の加熱温度は従来の1200℃近傍から1100℃近傍
もしくはそれ以下への低下傾向にある。 一方溶鋼から直ちに板厚50mm以下の鋼帯を溶製
することにより熱間圧延の加熱処理と粗圧延工程
を省略できる新しいプロセスも実用化しつつあ
る。 しかしながら、これら新製造工程はいずれも溶
鋼から凝固してできる組織(鋳造組織)を破壊す
るという点では不利である。とくに凝固時に形成
された{100}<uvw>を主方位とする強い鋳造集
合組織を破壊することはきわめて困難である。 その結果として最終薄鋼板にはリジングが起こ
りやすくなり、とくに温間圧延法はそれを助長す
る。 (従来の技術) 温間圧延による深絞り用鋼板の製造方法はいく
つか開示され、たとえば特公昭47−30809号、特
開昭49−86214号、特開昭59−93835号、特開昭59
−133325号、特開昭59−136425号、特開昭59−
185729号、そして特開昭59−226149号各公報など
がその例である。いずれも温間域の圧延後ただち
に再結晶処理することを特徴とし、冷間圧延工程
が省略可能な革新的技術である。 しかしながら、これら公知技術は前述の耐リジ
ング性を向上させることについては何らの考慮も
払われてなく、この点一般的に薄鋼板の耐リジン
グ性に関しては温間圧延の方が冷間圧延を加える
場合よりも不利である。 (発明が解決しようとする問題点) 冷間圧延工程を含まない省工程によつて、耐リ
ジング性と加工性と溶融金属めつき密着性に優れ
る薄鋼板の製造方法を与えることがこの発明の目
的である。 (問題点を解決するための手段) この発明は、低炭素鋼を所定板厚に温間圧延す
る工程において、 少なくとも1パスを、300〜800℃の温度範囲ひ
ずみ速度(ε〓)300s-1以上でかつ巻取温度400℃以
下で仕上げ、ひき続きライン内の焼鈍方式の連続
溶融金属めつきラインにて再結晶およびめつき処
理する ことを特徴とする耐リジング性とめつき密着性に
優れる加工用溶融金属めつき薄鋼板の製造方法で
ある。 この発明の基礎となつた結果からまず説明す
る。
(Industrial field of application) This specification describes the production of thin steel sheets with excellent ridging resistance, workability, and molten metal plating adhesion. It relates to the evolving results of development research based on experimental knowledge of what is possible. Thin steel plates with a thickness of approximately 2 mm or less used for applications such as building materials, automobile body materials, can stock, and various surface-treated base plates have good mechanical properties such as bending workability, stretch formability, and drawing workability. In order to obtain this, high ductility and a high Rankford value (r value) are required. Furthermore, since these materials are mainly used on the outermost side of the final processed product,
The surface condition after processing is becoming particularly important. Furthermore, in recent years, the requirements for corrosion resistance of thin steel sheets for processing have become more and more severe, and the use of surface-treated sheets has been rapidly increasing. In the case of automobiles in particular, those used in Northern Europe and North America are required to have even stricter corrosion resistance in order to withstand corrosion caused by salt agents used in snow melting. On the other hand, even if a surface-treated steel sheet is used, its corrosion resistance will deteriorate if it is easily damaged during processing, so the adhesion between the base steel sheet and the surface treatment layer is extremely important for surface-treated steel sheets. The general manufacturing procedure for these thin steel sheets for processing is as follows. First of all, we mainly use low carbon steel as the steel material.
Continuous casting method or ingot-blooming rolling method
A steel billet with a thickness of 200 mm is made into a hot-rolled steel strip with a thickness of approximately 3 mm through a hot rolling process, followed by pickling and cold rolling to a steel strip with a predetermined thickness, followed by box annealing or The final product is recrystallized using a continuous annealing method. The biggest disadvantage of this practice is that it is a long process, requiring a lot of energy and manpower to produce the product.
Not only is the process time-consuming, but the long process also has the added disadvantage of causing various problems in terms of product quality, especially surface properties. As mentioned above, the manufacturing procedure for thin steel sheets for processing includes:
It was essential to include a cold rolling process (rolling temperature below 300°C). This cold rolling process not only aims to reduce the desired thickness, but also utilizes the plastic strain introduced by cold working to produce the (111) orientation, which is advantageous for deep drawability, in the final annealing process. helps promote the growth of crystal grains. However, in cold working, the deformation resistance of the steel strip is significantly higher than in hot working, so the energy required for rolling is enormous, the rolling rolls are severely worn out, and rolling problems such as slips occur. Easy to occur. On the other hand, if rolling can be done in a relatively high temperature range of 300°C to 800°C (so-called warm range) and particularly good workability can be obtained, the above problems can be eliminated and there are great manufacturing benefits. You could say that. However, there are major problems with manufacturing by warm rolling. That is ridging. Ridging is a defect in surface irregularities that occurs during processing of products, and is a fatal defect for this type of steel plate, which is mainly used on the outermost side of processed products. In terms of metallurgy, ridging is caused by crystallographically oriented grain groups (e.g. {100} oriented grains) that are not easily divided even after the processing-recrystallization process and remain stretched in the rolling direction. , generally tends to occur when processing is carried out at relatively high temperatures in the ferrite (α) region, such as during warm rolling, and is particularly noticeable when the reduction rate in the warm region is high (i.e., in the production of thin steel sheets). It is. Recently, as processed products have become more complex and sophisticated, these processed steel plates are often subjected to severe processing, and excellent ridging resistance is required. Incidentally, the manufacturing process of steel materials has changed significantly in recent years, and the case of thin steel sheets for processing is no exception. That is, the molten steel is made into a steel billet with a thickness of about 250 mm by ingot-making and blooming rolling, then heated and soaked in a heating furnace, processed into a sheet bar with a thickness of about 30 mm by a rough hot rolling process, and then made into a sheet bar with a thickness of about 30 mm by a finishing hot rolling process. In contrast to the conventional practice of producing thick hot-rolled steel strips, in recent years the introduction of the continuous casting process has made it possible to omit the blooming process, and in order to improve material quality and save energy, the heating temperature of steel strips has been reduced from the conventional method. temperature is decreasing from around 1200℃ to around 1100℃ or below. On the other hand, a new process is being put into practical use that can eliminate the heat treatment and rough rolling steps of hot rolling by immediately producing steel strips with a thickness of 50 mm or less from molten steel. However, these new manufacturing processes are disadvantageous in that they destroy the structure formed by solidifying molten steel (cast structure). In particular, it is extremely difficult to destroy the strong casting texture, which is formed during solidification and has a main orientation of {100}<uvw>. As a result, ridging tends to occur in the final thin steel sheet, and the warm rolling process particularly promotes ridging. (Prior art) Several methods for manufacturing deep drawing steel sheets by warm rolling have been disclosed, for example, Japanese Patent Publication No. 47-30809, Japanese Patent Application Laid-Open No. 86214-1982, Japanese Patent Application Laid-open No. 93835-1989,
−133325, JP-A-59-136425, JP-A-59-
Examples include No. 185729 and Japanese Unexamined Patent Publication No. 59-226149. Both methods are characterized by recrystallization treatment immediately after rolling in the warm region, and are innovative technologies that can omit the cold rolling step. However, these known techniques do not give any consideration to improving the above-mentioned ridging resistance, and in general, with regard to the ridging resistance of thin steel sheets, warm rolling is better than cold rolling. It is more disadvantageous than the case. (Problems to be Solved by the Invention) It is an object of the present invention to provide a method for manufacturing a thin steel sheet that has excellent ridging resistance, workability, and molten metal plating adhesion through a process saving process that does not include a cold rolling process. It is a purpose. (Means for Solving the Problems) This invention provides at least one pass in the process of warm rolling low carbon steel to a predetermined thickness at a strain rate (ε〓) of 300 s -1 in a temperature range of 300 to 800°C. Processing with excellent ridging resistance and plating adhesion characterized by finishing at a coiling temperature of 400℃ or less, followed by recrystallization and plating treatment in an annealing continuous molten metal plating line within the line. This is a method for manufacturing a molten metal plated thin steel sheet for use. First, the results that form the basis of this invention will be explained.

【表】 供試材は表1に示す2種類の低炭素アルミキル
ド鋼の熱延鋼板である。供試材は(A)、(B)とも600
℃に加熱−均熱し1パス、30%圧下率で圧延し
た。 このときのひずみ速度(ε〓)と焼鈍後(均熱温
度800℃)のr値およびリジング指数との関係を
第1図に示す。 r値および耐リジング性はひずみ速度に強く依
存し、600℃の圧延温度にて300s-1以上の高ひず
み速度とすることにより、r値および耐リジング
性は著しく向上した。
[Table] The test materials were two types of hot-rolled low carbon aluminum killed steel sheets shown in Table 1. The test materials are both (A) and (B) 600
It was heated and soaked at ℃ and rolled in one pass at a rolling reduction of 30%. Figure 1 shows the relationship between the strain rate (ε〓) at this time and the r value and ridding index after annealing (soaking temperature 800°C). The r value and ridging resistance strongly depend on the strain rate, and by increasing the strain rate to 300 s -1 or higher at a rolling temperature of 600°C, the r value and ridging resistance were significantly improved.

【表】 次に表2に示す組成の鋼(C)を連続鋳造−粗熱延
により25mm板厚のシートバーとし、6列よりなる
仕上圧延機の6スタンド目で高ひずみ速度
(562s- 1)圧延を行つた。仕上温度は670℃、板厚
は1.2mmである。 この鋼帯を種々の巻取温度で巻取り、酸洗せず
に連続溶融亜鉛めつきラインにて均熱温度810℃
で焼鈍し連続的に亜鉛めつきした。この鋼板の亜
鉛めつき密着性試験結果を第2図に示す。 この曲げ試験は密着(曲げ半径OT)曲げから
板厚の2倍の曲げ半径(4T)までの曲げを加え
たものは離限界値で判定した。またエリクセン試
験機を用い振り出し加工時のはく離限界値も同時
に調べた。 第2図より巻取温度を400℃以下にすることに
よりきわめて優れた密着性およびエリクセン値を
示すことがわかる。 発明者らはこの基礎的データに基づき研究を重
ねた結果、以下のように製造条件を規制すること
により、めつき密着性と耐リジング性に優れる薄
鋼板が製造できることを確認した。 (1) 鋼組成 高ひずみ速度圧延の効果は本質的には鋼組成
に依存しない。ただし、一定レベル以上の加工
性を確保するためには侵入型固溶元素のC、N
はそれぞれ0.10%、0.01%以下であることが好
ましい。また鋼中OをAlの添加により低減す
ることは材質とくに延性の向上に有利である。 さらにより優れた加工性を得るためにC、N
を安定な炭窒化物として析出固定可能な特殊元
素、例えばTi、Nb、Zr、B等の添加も有効で
ある。 また高強度を得るためにP、Si.Mn等を強度
に応じて添加することもできる。 (2) 圧延素材の製造法 従来方式、すなわち造塊−分塊圧延もしくは
連続鋳造法により得られた鋼片が当然に適用で
きる。 鋼片の加熱温度は800〜1250℃が適当であり、
省エネルギーの観点から1100℃未満が好適であ
る。連続鋳造から鋼片を、再加熱することなく
圧延を開始するいわゆるCC−DR(連続鋳造−
直接圧延)法ももちろん適用可能である。 一方、溶鋼から直接50mm程度以下の圧延素材
を鋳造する方法(シートバーキヤスター法およ
びストリツプキヤスター法)も省エネルギー、
省工程の観点から経済的効果が大きいので圧延
素材の製造方法としてとくに有利である。 (3) 温間圧延 この工程がもつとも重要であり、低炭素鋼を
所定板厚に温間圧延する工程において、少なく
とも1パスを、800〜300℃の温度範囲、ひずみ
速度300s-1以上でかつ巻取温度、400℃以下で
仕上げることが必須である。 圧延温度については、800℃をこえる高温域
の圧延ではひずみ速度の制御によつて加工性と
耐リジング性を得るのが困難な一方300℃未満
では変形抵抗の著しい増大をもたらすため冷間
圧延法で特有な上述したと同様の諸問題を伴う
ので800〜300℃、なかでも700〜400℃がとくに
好適である。 ひずみ速度については300s-1以上としないと
目標材質が確保できない。 このひずみ速度の範囲はとくに500〜2500s-1
が好適である。 巻取温度は400℃以下にしないと優れためつ
き密着性を得ることができない。 圧延パス数、圧下率の配分は上記条件が満た
されれば任意でよい。 圧延機の配列、構造、ロール径や、張力、潤
滑の有無などは本質的な影響力を持たない。 なおひずみ速度(ε〓)の計算は次式に従う。 ここで n:ロールの回転数(rpm) r:圧下率(%)/100 R:ロール半径(mm) H0:圧延前の板厚 (4) 焼鈍 圧延を経た鋼帯は再結晶焼鈍する必要があ
る。焼鈍方法はライン内焼鈍方式の連続溶融金
属めつきラインにて再結晶およびめつき処理を
行う。 焼鈍加熱温度は再結晶温度から950℃の範囲
が適する。炭素含有量が0.01wt%以上の鋼板に
ついては、均熱後、過時効処理を施すことが材
質の向上に有利である。 鋼帯表面のスケールは圧延温度が従来の熱間
圧延よりはるかに低温域であるので薄くかつ除
去されやすい。したがつて、脱スケールは従来
の酸による除去のほかに、機械的にもしくは連
続溶融金属めつきライン内の焼鈍雰囲気の制御
などでも可能である。 焼鈍後の鋼帯には形状矯正等の調整のために
10%以下の調質圧延を加えることができる。 (作 用) この発明に従う高ひずみ速度温間圧延の挙動に
ついて、耐リジング性、加工性を格段に向上する
理由については、以下の如く考えられている。圧
延−焼鈍後の再結晶集合組織の形成は、圧延時に
導入される加工ひずみ量に大きく依存することが
知られている。すなわち、{222}方位粒の加工ひ
ずみ量が多いと、{222}方位を主方位とする再結
晶集合組織が形成される。従来行われてきた圧延
速度では、圧延時に導入される加工ひずみは
{222}方位粒が多く、そのため再結晶集合組織に
は{222}方位が集積し、かくして低い値しか
得られないのが現状であつた。しかしながら高ひ
ずみ速度圧延とすることにより、{222}方位粒導
入される加工ひずみ量が増大し、そのため{222}
方位を主方位とする再結晶集合組織が形成され、
r個が格段に向上することを見出した。さらに、
{222}方位粒への加工ひずみにより、{222}方位
粒が優先的に再結晶が進行するため、リジング発
生の主原因である{200}方位粒を浸食し、耐リ
ジング性も向上する。 (実施例)
[Table] Next, steel (C) with the composition shown in Table 2 was made into a sheet bar with a thickness of 25 mm by continuous casting and rough hot rolling, and was rolled at a high strain rate (562 s - 1 ) was rolled. The finishing temperature is 670℃, and the plate thickness is 1.2mm. This steel strip was wound at various winding temperatures, and soaked at 810°C on a continuous hot-dip galvanizing line without pickling.
annealed and continuously galvanized. Figure 2 shows the results of the zinc plating adhesion test for this steel plate. In this bending test, bending from close bending (bending radius OT) to bending to a bending radius twice the plate thickness (4T) was judged based on the separation limit value. In addition, the peeling limit value during swing-out processing was also investigated using an Erichsen tester. It can be seen from FIG. 2 that extremely excellent adhesion and Erichsen values are obtained by setting the winding temperature to 400° C. or lower. As a result of repeated research based on this basic data, the inventors confirmed that a thin steel sheet with excellent plating adhesion and ridging resistance can be manufactured by regulating the manufacturing conditions as described below. (1) Steel composition The effects of high strain rate rolling essentially do not depend on the steel composition. However, in order to ensure workability above a certain level, interstitial solid solution elements such as C and N must be used.
are preferably 0.10% and 0.01% or less, respectively. Further, reducing O in steel by adding Al is advantageous for improving material quality, especially ductility. In order to obtain even better workability, C, N
It is also effective to add special elements that can be precipitated and fixed as stable carbonitrides, such as Ti, Nb, Zr, and B. Further, in order to obtain high strength, P, Si, Mn, etc. can be added depending on the strength. (2) Manufacturing method of rolled material Steel slabs obtained by conventional methods, ie, ingot-blowing rolling or continuous casting methods, can naturally be applied. The appropriate heating temperature for the steel billet is 800 to 1250℃.
From the viewpoint of energy saving, the temperature is preferably less than 1100°C. So-called CC-DR (continuous casting) starts rolling of steel billet from continuous casting without reheating.
Of course, the direct rolling method is also applicable. On the other hand, methods of directly casting rolled material of approximately 50 mm or less from molten steel (sheet bar caster method and strip caster method) also save energy.
It is particularly advantageous as a method for manufacturing rolled materials because it has a large economic effect from the viewpoint of process saving. (3) Warm rolling This process is very important, and in the process of warm rolling low carbon steel to a predetermined thickness, at least one pass is performed at a temperature range of 800 to 300°C, at a strain rate of 300 s -1 or more, and It is essential to finish at a winding temperature of 400℃ or less. Regarding the rolling temperature, it is difficult to obtain good formability and ridging resistance by controlling the strain rate when rolling in a high temperature range of over 800℃, while when it is lower than 300℃, the deformation resistance increases significantly, so cold rolling method is used. 800 to 300°C, particularly 700 to 400°C, is particularly suitable since the above-mentioned problems associated with this are particularly preferred. The target material quality cannot be secured unless the strain rate is 300s -1 or higher. This strain rate range is particularly from 500 to 2500 s -1
is suitable. Excellent folding adhesion cannot be obtained unless the winding temperature is 400°C or lower. The number of rolling passes and the distribution of the rolling reduction ratio may be arbitrary as long as the above conditions are satisfied. The arrangement, structure, roll diameter, tension, presence or absence of lubrication of the rolling mill, etc. have no essential influence. Note that the strain rate (ε〓) is calculated according to the following formula. Here, n: Roll rotation speed (rpm) r: Reduction ratio (%)/100 R: Roll radius (mm) H 0 : Plate thickness before rolling (4) Annealing Steel strips that have undergone rolling must be recrystallized and annealed. There is. The annealing process involves recrystallization and plating in an in-line annealing continuous molten metal plating line. The suitable annealing heating temperature ranges from the recrystallization temperature to 950°C. For steel plates with a carbon content of 0.01 wt% or more, it is advantageous to perform an overaging treatment after soaking to improve the material quality. The scale on the surface of the steel strip is thin and easily removed because the rolling temperature is much lower than in conventional hot rolling. Therefore, descaling can be performed not only by conventional acid removal but also mechanically or by controlling the annealing atmosphere in a continuous molten metal plating line. After annealing, the steel strip is processed for shape correction, etc.
Temper rolling of 10% or less can be added. (Function) Regarding the behavior of high strain rate warm rolling according to the present invention, the reason why the ridging resistance and workability are significantly improved is considered as follows. It is known that the formation of recrystallized texture after rolling-annealing largely depends on the amount of processing strain introduced during rolling. That is, when the amount of processing strain on {222} oriented grains is large, a recrystallized texture with the {222} orientation as the main orientation is formed. At the conventional rolling speed, the working strain introduced during rolling involves many {222} oriented grains, and as a result, {222} oriented grains accumulate in the recrystallized texture, and thus only a low value can be obtained. It was hot. However, by high strain rate rolling, the amount of processing strain that introduces {222} oriented grains increases, and therefore {222}
A recrystallized texture with the main orientation is formed,
It was found that the number of r items was significantly improved. moreover,
Due to processing strain on the {222} oriented grains, recrystallization of the {222} oriented grains proceeds preferentially, which erodes the {200} oriented grains, which are the main cause of ridging, and also improves ridging resistance. (Example)

【表】 表3に示す化学組成の鋼片を転炉−連続鋳造法
及び転炉−シートバーキヤスター法により製造し
た。転炉−連続鋳造法では1100〜950℃に加熱均
熱後粗圧延により20〜30mm板厚のシートバーとし
た。 これらシートバーを6列からなる仕上圧延機の
6スタンド目にてを高ひずみ速度圧延を行い巻取
つた。ひき続き酸洗することなく連続溶融金属
(Zn、Al、Pb)めつきラインにて焼鈍(均熱温
度700〜850℃)し連続的に溶融浸漬めつきを施し
た。 圧延条件および0.5〜1.2%スキンパス圧延後の
材料特性とめつき密着性の試験結果を表4に示
す。
[Table] Steel slabs having the chemical composition shown in Table 3 were manufactured by a converter-continuous casting method and a converter-sheet bar caster method. In the converter-continuous casting method, sheet bars with a thickness of 20 to 30 mm were obtained by heating and soaking at 1100 to 950°C and then rough rolling. These sheet bars were rolled at a high strain rate at the 6th stand of a finishing mill consisting of 6 rows and wound up. Subsequently, without pickling, it was annealed in a continuous molten metal (Zn, Al, Pb) plating line (soaking temperature 700-850°C) and continuously molten dip-plated. Table 4 shows the rolling conditions and the material properties after 0.5 to 1.2% skin pass rolling and the test results of plating adhesion.

【表】【table】

【表】 * 比較例
リジング性はめつき層を化学研究により除去し
JIS5号引張試験片を圧延方向より採取し15%ひず
み変形後目視法にて判定(1(良)〜5(劣))し
た。この評価は、在来の低炭素冷延鋼板の製造法
によるとき、リジングが事実上現れなかつたので
評価基準が確立していない。従つて、本発明では
従来ステンレス鋼についての目視法による指数評
価基準をそのまま基準した。 判定1、2は実用上問題のないリジング性であ
る。めつき密着性は前述した方法にもとづく、表
中無印の各実施例はいずれも優れた加工性、耐リ
ジング性およびめつき密着性を示している。 (発明の効果) この発明によれば高ひずみ速度温間圧延にて高
い延性とr値を示すとともに優れためつき密着性
と耐リジング性をもつ薄鋼板が得られ、従来の冷
延工程を省略できるばかりでなく、圧延素材につ
いてもシートバーキヤスター法、ストリツプキヤ
スター法などの活用に適合するなど、加工用溶融
金属めつき薄鋼板の製造工程の簡略化が実現でき
る。
[Table] * Comparative example The ridging and plating layer was removed through chemical research.
A JIS No. 5 tensile test piece was taken from the rolling direction and visually evaluated after being subjected to 15% strain deformation (1 (good) to 5 (poor)). No evaluation criteria have been established for this evaluation since ridging virtually did not appear when conventional low carbon cold-rolled steel sheets were produced using the manufacturing method. Therefore, in the present invention, the index evaluation criteria based on the visual method for conventional stainless steels are used as they are. Judgments 1 and 2 indicate ridging properties that pose no practical problem. The plating adhesion was determined based on the method described above, and each unmarked example in the table shows excellent workability, ridging resistance, and plating adhesion. (Effects of the Invention) According to the present invention, a thin steel sheet that exhibits high ductility and r value through high strain rate warm rolling, as well as excellent adhesion and ridging resistance, can be obtained, and the conventional cold rolling process is omitted. Not only is this possible, but the rolling material is also compatible with the sheet bar caster method, strip caster method, etc., and the manufacturing process of molten metal plated thin steel sheets for processing can be simplified.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はr値、リジング性に及ぼす圧延ひずみ
速度の影響を示すグラフである。第2図はめつき
密着性に及ぼす巻取温度の影響を示すグラフであ
る。
FIG. 1 is a graph showing the influence of rolling strain rate on r value and ridging property. FIG. 2 is a graph showing the influence of winding temperature on plating adhesion.

Claims (1)

【特許請求の範囲】 1 低炭素鋼を所定板厚に温間圧延する工程にお
いて、 少なくとも1パスを、300〜800℃の温度範囲ひ
ずみ速度(ε〓)300s-1以上でかつ巻取温度400℃以
下で仕上げ、ひき続きライン内の焼鈍方式の連続
溶融金属めつきラインにて再結晶およびめつき処
理する ことを特徴とする耐リジング性とめつき密着性に
優れる加工用溶融金属めつき薄鋼板の製造方法。
[Claims] 1. In the process of warm rolling low carbon steel to a predetermined thickness, at least one pass is carried out at a temperature range of 300 to 800°C at a strain rate (ε〓) of 300s -1 or more and at a coiling temperature of 400°C. A molten metal plated thin steel sheet for processing with excellent ridging resistance and plating adhesion, which is finished at temperatures below °C and then recrystallized and plated on an in-line annealing continuous molten metal plating line. manufacturing method.
JP60043983A 1985-03-06 1985-03-06 Production of metal hot dipped thin steel sheet having excellent ridging resistance and plating adhesiveness Granted JPS61204332A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP60043983A JPS61204332A (en) 1985-03-06 1985-03-06 Production of metal hot dipped thin steel sheet having excellent ridging resistance and plating adhesiveness
DE8686301469T DE3672853D1 (en) 1985-03-06 1986-02-28 PRODUCTION OF DEFORMABLE THIN STEEL SHEETS WITH EXCELLENT RESISTANCE TO GROOVING.
AT86301469T ATE54949T1 (en) 1985-03-06 1986-02-28 MANUFACTURING OF FORMABLE THIN STEEL PLATES WITH EXCELLENT RESISTANCE TO CRACKING.
US06/835,053 US4676844A (en) 1985-03-06 1986-02-28 Production of formable thin steel sheet excellent in ridging resistance
EP86301469A EP0194118B1 (en) 1985-03-06 1986-02-28 Production of formable thin steel sheet excellent in ridging resistance
CA000503242A CA1249958A (en) 1985-03-06 1986-03-04 Production of formable thin steel sheet excellent in ridging resistance
AU54386/86A AU564448B2 (en) 1985-03-06 1986-03-04 Producing thin steel sheet
CN86102258A CN1014501B (en) 1985-03-06 1986-03-05 Production of formable thin sheet excellent in ridging resistance
BR8600963A BR8600963A (en) 1985-03-06 1986-03-06 PROCESS FOR THE PRODUCTION OF A MOLDABLE FINE STEEL SHEET
KR1019860001579A KR910001606B1 (en) 1985-03-06 1986-03-06 Production of formable thin steel sheet excellent in ridging resistance
ZA861683A ZA861683B (en) 1985-03-06 1986-03-06 Production of formable thin steel sheet with improved ridging resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60043983A JPS61204332A (en) 1985-03-06 1985-03-06 Production of metal hot dipped thin steel sheet having excellent ridging resistance and plating adhesiveness

Publications (2)

Publication Number Publication Date
JPS61204332A JPS61204332A (en) 1986-09-10
JPH0259848B2 true JPH0259848B2 (en) 1990-12-13

Family

ID=12678956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60043983A Granted JPS61204332A (en) 1985-03-06 1985-03-06 Production of metal hot dipped thin steel sheet having excellent ridging resistance and plating adhesiveness

Country Status (2)

Country Link
JP (1) JPS61204332A (en)
ZA (1) ZA861683B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1003293C2 (en) 1996-06-07 1997-12-10 Hoogovens Staal Bv Method and device for manufacturing a steel strip.
ES2224283T3 (en) 1996-12-19 2005-03-01 Corus Staal Bv PROCEDURE TO PRODUCE A STEEL BAND OR BLADE.

Also Published As

Publication number Publication date
ZA861683B (en) 1986-10-29
JPS61204332A (en) 1986-09-10

Similar Documents

Publication Publication Date Title
JPH0259848B2 (en)
JPH0257128B2 (en)
JPH0257131B2 (en)
JPH0333768B2 (en)
JPS61204331A (en) Production of metal electroplated thin steel sheet for working having excellent ridging resistance and plating adhesiveness
JP3806983B2 (en) Cold-rolled steel sheet material for deep drawing with excellent ridging resistance after cold rolling and annealing
JPH033731B2 (en)
JPH0259845B2 (en)
JPH0259847B2 (en)
JPH0333769B2 (en)
JPH0333767B2 (en)
JPH0259846B2 (en)
JPH0227415B2 (en) TAIRIJINGUSEITOMETSUKIMITSUCHAKUSEINISUGURERUKAKOYOYOJUKINZOKUMETSUKIUSUKOHANNOSEIZOHOHO
JPH033730B2 (en)
JPH0227416B2 (en) TAIRIJINGUSEITOTAIJIKOSEINISUGURERUKAKOYOAZUROORUDOSUKOHANNOSEIZOHOHO
JP2000282151A (en) Manufacture of steel sheet excellent in surface characteristics and workability
JPH0257129B2 (en)
JPH05339643A (en) Production of high strength cold rolled steel sheet excellent in deep drawability and galvanized steel sheet
JPH0227413B2 (en) TAIRIJINGUSEITOFUKASHIBORISEIKEISEINISUGURERUAZUROORUDOSUKOHANNOSEIZOHOHO
JPH0227414B2 (en) TAIRIJINGUSEITOKASEISHORISEINISUGURERUKAKOYOAZUROORUDOSUKOHANNOSEIZOHOHO
JPH034608B2 (en)
JPH0257130B2 (en)
JPH0257132B2 (en)
JPS6213534A (en) Manufacture of as-rolled steel sheet for working having superior ridging resistance and bulgeability
JPH1068046A (en) Hot rolled steel sheet excellent in deep drawability and ridging resistance after cold rolling-annealing