JPH0259642A - Measuring method for dynamic balance of tire - Google Patents

Measuring method for dynamic balance of tire

Info

Publication number
JPH0259642A
JPH0259642A JP63209343A JP20934388A JPH0259642A JP H0259642 A JPH0259642 A JP H0259642A JP 63209343 A JP63209343 A JP 63209343A JP 20934388 A JP20934388 A JP 20934388A JP H0259642 A JPH0259642 A JP H0259642A
Authority
JP
Japan
Prior art keywords
workpiece
compression
type load
unbalance
work
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63209343A
Other languages
Japanese (ja)
Inventor
Takeshi Yonezawa
米澤 猛
Toshiyuki Nakahama
中浜 俊之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP63209343A priority Critical patent/JPH0259642A/en
Publication of JPH0259642A publication Critical patent/JPH0259642A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Balance (AREA)

Abstract

PURPOSE:To execute the measurement with high accuracy by supporting a main shaft of a vertical balancer in which a work shaft is vertical to the ground and open-sided by a compression tensile type load detector and executing a calibration of the unbalance quantity by using a weight. CONSTITUTION:A work shaft 1 is supported by compression tensile type load detectors 2a-3b, a work X is driven to rotate by a driving motor 4, and an output primary component and a phase of the compression tensile type load detectors 2a-3b are derived and stored in a controller. Subsequently, the output primary components and the phases at the time when a weight W is attached to the upper face and the work X is rotated, and also, at the time when the work X is rotated by attaching the weight W to the other face are derived, respectively, and stored in the controller. From the respective storage values which are derived in such a way, the influence exerted on the compression tensile type load detectors 2a-3b by the unbalance quantity of the upper face and the lower face of the work X is derived, and on the contrary, the unbalance quantity of the work X is derived.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、タイヤのダイナミックバランス(二面不釣
合)測定方法に係わり、更に詳しくはワーク軸が地面に
対して垂直で、かつ片持ちである縦型バランサーの主軸
支持を圧縮引張型荷重検出器として、不釣合量の校正を
ウェイト(分銅)を用いて行うことにより、計算に必要
な種々のパラメータを不要とし、精度良くダイナミック
バランス(二面不釣合)を測定出来るようにした測定方
法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for measuring the dynamic balance (two-plane unbalance) of a tire, and more specifically, the present invention relates to a method for measuring the dynamic balance (two-plane unbalance) of a tire, and more specifically, the present invention relates to a method for measuring the dynamic balance (two-plane unbalance) of a tire, and more specifically, the workpiece axis is perpendicular to the ground and is cantilevered. By using a compression/tension type load detector as the main shaft support of the vertical balancer and using weights to calibrate the amount of unbalance, various parameters required for calculation are unnecessary and dynamic balance (two-plane unbalance) can be achieved with high accuracy. ) is related to a measurement method that enables the measurement of

〔従来の技術〕[Conventional technology]

従来の工業用のタイヤダイナミックバランサー(二面不
釣合試験機)は、二つ割りリムを使用する関係上、縦型
バランサーを使用している。
Conventional industrial tire dynamic balancers (two-sided unbalance testing machines) use vertical balancers because they use split rims.

然しなから、縦型バランサーのハードタイプのものは、
非常に精度を出すのが難しい(荷重検出器に主軸、リム
軸等のワーク以外の荷重が加わり検出精度が低下する)
ため、現状では実用化されていない。
However, the hard type of vertical balancer is
It is extremely difficult to achieve accuracy (loads other than the workpiece, such as the main shaft and rim shaft, are applied to the load detector, reducing detection accuracy)
Therefore, it has not been put into practical use at present.

従来のこの種のタイヤダイナミックバランサーは、ソフ
トバランサーとする呼ばれるものが主流であり、通常、
板バネまたは棒バネでワーク軸を支持し、ワーク以外の
重量を相殺してワーク(タイヤ)の不釣合によって生じ
る主軸の振れ量を測定するものが市販されている。
The mainstream of conventional tire dynamic balancers of this type is what is called a soft balancer.
There are commercially available devices that support the workpiece shaft with a leaf spring or bar spring, offset the weight of objects other than the workpiece, and measure the amount of deflection of the main shaft caused by the unbalance of the workpiece (tire).

このソフトバランサーに対して、ワーク軸を地面に対し
て水平にしたものでは、ロードセル等の荷重変換器で主
軸を支持する方法が取られており、これを一般にハード
バランサーと呼ばれている。この両者を比較した場合、
ハードバランサーの方が精度劣化が少なく、メンテナン
スも容易である。然し、ハードバランサーでは、ワーク
軸を地面に対して垂直にする方法をとるのが非常に困難
である。即ち、主軸を荷重検出器等のセンサーで支持す
ると、主軸重量を全てセンサーが受けることになり、堅
個なものが必要となる。
In contrast to this soft balancer, one in which the work shaft is horizontal to the ground uses a method of supporting the main shaft with a load converter such as a load cell, and this is generally called a hard balancer. When comparing these two,
Hard balancers have less accuracy deterioration and are easier to maintain. However, with a hard balancer, it is very difficult to make the workpiece axis perpendicular to the ground. That is, if the spindle is supported by a sensor such as a load detector, the entire weight of the spindle will be absorbed by the sensor, and a sturdy sensor will be required.

然しなから、堅個なセンサーは、分解能力が低く、要求
精度を満足するのが困難である。更に、市販のバランサ
ーに見られるようなベンディングタイプの荷重検出器で
主軸を支持した場合、主軸の変位が大きくなり、第3図
(al、 (bl。
However, solid sensors have low resolution capabilities and are difficult to meet the required accuracy. Furthermore, if the main shaft is supported by a bending type load detector such as those found in commercially available balancers, the displacement of the main shaft becomes large, as shown in Figures 3 (al, (bl)).

(C)に示すように、捩り力が荷重検出器に加わりワー
クによって発生する不釣合量が大きくなるほど荷重検出
器の出力値は不正確なり、これを縦型とした場合、主軸
の重量が更に加わるのでワークのアンバランス量の検出
精度が低下し、かつ正確な測定が困難となる問題があっ
た。
As shown in (C), as torsional force is applied to the load detector and the amount of unbalance caused by the work increases, the output value of the load detector becomes inaccurate.If this is a vertical type, the weight of the spindle will be further added. Therefore, there was a problem that the detection accuracy of the amount of unbalance of the workpiece decreased and accurate measurement became difficult.

〔発明の目的〕[Purpose of the invention]

この発明は、かかる従来の問題点に着目して案出された
もので、特に工業用縦型タイヤダイナミックバランサー
を実用化するために、ワーク軸が地面に対して垂直で、
かつ片持ちである縦型バランサーの主軸支持を圧縮引張
型荷重検出器として、不釣合量の校正をウェイト(分銅
)を用いて行うことにより、計算に必要な種々のパラメ
ータを不要とし、精度良くグイナミソクバランス(二面
不釣合)を測定出来るようにしたタイヤのダイナミック
バランス測定方法を提供することを目的とするものであ
る。
This invention was devised by focusing on such conventional problems, and in particular, in order to put an industrial vertical tire dynamic balancer into practical use, the work axis is perpendicular to the ground,
In addition, by using the cantilevered vertical balancer's main shaft support as a compression/tension type load detector and calibrating the unbalance amount using weights, various parameters required for calculation are unnecessary and accurate guidance can be achieved. It is an object of the present invention to provide a method for measuring the dynamic balance of a tire that enables the measurement of the two-plane imbalance.

〔課題を解決するための手段〕[Means to solve the problem]

この発明は上記目的を達成するため、ワーク軸を複数の
圧縮引張型荷重検出器により支持する圧縮引張型荷重検
出器は、変位量が少な(前述の振り力の影響が小さくな
るため、上記目的に合致し、次に、前記ワーク軸を介し
てワークを回転させると共に、各々の圧縮引張型荷重検
出器の出力一次成分と位相とを求めて制御装置に風袋と
して記憶させ、次に前記ワークの一方の面にウェイトを
付してワークを回転し、前記各々の圧縮引張型荷重検出
器の出力一次成分と位相とを求めて制御装置に記憶させ
、更に、ワークの他方の面にウェイトを付してワークを
回転し、前記各々の圧縮引張型、荷重検出器の出力一次
成分と位相とを求めて制御装置に記憶させ、上記求めた
夫々の記憶値から前記風袋を差し引きワークの上面及び
下面の不釣合量がそれぞれの圧縮引張型荷重検出器に及
ぼす影響を求め、しかる後、この影響度から逆にワーク
の不釣合量を求めることを要旨とするものである。
In order to achieve the above object, the present invention provides a compression/tension type load detector in which a work shaft is supported by a plurality of compression/tension type load detectors. Then, the workpiece is rotated via the workpiece axis, and the output primary component and phase of each compression-tension type load detector are determined and stored as a tare in the control device. The workpiece is rotated with a weight attached to one side, the output primary component and phase of each compression-tension type load detector are determined and stored in the control device, and a weight is attached to the other side of the workpiece. The workpiece is rotated, and the output primary components and phases of each compression/tension type and load detector are determined and stored in the control device, and the tare is subtracted from each of the stored values determined above, and the upper and lower surfaces of the workpiece are The purpose of this method is to determine the influence of the amount of unbalance on each compression-tension type load detector, and then to conversely determine the amount of unbalance of the workpiece from this degree of influence.

〔発明の作用〕[Action of the invention]

この発明は、上記のように構成され・、ワーク軸に支持
されたワークを回転させて、各々の圧縮引張型荷重検出
器の出力一次成分と位相とを求めた値と、ワークの一方
の面にウェイトを付してワークを回転し、前記各々の圧
縮引張型荷重検出器の出力一次成分と位相とを求めて値
と、更に、ワークの他方の面にウェイトを付してワーク
を回転し、前記各々の圧縮引張型荷重検出器の出力一次
成分と位相とを求めた値とからワークの上面及び下面の
不釣合量がそれぞれの圧縮引張型荷重検出器に及ぼす影
響を求めて、影響度から逆にワークの不釣合量を求める
ことにより、精度良くグイナミソクバランス(二面不釣
合)を測定出来るようにしたことを特徴とするものであ
る。
The present invention is configured as described above, and rotates the workpiece supported on the workpiece shaft, and calculates the output primary component and phase of each compression-tension type load detector, and the output of one side of the workpiece. A weight is attached to the other side of the workpiece and the workpiece is rotated, and the output primary component and phase of each compression-tension type load detector are determined and the values are obtained.Furthermore, a weight is attached to the other side of the workpiece and the workpiece is rotated. , determine the influence of the amount of unbalance on the upper and lower surfaces of the workpiece on each compression-tension load detector from the values obtained from the output primary component and phase of each of the compression-tension load detectors, and calculate the influence from the degree of influence. On the other hand, by determining the amount of unbalance of the workpiece, it is possible to measure the balance (two-plane unbalance) with high accuracy.

〔タイヤのダイナミックバランス測定原理〕(1)0反
転法による偏心補正の測定原理。
[Tire dynamic balance measurement principle] (1) Measurement principle of eccentricity correction using the zero inversion method.

ワーク軸にタイヤを取付けて08と180゜回して、2
回の計測を行うと、タイヤのアンバランス分がキャンセ
ルされ、リムの偏心量が測定出来る。
Attach the tire to the work shaft and turn it 08 and 180 degrees,
By measuring the number of times, the unbalance of the tire is canceled and the amount of eccentricity of the rim can be measured.

この測定計算方法としては、3606/nずつn回タイ
ヤをずらしながら計測する。
This measurement calculation method involves measuring while shifting the tire n times by 3606/n.

Lun:上側のロードセルの出力の一次成分の位相と大
きさ。
Lun: Phase and magnitude of the primary component of the output of the upper load cell.

L、:下側のロードセルの出力の一次成分の位相と大き
さ。
L: Phase and magnitude of the primary component of the output of the lower load cell.

上面補正量LH11= (Lu++Luz+Ln ) 
/n下面補正量LHL= (LLI+Ltz+L、1)
/n以後、上側ロードセル出力の一次成分の位相と大き
さL u’   L 811 = L u +下側ロー
ドセル出力の一次成分の位相と大きさLL    LH
L=LL。
Top surface correction amount LH11= (Lu++Luz+Ln)
/n Lower surface correction amount LHL= (LLI+Ltz+L, 1)
After /n, the phase and magnitude of the primary component of the upper load cell output L u' L 811 = L u + the phase and magnitude of the primary component of the lower load cell output LL LH
L=LL.

とする。以上の補正値は、タイヤ以外のバランサーその
もののアンバランス量や、タイヤとリムの嵌合、リムの
偏心量を補正する量。
shall be. The above correction values are amounts that correct for the amount of imbalance in the balancer itself other than the tires, the fit between the tire and rim, and the amount of eccentricity of the rim.

(2)2面分離。(2) Two-sided separation.

ワーク軸を支持する複数の圧縮引張型荷重検出器からの
出力される検出値からタイヤの上面アンバランスと下面
アンバランスとを求めることを面分離と言う。
Determining the upper surface unbalance and lower surface unbalance of the tire from the detected values output from a plurality of compression/tension type load detectors that support the work shaft is called surface separation.

第1図及び第2図は、タイヤのグイナミソクバランー測
定装置(二面不釣合試験機)の斜視図と平面図とを示し
、ワーク軸1が地面に対して垂直で、かつ片持ちである
二面不釣合試験機であって、前記ワーク軸1は複数の圧
縮引張型荷重検出器2a、2b、3a、3b (ロード
セル)により支持され、ワーク軸1に取付けられるタイ
ヤXは、駆動モータ4により回転駆動される。駆動モー
タ4と、ワーク軸1とは、プーリ5a、5b及びベルト
6を介して接続されている。
Figures 1 and 2 show a perspective view and a plan view of a tire tire measuring device (two-sided unbalance tester), in which the work shaft 1 is perpendicular to the ground and cantilevered. In this two-sided unbalance testing machine, the work shaft 1 is supported by a plurality of compression/tension type load detectors 2a, 2b, 3a, 3b (load cells), and the tires X attached to the work shaft 1 are driven by a drive motor 4. Rotationally driven. The drive motor 4 and the work shaft 1 are connected via pulleys 5a, 5b and a belt 6.

複数の圧縮引張型荷重検出器2a、2b、3a3bは、
フレーム7に固定され、8はロータリージヨイント、9
はベアリングケース、WはタイヤXの上下面に取付ける
ウェイト(分銅)を示している。
The plurality of compression/tension type load detectors 2a, 2b, 3a3b are
Fixed to the frame 7, 8 is a rotary joint, 9
indicates a bearing case, and W indicates a weight attached to the upper and lower surfaces of the tire X.

第1図及び第2図に示す状態の測定試験機を考えた場合
、圧縮引張型荷重検出器2a+2b+3a、3bの出力
は、タイヤXの上面と下面とのアンバランスがある影響
度(補正係数: L K +LJ 、RK 、R= )
で混ざりあっていると考えられる。即ち、 ロードセル上側=(上面アンバランスXLK)+(下面
アンバランスXLJ) ロードセル下側=(上面アンバランスXRK)+(下面
アンバランスXRj) 以下、この補正係数LK、LJ、Rx、R4を求める計
算式を説明する。
When considering the measurement test machine in the state shown in Figs. 1 and 2, the outputs of the compression/tension type load detectors 2a+2b+3a, 3b are affected by the unbalance between the upper and lower surfaces of the tire X (correction coefficient: LK +LJ, RK, R=)
It is thought that they are mixed together. That is, the upper side of the load cell = (upper surface unbalance XLK) + (lower surface unbalance XLJ) the lower side of the load cell = (upper surface unbalance XRK) + (lower surface unbalance XRj) The following is the calculation to obtain the correction coefficients LK, LJ, Rx, and R4. Explain the formula.

(a)、上面ウェイトWgの時のロードセル出力上側−
上面ウェイトOgの時のロードセル出力上側=U。
(a), Load cell output upper side when upper surface weight Wg -
Load cell output upper side when upper surface weight is Og = U.

(b)、上面ウェイトWgの時のロードセル出力下側−
上面ウェイトOgの時のロードセル出力下側” U z (C)、下面ウェイトWgの時のロードセル出力上側−
下面ウェイトOgの時のロードセル出力上側=L。
(b), load cell output lower side when upper surface weight Wg -
Lower load cell output when the top weight is Og (C), upper load cell output when the bottom weight is Wg -
Load cell output upper side when bottom weight is Og = L.

(d)、下面ウェイトWgの時のロードセル出力下側−
下面ウェイトOgの時のロードセル出力下側U+ となることを、以下に説明する。
(d), Load cell output lower side when lower surface weight Wg -
The load cell output lower side U+ when the lower surface weight is Og will be explained below.

ワーク上面の不釣合量を、Mu、ワーク下面の不釣合量
をMLとし、この時のロードセル上側出力をLu、ロー
ドセル下側出力をLLとすると、それらの関係は、 Mu=LK  −Lt+ +LJ  −LL  −−・
(t)ML =RK  −LLI +RJ  ・LL・
・121と表わされる。
Let Mu be the unbalance amount on the top surface of the workpiece, ML be the unbalance amount on the bottom surface of the workpiece, let Lu be the upper output of the load cell, and LL be the lower output of the load cell at this time, then the relationship between them is Mu=LK −Lt+ +LJ −LL − −・
(t) ML = RK -LLI +RJ ・LL・
・Represented as 121.

ここで、LK、LJ 、RJ、Lt、は、係数である。Here, LK, LJ, RJ, and Lt are coefficients.

(1)、 (21式を不釣合量のパラメータとすると、
Lu=a・MIJ+b−ML ・・・(3)LL=c−
MII+d−ML ・・・(4)ここで、 a = w/U +  、  b = W/ L + 
 、c = W/ Uz 。
(1), (If formula 21 is used as the parameter for the amount of unbalance,
Lu=a・MIJ+b−ML...(3) LL=c−
MII+d-ML...(4) Here, a = w/U +, b = W/L +
, c = W/Uz.

d=w/Lz、 同様に、 以上のような測定原理に基づき、この実施例では、以下
のような方法によりタイヤWのダイナミックバランスの
測定を行う。
d=w/Lz Similarly, based on the above measurement principle, in this embodiment, the dynamic balance of the tire W is measured by the following method.

まず、第1図及び第2図に示すように、ワタ軸1を複数
の圧縮引張型荷重検出器2a、2b、3a、3bにより
支持し、前記ワーク軸1に取付けられているワークXを
駆動モータ4により回転駆動する。これと同時に、各々
の圧縮引張型荷重検出器2a、2b、3a、、3bの出
力一次成分と位相とを求めて図示しない制御装置(マイ
クロコンピータ)に記憶させる。
First, as shown in FIGS. 1 and 2, a cotton shaft 1 is supported by a plurality of compression/tension type load detectors 2a, 2b, 3a, and 3b, and a workpiece X attached to the workpiece shaft 1 is driven. Rotation is driven by a motor 4. At the same time, the output primary component and phase of each compression/tension type load detector 2a, 2b, 3a, 3b are determined and stored in a control device (microcomputer) not shown.

次に、前記ワークXの上面にウェイトWを付してワーク
Xを回転し、前記各々の圧縮引張型荷重検出器2a、2
b、3の出力一次成分と位相とを求めて図示しない制御
装置に記憶させる。
Next, a weight W is attached to the upper surface of the workpiece X, the workpiece X is rotated, and each of the compression and tension type load detectors 2a and 2
The output primary components and phases of b and 3 are determined and stored in a control device (not shown).

更に、ワークXの他方の面にウェイトWを付してワーク
Xを回転し、前記各々の圧縮引張型荷重検出器2a、2
b、3の出力一次成分と位相とを求めて図示しない制御
装置に記憶させる。
Further, a weight W is attached to the other surface of the workpiece X, the workpiece X is rotated, and each of the compression and tension type load detectors 2a, 2
The output primary components and phases of b and 3 are determined and stored in a control device (not shown).

このようにして求めた夫々の記憶値からワークXの上面
及び下面の不釣合量がそれぞれの圧縮引張型荷重検出器
2a、2b、3a、3bに及ぼす影響を求め、しかる後
、この影響度から逆にワークXの不釣合量を求めるので
ある。
From the respective stored values obtained in this way, the influence of the amount of unbalance on the upper and lower surfaces of the workpiece X on each compression/tension type load detector 2a, 2b, 3a, 3b is determined, and then, from this degree of influence, the inverse The amount of unbalance of the workpiece X is determined.

〔発明の効果〕〔Effect of the invention〕

この発明は、上記のようにワーク軸を複数の圧縮引張型
荷重検出器により支持し、前記ワーク軸を介してワーク
を回転させると共に、各々の圧縮引張型荷重検出器の出
力一次成分と位相とを求めて制御装置に記憶させ、次に
前記ワークの一方の面にウェイトを付してワークを回転
し、前記各々の圧縮引張型荷重検出器の出力一次成分と
位相とを求めて制御装置に記憶させ、更に、ワークの他
方の面にウェイトを付してワークを回転し、前記各々の
圧縮引張型荷重検出器の出力一次成分と位相とを求めて
制御装置に記憶させ、上記求めた夫々の記憶値か′らワ
ークの上面及び下面の不釣合量がそれぞれの圧縮引張型
荷重検出器に及ぼす影響を求め、しかる後、この影響度
から逆にワークの不釣合量を求めるようにしたため、以
下のような優れた効果を奏するものである。
This invention supports a work shaft by a plurality of compression/tension type load detectors as described above, rotates the work via the work shaft, and adjusts the output primary component and phase of each compression/tension type load detector. is determined and stored in the control device, and then a weight is attached to one side of the workpiece and the workpiece is rotated, and the output primary component and phase of each compression-tension type load detector are determined and stored in the control device. Furthermore, by attaching a weight to the other surface of the workpiece and rotating the workpiece, the output primary component and phase of each compression-tension type load detector are determined and stored in the control device, and each of the above-determined components is stored. From the memorized values of It has such excellent effects.

(a)、主軸支持を堅個な構造に出来、長期間に渡って
精度の安定した測定が出来る。
(a) The main shaft support can be made into a solid structure, and measurements with stable accuracy can be performed over a long period of time.

(b)、主軸の変位が微量であるので、圧縮引張型荷重
検出器に加わる力の方向変位が無視できる量となり、該
検出器の軸相互干渉の補正が不要となり、簡易な計算で
不釣合量を求めることが出来る。
(b) Since the displacement of the main axis is minute, the directional displacement of the force applied to the compression-tension type load detector is negligible, eliminating the need to correct the mutual interference of the axes of the detector, and easily calculating the amount of unbalance. can be found.

(C)、ウェイト校正による計算測定方法であるので、
機械の組み立て具合の影響も同時に補正され、常に正し
い測定値を得ることが出来る。
(C) Since it is a calculation measurement method using weight calibration,
The influence of machine assembly is also corrected at the same time, ensuring accurate measurement values at all times.

(d)、また測定時の計算に必要な入力情報は、ウェイ
トの重量だけで良く、簡単である。
(d) Moreover, the input information necessary for calculation at the time of measurement is only the weight of the weight, which is simple.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明を実施したダイナミックバランスの
測定試験機の斜視図、第2図は第1図の平面図、第3図
(a)〜第3図(C1は、従来のハードバランサーの正
面図と側面図と平面図である。 1・・・ワーク軸、2a、2b、3・・・圧縮引張型荷
重検出器(ロードセル)、4・・・駆動モータ、W・・
・ウェイト (分銅)。
Fig. 1 is a perspective view of a dynamic balance measuring test machine embodying the present invention, Fig. 2 is a plan view of Fig. 1, and Figs. They are a front view, a side view, and a plan view. 1... Work shaft, 2a, 2b, 3... Compression/tension type load detector (load cell), 4... Drive motor, W...
・Weight (weight).

Claims (1)

【特許請求の範囲】[Claims] ワーク軸が地面に対して垂直で、かつ片持ちである二面
不釣合試験機を用いて、タイヤのバランスを測定する方
法において、前記ワーク軸を複数の圧縮引張型荷重検出
器により支持し、前記ワーク軸を介してワークを回転さ
せると共に、各々の圧縮引張型荷重検出器の出力一次成
分と位相とを求めて制御装置に記憶させ、次に前記ワー
クの一方の面にウェイトを付してワークを回転し、前記
各々の圧縮引張型荷重検出器の出力一次成分と位相とを
求めて制御装置に記憶させ、更に、ワークの他方の面に
ウェイトを付してワークを回転し、前記各々の圧縮引張
型荷重検出器の出力一次成分と位相とを求めて制御装置
に記憶させ、上記求めた夫々の記憶値からワークの上面
及び下面の不釣合量がそれぞれの圧縮引張型荷重検出器
に及ぼす影響を求め、しかる後、この影響度から逆にワ
ークの不釣合量を求めることを特徴とするタイヤのダイ
ナミックバランス測定方法。
In a method of measuring tire balance using a two-sided unbalance tester in which the work shaft is perpendicular to the ground and is cantilevered, the work shaft is supported by a plurality of compression/tension type load detectors; While rotating the workpiece via the workpiece axis, the output primary component and phase of each compression-tension type load detector are determined and stored in the control device, and then a weight is attached to one side of the workpiece to rotate the workpiece. is rotated, the output primary component and phase of each compression-tension type load detector are determined and stored in the control device, and further, a weight is attached to the other surface of the workpiece and the workpiece is rotated to The output primary component and phase of the compression-tension type load detector are determined and stored in the control device, and the influence of the amount of unbalance on the top and bottom surfaces of the workpiece on each compression-tension type load detector is determined from the respective stored values determined above. A method for measuring dynamic balance of a tire, characterized in that the amount of unbalance of a workpiece is determined conversely from this degree of influence.
JP63209343A 1988-08-25 1988-08-25 Measuring method for dynamic balance of tire Pending JPH0259642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63209343A JPH0259642A (en) 1988-08-25 1988-08-25 Measuring method for dynamic balance of tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63209343A JPH0259642A (en) 1988-08-25 1988-08-25 Measuring method for dynamic balance of tire

Publications (1)

Publication Number Publication Date
JPH0259642A true JPH0259642A (en) 1990-02-28

Family

ID=16571380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63209343A Pending JPH0259642A (en) 1988-08-25 1988-08-25 Measuring method for dynamic balance of tire

Country Status (1)

Country Link
JP (1) JPH0259642A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100680398B1 (en) * 2005-05-11 2007-02-08 현대자동차주식회사 Apparatus and method for detecting balance of tire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100680398B1 (en) * 2005-05-11 2007-02-08 현대자동차주식회사 Apparatus and method for detecting balance of tire

Similar Documents

Publication Publication Date Title
JP3436376B2 (en) How to balance a rotating body
JPH0665976B2 (en) Apparatus and method for calibrating a wheel balancer on two sides
EP0052809B2 (en) Apparatus for measuring tire uniformity
Fitzgerald et al. Newton's gravitational constant with uncertainty less than 100 ppm
US5309377A (en) Calibration apparatus and method for improving the accuracy of tire uniformity measurements and tire testing method using same
CN105136364A (en) Stabilization platform movement ring eccentric torque measuring method
KR20220038702A (en) Methods and drivetrain test benches for detecting imbalance and/or misalignment
JPH06281527A (en) Method and equipment for balancing rotating body
US20030230142A1 (en) Apparatus and method for testing rotational balance of crankshaft
US6575024B2 (en) Apparatus and method for testing tires and calibrating flat belt tire testing machines
JPH0259642A (en) Measuring method for dynamic balance of tire
JPH0124249B2 (en)
US2815666A (en) Device for measuring the unbalance of a revolving body
KR20230157712A (en) Machine tool rotary table unbalance compensation device and compensation method
JP2000221096A (en) Balancing machine and balancing test method
US10151660B2 (en) Balance opposition comparator
KR100324942B1 (en) Balancing machine for rotor and method therefor
JPH0359432A (en) Dynamic balance testing machine utilizing torsional excitation
US3847025A (en) Dynamic tire balancing method and apparatus
JPH04172227A (en) Method and apparatus for measuring dynamic tire balancer
JPS6157570B2 (en)
JP2000046708A (en) Material testing machine
JPH02186231A (en) Apparatus and method for calibrating wheel balancer
Allgeier et al. Jockey-weight lever machines for force and torque
JPH0552449B2 (en)