JPH0259311B2 - - Google Patents

Info

Publication number
JPH0259311B2
JPH0259311B2 JP56001239A JP123981A JPH0259311B2 JP H0259311 B2 JPH0259311 B2 JP H0259311B2 JP 56001239 A JP56001239 A JP 56001239A JP 123981 A JP123981 A JP 123981A JP H0259311 B2 JPH0259311 B2 JP H0259311B2
Authority
JP
Japan
Prior art keywords
current
compressor
electric compressor
air conditioner
abnormality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56001239A
Other languages
Japanese (ja)
Other versions
JPS57116188A (en
Inventor
Atsushi Ikio
Yasuo Minoshima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56001239A priority Critical patent/JPS57116188A/en
Publication of JPS57116188A publication Critical patent/JPS57116188A/en
Publication of JPH0259311B2 publication Critical patent/JPH0259311B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)
  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】 本発明は、圧縮機を有する空気調和装置におい
て、該圧縮機の保護装置を備えた空気調和装置
(以下空調装置という)に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air conditioner including a compressor (hereinafter referred to as an air conditioner) including a protection device for the compressor.

従来の空調装置における電動往復動形圧縮機の
保護装置について説明する。一般に全密閉型およ
び半密閉型の圧縮機においては、内部の冷媒によ
つてモータコイルを冷却しており、該冷媒が漏洩
した場合、モータコイルの冷却が悪くなり、漏洩
の程度よつてはモータコイルの焼損を惹起する。
このため、圧縮機内部に取付けられているインナ
ーサーモスタツトにてモータコイル温度を検出
し、異常時にはサーモスタツトが開路し、該圧縮
機を保護する。また、圧縮機に冷媒がガス冷媒で
はなく液冷媒として戻つてきた場合には、液圧縮
となるため該圧縮機の吐出弁が割れるという現象
が起こる。この時、冷凍サイクルの圧縮機へ戻る
低圧配管において圧力が低くなるため、該低圧配
管部に低圧圧力スイツチを設け、低圧側圧力が異
状に低くなれば低圧圧力スイツチが開路すること
により、圧縮機の保護を行なう。また、圧縮機の
過電流防止のためにロツクリレーを設け、該ロツ
クリレーによつて過電流が流れた際に回路を開路
して過電流からの保護を行なつている。一方、半
密閉型圧縮機の場合には、圧縮機の潤滑のため、
油圧ポンプが該圧縮機内部に取付けられており、
該油圧ポンプが故障した際には潤滑が悪くなり、
シリンダの焼き付きおよびモータコイルの焼損を
惹起するため、この保護装置として油圧補償スイ
ツチが設けられている。これらの保護装置の少な
くとも一つが作動した場合には、圧縮機は停止す
る。この時、保護装置の接点が復帰しても圧縮機
の停止状態を保持させるために、自己保持回路を
設けている。これらの全密閉型圧縮機および半密
閉型圧縮機の保護装置を第1図および第2図に示
す回路図によつて設明する。第1図、第2図にお
いて、電源スイツチ10が投入されると補助継電
器3は補助継電器4のb接点4′およびロツクリ
レーのb接点5、低圧圧力スイツチのb接点6、
圧縮機インナーサーモスタツトのb接点7、油圧
補償スイツチのb接点8が閉路しているため励磁
され、該補助継電器3のa接点3′,3″を閉路す
る。ここで、補助継電器3および4の作動に時間
差を設けるために、タイムリレー9が設けられて
おり、補助継電器3が励磁された後、所定時間経
過し補助継電器4が励磁され、圧縮機1が動作を
始める。次に、前記作動中に保護装置の一つであ
るロツクリレーが作動したとすると、b接点5が
開路し、この時補助継電器4のb接点4′は開い
ており、補助継電器3のa接点3′は閉路となつ
ているため、補助継電器3のみが励磁を解かれる
こととなる。このため、そのa接点3″が開路す
ることにより電磁接触器2の励磁が解け、その接
点が開き圧縮機1は停止する。そして、一定時間
後にロツクリレーが復帰しb接点5が閉路しても
補助継電器3のa接点3′が開いているため、電
磁接触器2は励磁されず、圧縮機1は停止の状態
を保持する。第1図、第2図の異常検出器すなわ
ちロツクリレー、低圧圧力スイツチ、圧縮機イン
ナーサーモスタツト、油圧補償スイツチのいずれ
が作動しても上記の動作が起り、圧縮器1は停止
状態を保持することとなる。このような回路にお
いて、圧縮機1の自己保持回路として補助継電器
3,4および圧縮機1の異常検出器であるロツク
リレー、低圧圧力スイツチ、圧縮機インナーサー
モスタツト、油圧補償スイツチなどの各種機器が
必要であるため、部品点数が多く、その設置場所
が問題となるほか、各検出器の異常検出時期につ
いては、ある程度異常が進行した状況でなけれ
ば、保護装置が働かず、例えば前記ロツクリレー
はその定格電流の125%にて作動する構成となつ
ており、このことによつて各機器に悪影響を及ぼ
す恐れがあるという欠点があつた。
A protection device for an electric reciprocating compressor in a conventional air conditioner will be described. Generally, in fully hermetic and semi-hermetic compressors, the motor coil is cooled by internal refrigerant, and if this refrigerant leaks, cooling of the motor coil will deteriorate, and depending on the degree of leakage, the motor coil may Causes coil burnout.
For this reason, the motor coil temperature is detected by an inner thermostat installed inside the compressor, and in the event of an abnormality, the thermostat opens to protect the compressor. Furthermore, if the refrigerant returns to the compressor as a liquid refrigerant instead of a gas refrigerant, a phenomenon occurs in which the discharge valve of the compressor breaks due to liquid compression. At this time, the pressure in the low-pressure piping returning to the compressor of the refrigeration cycle becomes low, so a low-pressure pressure switch is installed in the low-pressure piping section, and if the low-pressure side pressure becomes abnormally low, the low-pressure pressure switch opens, and the compressor protection. In addition, a lock relay is provided to prevent overcurrent in the compressor, and when an overcurrent flows, the lock relay opens the circuit to protect the compressor from overcurrent. On the other hand, in the case of a semi-hermetic compressor, in order to lubricate the compressor,
A hydraulic pump is installed inside the compressor,
When the hydraulic pump breaks down, lubrication deteriorates,
To prevent cylinder seizure and motor coil burnout, a hydraulic compensation switch is provided as a protection device. If at least one of these protection devices is activated, the compressor will shut down. At this time, a self-holding circuit is provided to maintain the stopped state of the compressor even if the contact of the protection device is restored. Protective devices for these fully hermetic compressors and semi-hermetic compressors are illustrated by circuit diagrams shown in FIGS. 1 and 2. 1 and 2, when the power switch 10 is turned on, the auxiliary relay 3 connects the auxiliary relay 4's b contact 4', the lock relay's b contact 5, the low pressure switch's b contact 6,
Since the B contact 7 of the compressor inner thermostat and the B contact 8 of the hydraulic compensation switch are closed, they are energized, which closes the A contacts 3' and 3'' of the auxiliary relay 3. Here, the auxiliary relays 3 and 4 A time relay 9 is provided in order to set a time difference in the operation of the auxiliary relay 9. After the auxiliary relay 3 is energized, the auxiliary relay 4 is energized after a predetermined period of time has elapsed, and the compressor 1 starts operating. If the lock relay, which is one of the protection devices, is activated during operation, the B contact 5 is opened, the B contact 4' of the auxiliary relay 4 is open, and the A contact 3' of the auxiliary relay 3 is closed. Therefore, only the auxiliary relay 3 is de-energized. Therefore, the a-contact 3'' is opened, and the electromagnetic contactor 2 is de-energized, and the contact opens and the compressor 1 stops. . Even if the lock relay returns after a certain period of time and the B contact 5 closes, the A contact 3' of the auxiliary relay 3 remains open, so the electromagnetic contactor 2 is not energized and the compressor 1 remains stopped. . Even if any of the abnormality detectors shown in Figs. 1 and 2, that is, the lock relay, low pressure switch, compressor inner thermostat, or oil pressure compensation switch, is activated, the above operation will occur and the compressor 1 will remain in a stopped state. becomes. In such a circuit, various devices such as auxiliary relays 3 and 4 as a self-holding circuit for the compressor 1, a lock relay as an abnormality detector for the compressor 1, a low pressure switch, a compressor inner thermostat, and a hydraulic compensation switch are required. Therefore, the number of parts is large, and the installation location is a problem.In addition, the protection device will not work unless the abnormality has progressed to a certain degree in terms of when each detector detects an abnormality.For example, the lock relay mentioned above It was configured to operate at 125% of the current, which had the drawback of potentially having a negative effect on various devices.

本発明の目的とするところは、圧縮機の電流を
検出し、該検出結果によつて圧縮機の異常を迅
速、かつ、確実に行なうことにより、該圧縮機へ
の悪影響を最小限に抑えることにある。
An object of the present invention is to detect the current of the compressor and promptly and reliably detect an abnormality in the compressor based on the detection result, thereby minimizing the adverse effects on the compressor. It is in.

本発明は、電動圧縮機の作動時における電流を
検出する電流検出手段と、電動圧縮機の作動時で
あつて前記電流検出手段によつて電流検出を行な
う時の外気温度を制御入力とし、該外気温度によ
つて電動圧縮機の正常運転電流範囲を設定し、前
記電流検出手段の検出結果が前記正常運転電流範
囲にあるか否かを判定し、前記検出結果が正常運
転電流範囲にない場合に電動圧縮機の停止指令を
出力する演算手段と、該演算手段からの停止指令
によつて前記電動圧縮機を停止させる回路開閉手
段とから構成したことを特徴とするものである。
The present invention includes a current detecting means for detecting a current when an electric compressor is operating, and an outside temperature when the electric compressor is operating and the current is detected by the current detecting means as a control input. A normal operating current range of the electric compressor is set based on outside temperature, and it is determined whether the detection result of the current detection means is within the normal operating current range, and if the detection result is not within the normal operating current range. The compressor is characterized by comprising: a calculation means for outputting a stop command for the electric compressor; and a circuit opening/closing means for stopping the electric compressor in response to the stop command from the calculation means.

次に本発明を第3図ないし第5図により説明す
る。第3図は縦軸に圧縮機電流、横軸に客室温度
のパラメータを示したグラフ、第4図は本発明に
よる空調装置の一実施例を示す回路図、第5図は
第4図中の演算装置の詳細を示した回路図であ
る。ところで、ある一定の客室温度に対して外気
温度が変化すると、圧縮機電流はそれぞれに比例
して変化する。なお、以下に述べる圧縮機電流に
おいて起動電流は除外するものとする。空調装置
の通常考えられる使用最低温度および使用最高温
度の範囲内において、圧縮機電流は一定の範囲内
で推移することが知られている。また、通常運転
時において、異常が発生した場合には、圧縮器電
流が変化することも知られている。したがつて、
空調装置の通常運転時においては、客室温度の如
何にかかわらず圧縮機電流はある一定範囲内の値
すなわち第3図のハツチングによつて示す範囲内
の値となるため、外気温度および圧縮機電流を検
出し、該圧縮機電流が前記第3図に示すハツチン
グ部分の範囲内にあるか否かを判定することによ
り、空調装置において異常が発生しているか否か
が確認できる。ところで、前記異常発生時にきわ
めて短い時間において圧縮機電流を検出し、その
値が時間毎に高くなつている場合には過電流であ
る等、該異常の詳細まで確認することもできる。
Next, the present invention will be explained with reference to FIGS. 3 to 5. Fig. 3 is a graph showing compressor current on the vertical axis and cabin temperature parameters on the horizontal axis, Fig. 4 is a circuit diagram showing an embodiment of the air conditioner according to the present invention, and Fig. 5 is a graph showing the parameters of the compressor current on the vertical axis and cabin temperature on the horizontal axis. FIG. 2 is a circuit diagram showing details of the arithmetic device. By the way, when the outside air temperature changes with respect to a certain cabin temperature, the compressor current changes in proportion to each change. Note that the starting current is excluded from the compressor current described below. It is known that the compressor current changes within a certain range within the range of the lowest operating temperature and the highest operating temperature that are normally considered for an air conditioner. It is also known that the compressor current changes when an abnormality occurs during normal operation. Therefore,
During normal operation of the air conditioner, the compressor current will be within a certain range regardless of the cabin temperature, that is, the value within the range shown by the hatching in Figure 3. By detecting the compressor current and determining whether or not the compressor current is within the range of the hatched portion shown in FIG. 3, it can be confirmed whether or not an abnormality has occurred in the air conditioner. By the way, it is also possible to check the details of the abnormality, such as by detecting the compressor current in a very short period of time when the abnormality occurs, and if the value increases with time, it is an overcurrent.

なお、1個の圧縮機を備えた空調装置において
は、前記のようにして異常の有無を確認するが、
圧縮機が複数の場合には、各圧縮機は同一の外気
温度および客室温度条件になつていると考えられ
るので、検出した各圧縮機電流はそれぞれほぼ同
一の値を示すと考えられる。したがつて、各圧縮
機の値をそれぞれ比較し、いずれかの圧縮機の値
が低くなつている場合には該圧縮機において冷媒
もれ等の異常が発生していることが確認できる。
このように空調装置の異常を適確にまた即座に確
認できるとともに、前記のごとくその異常の詳細
を知ることも可能である。このような構成におい
て従来の保護装置と比較すると、従来の構成にお
いて例えばロツクリレーはその定確電流の125%
で作動し、過負荷の状態(外気温40℃、客室温33
℃、65%RH)における電流値はロツクリレー定
格電流の80%であり、外気温度もしくは客室温度
が過負荷条件よりも低いとその余裕は大きくなつ
てくる。したがつて、該ロツクリレーが作動する
場合には非常に過大な電流が流れることになるた
め、他機器に与える影響は大きい。また、前記過
大電流になるまで異常が確認できない。これに対
し本発明による構成においては、圧縮機電流の変
化によつて異常を検出するため、前記過大電流等
による悪影響等がないとともに、即座に異常を確
認できるものである。
In addition, in an air conditioner equipped with one compressor, the presence or absence of an abnormality is checked as described above.
In the case of a plurality of compressors, it is considered that each compressor is under the same outside air temperature and cabin temperature conditions, and therefore, each detected compressor current is considered to show approximately the same value. Therefore, the values of each compressor are compared, and if the value of any compressor is low, it can be confirmed that an abnormality such as a refrigerant leak has occurred in that compressor.
In this way, it is possible to accurately and immediately confirm an abnormality in the air conditioner, and as described above, it is also possible to know the details of the abnormality. In comparison with conventional protection devices in such a configuration, for example, a lock relay in a conventional configuration can draw 125% of its defined current.
It operates under overload conditions (outside temperature 40℃, guest room temperature 33℃).
℃, 65% RH) is 80% of the lock relay's rated current, and the margin increases if the outside temperature or cabin temperature is lower than the overload condition. Therefore, when the lock relay operates, a very large amount of current flows, which has a large effect on other equipment. Further, an abnormality cannot be confirmed until the excessive current occurs. In contrast, in the configuration according to the present invention, since an abnormality is detected based on a change in the compressor current, there is no adverse effect caused by the excessive current, etc., and the abnormality can be immediately confirmed.

次に、第4図および第5図によつて本発明の一
実施例を説明する。図において、本一実施例は2
個の圧縮機11,12を有する空調装置であり、
該圧縮機11,12の圧縮機電流を検出する電流
検出装置13,14と演算装置15、電磁接触器
16,17、前記演算装置1からの信号により作
動する補助継電器18,19とにより構成されて
いる。このような構成において、前記電流検出装
置13,14によつて検出された電流値(ここで
はi1,i2とする)は演算装置15に入力される。
一方、演算装置15は前記電流検出装置13によ
つて圧縮機11,12の電流検出時に対応した時
点の外気温度を制御入力として、第3図中のハツ
チング部分すなわち正常運転時における電流範囲
を求めて設定値とする。そして、この演算装置に
より前記電流置i1、i2が前記電流範囲内にあるか
否かを判定する。前記電流値i1、i2が前記正常運
転電流範囲外(例えば第3図中A点)にあれば、
圧縮機11,12の一方または両方に異常がある
とみなして回路開閉手段である補助接点18,1
9の異常のあるものを開路する停止指令を出力す
る。該停止指令によつて補助接点18,19の一
方または両方が開路し、圧縮機11,12の一方
または両方を停止させる。
Next, one embodiment of the present invention will be described with reference to FIGS. 4 and 5. In the figure, this embodiment is 2
It is an air conditioner having two compressors 11 and 12,
It is composed of current detection devices 13 and 14 that detect compressor currents of the compressors 11 and 12, a calculation device 15, electromagnetic contactors 16 and 17, and auxiliary relays 18 and 19 that are activated by signals from the calculation device 1. ing. In such a configuration, the current values (herein referred to as i 1 and i 2 ) detected by the current detection devices 13 and 14 are input to the arithmetic device 15 .
On the other hand, the arithmetic unit 15 uses the outside air temperature at the time corresponding to the current detection of the compressors 11 and 12 by the current detection device 13 as a control input, and calculates the hatched part in FIG. 3, that is, the current range during normal operation. set value. This arithmetic device then determines whether the current positions i 1 and i 2 are within the current range. If the current values i 1 and i 2 are outside the normal operating current range (for example, point A in FIG. 3),
It is assumed that there is an abnormality in one or both of the compressors 11, 12, and the auxiliary contacts 18, 1, which are circuit opening/closing means, are activated.
Outputs a stop command to open the abnormality in item 9. The stop command causes one or both of the auxiliary contacts 18 and 19 to open, thereby stopping one or both of the compressors 11 and 12.

次に検出された電流値i1、i2が第3図中B点の
ようにハツチング内にある場合においては、i1
よびi2の値を比較し、その差が所定の電流値幅以
上であれば、冷媒洩れ等の異常が進行しつつある
と考えられるので、異常のある方の圧縮機11ま
たは12を停止させる。また、i1とi2の値に差が
なければ、所定の短い時間(例えば0.1秒)をお
いて、i1、i2を検出して、それぞれの所定時間経
過前後の値を比較し該値が極度に増加しているな
らば過電流と考えられるため、前記と同様に圧縮
機11,12を停止させる。このようにして、各
異常発生時に該異常を適確かつ即座に検出し圧縮
機を停止させることができるため、圧縮機等を保
護することができる。
Next, when the detected current values i 1 and i 2 are within the hatching, as in point B in Figure 3, the values of i 1 and i 2 are compared, and if the difference is greater than or equal to the predetermined current value width, If so, it is considered that an abnormality such as a refrigerant leak is progressing, so the compressor 11 or 12 with the abnormality is stopped. Also, if there is no difference between the values of i 1 and i 2 , detect i 1 and i 2 after a short predetermined time (for example, 0.1 seconds), compare the values before and after the elapse of the predetermined time, and find the corresponding value. If the value increases extremely, it is considered that there is an overcurrent, and the compressors 11 and 12 are stopped in the same manner as described above. In this way, when each abnormality occurs, the abnormality can be detected appropriately and immediately and the compressor can be stopped, so that the compressor and the like can be protected.

次に第5図によつて前記演算装置15の一例を
説明する。図において、電流検出装置13,14
によつて検出された信号はオペアンプ21により
増幅され入出力回路22に入力される。該入出力
回路22で前記検出信号はA/D変換によりアナ
ログ信号からデジタル信号に変換された後、中央
処理装置25に入力される。該中央処理装置25
においては、前記検出信号を演算し、圧縮機1
1,12に異常がおきていないかを判定する。2
3および24は制御用プログラムを記憶している
メモリ素子である。前記演算結果は出力電気信号
として入出力回路22を経て補助継電器18,1
9を作動させ、圧縮機11,12に異常の起きて
いる場合には圧縮機11,12のうち異常の起き
ているものを停止させ、その状態を保持すること
により圧縮機11,12および他の機器の保護お
よび保全を行なうことができる。
Next, an example of the arithmetic unit 15 will be explained with reference to FIG. In the figure, current detection devices 13, 14
The signal detected by is amplified by an operational amplifier 21 and input to an input/output circuit 22. In the input/output circuit 22, the detection signal is converted from an analog signal to a digital signal by A/D conversion, and then input to the central processing unit 25. The central processing unit 25
In the step, the detection signal is calculated and the compressor 1 is
It is determined whether an abnormality has occurred in 1 or 12. 2
3 and 24 are memory elements that store a control program. The calculation result is sent as an output electric signal to the auxiliary relays 18 and 1 via the input/output circuit 22.
9, and if there is an abnormality in the compressors 11, 12, the compressor 11, 12 with the abnormality is stopped, and this state is maintained. protection and maintenance of equipment.

以上説明したように本発明によれば、圧縮機の
動作時の電流を検出し、該運転時の外気温度によ
つて設定値を求め、前記電流検出結果の判定を行
なうことにより、迅速で確実な異常判定が行な
え、電動機への悪影響を最小限に抑えることがで
きる。
As explained above, according to the present invention, the current during operation of the compressor is detected, the set value is determined based on the outside temperature during the operation, and the current detection result is judged, thereby quickly and reliably. This allows accurate abnormality determination and minimizes the negative impact on the motor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は空調装置における従来の全密閉型圧縮
機、第2図は空調装置における従来の半密閉型圧
縮機のそれぞれ保護回路を示す回路図、第3図は
各温度条件における適正圧縮機電流を示すグラ
フ、第4図は本発明による空調装置の保護回路の
一実施例を示す回路図、第5図は演算装置の一例
を示す回路図である。 10……電源スイツチ、11,12……圧縮
機、13,14……電流検出装置、15……演算
装置、16,17……電磁接触器、18,19,
20……補助継電器、21……オペアンプ、22
……入出力回路、23,24……メモリ素子、2
5……中央処理装置。
Figure 1 is a circuit diagram showing the protection circuit of a conventional fully hermetic compressor in an air conditioner, Figure 2 is a circuit diagram showing the protection circuit of a conventional semi-hermetic compressor in an air conditioner, and Figure 3 is an appropriate compressor current under each temperature condition. FIG. 4 is a circuit diagram showing an embodiment of a protection circuit for an air conditioner according to the present invention, and FIG. 5 is a circuit diagram showing an example of an arithmetic device. 10... Power switch, 11, 12... Compressor, 13, 14... Current detection device, 15... Arithmetic device, 16, 17... Magnetic contactor, 18, 19,
20... Auxiliary relay, 21... Operational amplifier, 22
...Input/output circuit, 23, 24...Memory element, 2
5...Central processing unit.

Claims (1)

【特許請求の範囲】 1 電動圧縮機、凝縮器、蒸発器、膨張機構によ
つて構成した空気調和装置において、前記電動圧
縮機の作動時における電流を検出する電流検出手
段と、前記電動圧縮機の作動時であつて前記電流
検出手段によつて電流検出を行なう時の外気温度
を制御入力とし、該外気温度によつて電動圧縮機
の正常運転電流範囲を設定し、前記電流検出手段
の検出結果が前記正常運転電流範囲にあるか否か
を判定し、前記検出結果が正常運転電流範囲にな
い場合に電動圧縮機の停止指令を出力する演算手
段と、該演算手段からの停止指令によつて前記電
動圧縮機を停止させる回路開閉手段とから構成し
たことを特徴とする空気調和装置。 2 特許請求の範囲第1項記載の空気調和装置に
おいて、前記電流検出手段を所定の間隔をおいて
順次電流値を検出するものとし、前記演算手段を
前記電流検出手段から順次送られる検出結果から
その変化率を演算し、その結果が設定値以上であ
つた場合に電動圧縮機の停止指令を出力するもの
としたことを特徴とする空気調和装置。
[Scope of Claims] 1. An air conditioner configured with an electric compressor, a condenser, an evaporator, and an expansion mechanism, comprising: current detection means for detecting current during operation of the electric compressor; The outside air temperature at the time when the electric compressor is in operation and the current is detected by the current detecting means is used as a control input, and the normal operating current range of the electric compressor is set according to the outside air temperature, and the current detecting means detects the current. computing means for determining whether or not the result is within the normal operating current range and outputting a stop command for the electric compressor when the detected result is not within the normal operating current range; an air conditioner comprising circuit opening/closing means for stopping the electric compressor. 2. In the air conditioner according to claim 1, the current detection means sequentially detects current values at predetermined intervals, and the calculation means is configured to detect the current values sequentially sent from the current detection means. An air conditioner characterized in that the rate of change is calculated, and when the result is greater than or equal to a set value, a command to stop the electric compressor is output.
JP56001239A 1981-01-09 1981-01-09 Air conditioner Granted JPS57116188A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56001239A JPS57116188A (en) 1981-01-09 1981-01-09 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56001239A JPS57116188A (en) 1981-01-09 1981-01-09 Air conditioner

Publications (2)

Publication Number Publication Date
JPS57116188A JPS57116188A (en) 1982-07-20
JPH0259311B2 true JPH0259311B2 (en) 1990-12-12

Family

ID=11495905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56001239A Granted JPS57116188A (en) 1981-01-09 1981-01-09 Air conditioner

Country Status (1)

Country Link
JP (1) JPS57116188A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615864B2 (en) * 1985-05-28 1994-03-02 株式会社東芝 Start-up control device for refrigeration cycle equipment
JP2716780B2 (en) * 1989-03-01 1998-02-18 三菱重工業株式会社 Heat pump controller
JP2011158121A (en) * 2010-01-29 2011-08-18 Panasonic Corp Air conditioner

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5549005B2 (en) * 1976-08-31 1980-12-09

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5549005U (en) * 1978-09-25 1980-03-31

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5549005B2 (en) * 1976-08-31 1980-12-09

Also Published As

Publication number Publication date
JPS57116188A (en) 1982-07-20

Similar Documents

Publication Publication Date Title
KR101545625B1 (en) Diagnostic system
EP1706684B1 (en) Diagnosing a loss of refrigerant charge in a refrigerant system
CA1087708A (en) Protection system for electric motor
US20050126190A1 (en) Loss of refrigerant charge and expansion valve malfunction detection
CN113028674B (en) Control protection method of refrigeration system
US6964173B2 (en) Expansion device with low refrigerant charge monitoring
JPH0455671A (en) Refrigerating cycle device
JPH0259311B2 (en)
JPH09159293A (en) Compressor protection controller for air conditioner
CN113847703B (en) Refrigerant leakage detection method of dehumidifier
JPH07234044A (en) Controlling device for protecting compressor of air conditioner
US3796062A (en) Dual function low pressure cutout for refrigeration system
JPH01147265A (en) Air conditioner
JPH04353201A (en) Driving device for compressor
JPH05280810A (en) Air conditioner
JPH0359371A (en) Refrigerant leakage detecting device for refrigeration cycle
JPH03247960A (en) Degree of overheat control device for compressor
JPS59100375A (en) Protective device for abnormality of pump-down of refrigerator
CN113623908A (en) Centrifugal water chilling unit and anti-seismic operation control method thereof
JPH04257659A (en) Capacity control device for turbo-refrigerator
CN115789772A (en) Air conditioner and stop valve fault detection method thereof
JPH01308195A (en) Inverter controller and controller for air conditioner
JPH02248674A (en) Refrigerator
JPH05196284A (en) Control device for heating overload
JPH0561549B2 (en)