JPH0258598A - Treatment of coal gasified fuel into low nox content - Google Patents

Treatment of coal gasified fuel into low nox content

Info

Publication number
JPH0258598A
JPH0258598A JP20955988A JP20955988A JPH0258598A JP H0258598 A JPH0258598 A JP H0258598A JP 20955988 A JP20955988 A JP 20955988A JP 20955988 A JP20955988 A JP 20955988A JP H0258598 A JPH0258598 A JP H0258598A
Authority
JP
Japan
Prior art keywords
oxygen
coal
fuel
injected
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20955988A
Other languages
Japanese (ja)
Other versions
JP2587469B2 (en
Inventor
Toshio Abe
俊夫 阿部
Mikio Sato
幹夫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP20955988A priority Critical patent/JP2587469B2/en
Publication of JPH0258598A publication Critical patent/JPH0258598A/en
Application granted granted Critical
Publication of JP2587469B2 publication Critical patent/JP2587469B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To continuously remove ammonia in a coal gasified fuel into a low NOX content by blending and dispersing oxygen, etc., into the cooled coal gasified fuel, subjecting to cracking reaction under heating and feeding the prepared gas to a gas turbine combustor. CONSTITUTION:Oxygen, an oxygen-containing gas or a compound which is evaporated to evolve an oxygen gas is injected, blended and dispersed into a cooled coal gasified fuel which is sent from a coal gasifying furnace and is in a state just before feeding to a gas turbine combustor. Then the gas is heated to >=a reaction temperature, cracked and fed to the gas turbine combustor. The amount of oxygen injected is an amount to give a concentration ratio of O2/NH3 of oxygen and ammonia in the coal gasified fuel of 1-3.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は石炭ガス化燃料の低NOx化処理方法に関する
。更に詳述すると、本発明は石炭ガス化燃料に不純物と
して含まれるアンモニアを乾式で連続的に除去する方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for reducing NOx in coal gasified fuel. More specifically, the present invention relates to a dry continuous method for removing ammonia contained in coal gasified fuel as an impurity.

(従来の技術) 近年、高効率で環境保全性に優れた石炭利用新技術とし
て石炭ガス化複合発電が国内外において注目されている
0石炭ガス化複合発電とは石炭をガス化炉でガス化し、
これをガス精製装置により脱硫、脱塵した後、ガスター
ビン燃焼器で燃焼させることによりガスタービンで発電
すると同時にその排熱で蒸気を発生させて蒸気タービン
でも発電する方式である。
(Conventional technology) In recent years, coal gasification combined cycle power generation has been attracting attention domestically and internationally as a new coal utilization technology that is highly efficient and environmentally friendly.Coal gasification combined cycle power generation is a process in which coal is gasified in a gasifier. ,
This is desulfurized and dedusted using a gas purification device, and then combusted in a gas turbine combustor to generate electricity in the gas turbine.At the same time, the exhaust heat is used to generate steam and the steam turbine also generates electricity.

ところで、このようなガスタービン等の燃焼にあっては
、窒素酸化物NOxの生成を伴うが、窒素酸化物は光化
学スモッグなどの原因となる環境汚染物質であるため、
環境に放出できる量・濃度は厳しく規制されている。
Incidentally, combustion in such gas turbines and the like involves the production of nitrogen oxides (NOx), which are environmental pollutants that cause photochemical smog.
The amount and concentration that can be released into the environment is strictly regulated.

そこで、従来のNOx防止対策としてはNOxの発生を
抑える燃焼技術の採用、燃焼排ガス中のNOxを除去す
る脱硝技術の採用が一般的である。
Therefore, conventional NOx prevention measures generally include the adoption of combustion technology to suppress the generation of NOx, and the adoption of denitrification technology to remove NOx from combustion exhaust gas.

しかし、燃料自体が問題とされることは従来なく、また
燃料自体にNoにの原因となるアンモニアが問題となる
程合まれることもなかっな。
However, the fuel itself has never been considered a problem, and the fuel itself has never been contaminated with ammonia, which causes NO, to the extent that it becomes a problem.

ところが、石炭をガス化炉でガス化する時、石炭中の窒
素分の一部がアンモニア(NH3)に転換するため、石
炭ガス化燃料中にはNH3が不純物として含まれること
になる。NH3は水に吸収されやすいため、ガス精製を
スクラバーなどの湿式方法で行う場合にはNH3は容易
に除去される。
However, when coal is gasified in a gasifier, part of the nitrogen content in the coal is converted to ammonia (NH3), so NH3 is included as an impurity in the coal gasified fuel. Since NH3 is easily absorbed by water, NH3 is easily removed when gas purification is performed using a wet method such as a scrubber.

しかしながらその場合には石炭ガス化燃料の温度が下が
るため、石炭ガス化複合発電システムにおける熱効率が
低下する。このなめ、石炭ガス化複合発電システムにお
けるガス精製はドライ(乾式)状態で行う方法が要望さ
れる。しかし、その場合には石炭ガス化炉内で生成され
たNH3はほとんどそのままの濃度でガスタービン燃焼
器に供給されることとなる。そして、この燃料中に含ま
れるNH3は燃焼の過程で容易に窒素酸化物(NOx)
に転換する。
However, in that case, the temperature of the coal gasification fuel decreases, resulting in a decrease in thermal efficiency in the coal gasification combined cycle power generation system. For this reason, there is a demand for a method in which gas purification in a coal gasification combined cycle power generation system is performed in a dry state. However, in that case, the NH3 generated in the coal gasifier will be supplied to the gas turbine combustor at almost the same concentration. The NH3 contained in this fuel easily becomes nitrogen oxides (NOx) during the combustion process.
Convert to

石炭カス化炉内で生成されるアンモニア濃度は石炭種や
ガス化条件によって異なるが数百pplから数千I)I
)lとされ、ガスタービン燃焼器で発生ずるNOxのう
ちNH3に起因するNOxの占める割合は高い、このた
め石炭ガス化燃料中のNH8に起因する窒素酸化物を低
減させるための石炭ガス化複合発電システムにおける低
NOx化技術が必要とされている。
The concentration of ammonia produced in a coal casing furnace varies depending on the type of coal and gasification conditions, but ranges from several hundred ppl to several thousand I)I
)l, and the proportion of NOx caused by NH3 in the NOx generated in the gas turbine combustor is high. Therefore, a coal gasification complex is used to reduce nitrogen oxides caused by NH8 in coal gasified fuel. There is a need for technology to reduce NOx in power generation systems.

(発明が解決しようとする課題) しかしながら、石炭ガス化燃料は通常の気体燃料に比べ
極めて低カロリー(2000kca l以下)で燃え難
いガスである上にガスタービン燃焼器での燃焼は火炎伝
播速度を上回る速度で燃料が流れるため益々着火し難く
火炎安定性に欠ける燃焼条件にある。このため、ガスタ
ービン燃焼器において燃料中のNH3に起因する窒素酸
化物を低減させるための燃焼技術を確立することはとて
も難度が高く現在鋭意研究開発が進められているが未だ
実現するに至っていない、また、燃焼排ガス中のN。
(Problems to be Solved by the Invention) However, coal gasified fuel has an extremely low calorie (less than 2000 kcal) and is difficult to burn compared to normal gaseous fuel, and its combustion in a gas turbine combustor has a low flame propagation speed. Because the fuel flows at a faster speed, it becomes increasingly difficult to ignite, resulting in combustion conditions that lack flame stability. For this reason, it is extremely difficult to establish combustion technology to reduce nitrogen oxides caused by NH3 in the fuel in gas turbine combustors, and although research and development is currently underway, it has not yet been realized. , and N in combustion exhaust gas.

Xを除去する方法として一般的なアンモニア注入による
触媒式排煙脱硝装置は既に確立した技術であると言える
が、高価な触媒を使用すると共に約3万時間毎に触媒を
交換しなければならないことから、石炭ガス化複合発電
システムに設置することはシステムの運転の上からも経
済的にも大きな負担となる。
Catalytic exhaust gas denitrification equipment using ammonia injection, which is a common method for removing X, can be said to be an established technology, but it uses an expensive catalyst and requires replacing the catalyst approximately every 30,000 hours. Therefore, installing it in a coal gasification combined cycle power generation system poses a large burden both from the operational and economic standpoints of the system.

そこで本発明は燃料自体の改善、即ち石炭ガス化燃料の
低NOx化処理方法を提供することを目的とする。具体
的には、石炭ガス化燃料中のアンモニアを乾式で連続的
に除去する方法を提供することを目的とする。
Therefore, an object of the present invention is to improve the fuel itself, that is, to provide a method for reducing NOx in coal gasified fuel. Specifically, the purpose of the present invention is to provide a method for continuously removing ammonia from coal gasified fuel in a dry manner.

(課題を解決するための手段) かかる目的を達成するため、本発明の石炭ガス化燃料の
低NOx化処理は、石炭ガス化炉を出てガスタービン燃
焼器に供給する前の冷却された石炭ガス化燃料中に、酸
素あるいは酸素を含む気体若しくは蒸発して酸素ガスを
生ずる化合物を注入し混合拡散し、その後反応温度以上
に加熱して分解反応させてから前記ガスタービン燃焼器
に供給するするようにしている。
(Means for Solving the Problems) In order to achieve the above object, the NOx reduction treatment of coal gasified fuel of the present invention is carried out by reducing the amount of CO Oxygen, a gas containing oxygen, or a compound that evaporates to produce oxygen gas is injected into the gasified fuel, mixed and diffused, and then heated above the reaction temperature to undergo a decomposition reaction before being supplied to the gas turbine combustor. That's what I do.

また、本発明の石炭ガス化燃料の低NOx化処理は、石
炭ガス化炉を出てガスタービン燃焼器に供給する前の冷
却された石炭ガス化燃料中に、酸素あるいは酸素を含む
気体若しくは蒸発して酸素ガスを生ずる化合物と共に窒
素酸化物を注入し混合拡散し、その後反応温度以上に加
熱して分解反応させてから前記ガスタービン燃焼器に供
給するようにしている。
In addition, the NOx reduction treatment of coal gasified fuel of the present invention is performed by adding oxygen or oxygen-containing gas or evaporation to the cooled coal gasified fuel before leaving the coal gasifier and supplying it to the gas turbine combustor. Nitrogen oxides are injected together with a compound that produces oxygen gas, mixed and diffused, and then heated above the reaction temperature to undergo a decomposition reaction before being supplied to the gas turbine combustor.

本発明において、酸素を含む気体としては例えば空気が
一最的であるがこれに限定されるものではなく、燃料成
分ないし燃焼に悪影響を与えないものであれば酸素を含
む全ての気体が使用可能である。また、蒸発して酸素を
生ずる化合物としてはit化水素水などが含まれる。尚
、本明細書において特に断りがない限り、酸素と表現す
る場合には、酸素を含む気体若しくは蒸発して酸素ガス
を生ずる化合物から得られる酸素を含む。
In the present invention, the most suitable gas containing oxygen is, for example, air, but it is not limited to this, and any gas containing oxygen can be used as long as it does not adversely affect fuel components or combustion. It is. Compounds that evaporate to produce oxygen include nitrided hydrogen water and the like. In this specification, unless otherwise specified, when expressed as oxygen, it includes oxygen obtained from a gas containing oxygen or a compound that evaporates to produce oxygen gas.

また窒素酸化物としてはNo、N20.NO2などが好
適である。この窒素酸化物の注入はアンモニアの分解の
下限温度を引下げる。
Also, as nitrogen oxides, No, N20. NO2 etc. are suitable. This nitrogen oxide injection lowers the lower limit temperature for ammonia decomposition.

これら注入気体の量はアンモニアに対する酸素濃度の比
02/NH3において1〜3の範囲であるとか好ましく
、アンモニアに対する窒素酸化物−度の比はN O/ 
N Hsは0.5〜1の範囲であることが好ましい、0
2 /NHa比は1より大きいとアンモニアの分解には
効果的であるが3を越えると生成NO量が無視できない
程度に増大し、全体として低NOx化に効果がなくなる
からである。また、1未満であると多くのアンモニアが
分解されずに残ってしまう。
The amount of these injected gases is preferably in the range of 1 to 3 with a ratio of oxygen concentration to ammonia of 02/NH3, and a ratio of nitrogen oxide concentration to ammonia of 02/NH3.
N Hs is preferably in the range of 0.5 to 1, 0
This is because when the 2 /NHa ratio is larger than 1, it is effective in decomposing ammonia, but when it exceeds 3, the amount of NO produced increases to a non-negligible extent, and it is no longer effective in reducing NOx as a whole. Moreover, if it is less than 1, much ammonia will remain without being decomposed.

また、上述の濃度比の酸素注入と同時にNOxを注入す
るとNH3を分解する下限温度を低下させる効果がある
が、N Ox / N Ha比が0.5未満であるとそ
の効果は少なく、1を越えると残存Nonが無視できな
い量となる。
Furthermore, if NOx is injected at the same time as oxygen is injected at the above concentration ratio, it has the effect of lowering the lower limit temperature for decomposing NH3, but if the NOx/NHa ratio is less than 0.5, the effect is small, and 1. If this value is exceeded, the number of remaining Nons becomes a non-negligible amount.

また、本発明において、微量の酸素等を含む石炭ガス化
燃料は、好ましくはガスタービン燃焼器力燃焼室に沿っ
て微量の酸素等を注入した石炭ガス化燃料を導入し、燃
焼室の熱を利用して加熱する。また、ガスタービン燃焼
器の排気口に熱交換器を設置し、燃焼ガスの熱を利用し
て加熱することも好適な実施の一例であるし、ガスター
ビンからの排ガスと熱交換し、微量の酸素等を注入した
石炭ガス化燃料を加熱することも好ましい、更に本発明
は、微量の酸素等を注入した石炭ガス化燃料をガスター
ビン燃焼器内の再循環流内に噴射し、該循環流内で分解
反応を進めることを特徴とする。
In addition, in the present invention, the coal gasified fuel containing a trace amount of oxygen, etc. is preferably introduced along the combustion chamber of a gas turbine combustor, and the coal gasified fuel injected with a trace amount of oxygen, etc. is preferably introduced to reduce the heat in the combustion chamber. Use and heat. Another example of suitable implementation is to install a heat exchanger at the exhaust port of the gas turbine combustor and use the heat of the combustion gas for heating. It is also preferable to heat the coal gasified fuel injected with oxygen, etc. Furthermore, the present invention injects the coal gasified fuel injected with a small amount of oxygen etc. into the recirculation flow in the gas turbine combustor, and heats the recirculation flow. It is characterized by proceeding with the decomposition reaction within.

(作用) したがって、石炭ガス化燃料中のNH3は酸素および窒
素酸化物と反応して窒素(N2)と水(N20)に分解
される。
(Operation) Therefore, NH3 in the coal gasified fuel reacts with oxygen and nitrogen oxides and is decomposed into nitrogen (N2) and water (N20).

すなわち、石炭ガス化燃料中のNH3は、当該燃料中に
反応温度より比較的低温の時に注入されて均一に拡散さ
れたO2によって、HCNやCNおよびNHi (NH
2、NHなど)に分解され、その後一部は02と反応し
てNOを生成したり、N2に還元される。
That is, NH3 in the coal gasified fuel becomes HCN, CN, and NHi (NH
2, NH, etc.), and then some of it reacts with 02 to produce NO or is reduced to N2.

本発明はNH3の02による分解とその反応過程に伴う
NoのNH3との反応を利用して石炭ガス化燃料中のN
H3の分解を図る。この反応は気相で行われるため触媒
を必要としない、 また、02の共存下でのみNH3と
Noの反応がおこなわれるのであるから、窒素酸化物と
共に酸素を混合して石炭ガス化燃料中に注入すればNH
3は02および窒素酸化物によって分解される。また、
注入する酸素および窒素酸化物は石炭ガス化燃料中のN
H3濃度の最大数倍程度の微量のな−め石炭ガス化燃料
の他の組成変化に及ぼす影響は問題にならないほど僅か
である。
The present invention utilizes the decomposition of NH3 by 02 and the reaction of No with NH3 accompanying the reaction process to reduce the amount of N in coal gasified fuel.
Attempt to decompose H3. This reaction takes place in the gas phase and does not require a catalyst. Also, since the reaction between NH3 and No takes place only in the coexistence of 02, oxygen is mixed with nitrogen oxides and added to the coal gasified fuel. If injected, NH
3 is decomposed by 02 and nitrogen oxides. Also,
The oxygen and nitrogen oxides injected are the N in the coal gasified fuel.
The influence on other compositional changes of the raw coal gasified fuel, which is a trace amount of several times the H3 concentration at most, is so small that it does not pose a problem.

(実施例) 以下、本発明を実施例に基づき詳細に説明する。(Example) Hereinafter, the present invention will be explained in detail based on examples.

まず、第11図に本発明を実施する石炭ガス化複合発電
システムの概要を示す、該図において、1は石炭ガス化
炉、2は石炭ガス化燃料を脱硫・脱塵処理可能な温度ま
で冷却するガス冷却器・熱交換器、3は石炭ガス化燃料
中に含まれるチャー(すす)を捕集するサイクロン集塵
器、4は石炭ガス化燃料中の1−123やサイクロン3
で捕集しきれなかったチャー等を除去するクリーンアッ
プ(脱硫・脱!!り装置、5はガスタービン設備、6は
蒸気タービン設備、7はガスタービン燃焼器9に供給す
る前の石炭ガス化燃料に所望濃度比の酸素等を微量注入
するための酸素注入手段である。
First, Fig. 11 shows an outline of a coal gasification combined cycle power generation system implementing the present invention. In the figure, 1 is a coal gasification furnace, and 2 is a coal gasification fuel that is cooled to a temperature that allows desulfurization and dust removal processing. 3 is a cyclone dust collector that collects char (soot) contained in coal gasified fuel; 4 is a cyclone dust collector that collects 1-123 and cyclone 3 contained in coal gasified fuel;
Clean-up (desulfurization/desulfurization equipment) to remove char, etc. that could not be completely collected in This is an oxygen injection means for injecting a small amount of oxygen or the like at a desired concentration ratio into the fuel.

また、ガスタービン設(ili5は微量の酸素等を注入
した石炭ガス化燃料を反応温度以上に加熱する加熱手段
8、ガスタービン用燃焼器9及びガスタービン]0を含
む。
It also includes gas turbine equipment (ili5 is a heating means 8 for heating coal gasified fuel into which a trace amount of oxygen, etc. has been injected, to a temperature higher than the reaction temperature, a gas turbine combustor 9, and a gas turbine).

尚、石炭ガス化炉1とガス冷却器2とは一般に一体的に
構成されるなめ、ガス冷却器2を含めて石炭ガス化炉と
呼ぶことが多い、そこで、本明細書においては、石炭ガ
ス化炉を出てガスタービン燃焼器に供給する前の冷却さ
れた石炭ガス化燃料とは、第11図のシステムにおいて
、ガス冷却器2以降で加熱手段8までの石炭ガス化燃料
供給系を流れるガスを意味する。
The coal gasification furnace 1 and the gas cooler 2 are generally integrally constructed, so the gas cooler 2 is often referred to as a coal gasification furnace. Therefore, in this specification, the coal gasification furnace The cooled coal gasified fuel before leaving the oxidizing furnace and being supplied to the gas turbine combustor is the coal gasified fuel that flows through the coal gasified fuel supply system from the gas cooler 2 to the heating means 8 in the system shown in FIG. means gas.

したがって、該システムにおいて、石炭ガス化炉1を出
た後の石炭ガス化燃料は、脱硫・脱塵装置4で取扱える
程度の温度でかつ可能な限り高い温度、通常400℃程
度まで冷却されており、N[13の分解反応温度(70
0″C)よりもはるかに低い、このため酸素等を注入し
ても反応しない。
Therefore, in this system, the coal gasified fuel after leaving the coal gasifier 1 is cooled to a temperature that can be handled by the desulfurization/dedusting device 4 and as high as possible, usually around 400°C. The decomposition reaction temperature of N[13 (70
It is much lower than 0''C), so it does not react even if oxygen, etc. is injected.

石炭ガス化燃料への微量の酸素の注入は、本実施例の場
合、H2Sやチャー等が除去された後の工程において、
石炭ガス化燃利供給系の配管内に突出させたノズル等を
使用して行なわれる。しかしながら、酸素等の注入は石
炭ガス化炉のガス冷却器2とガスタービン燃焼器9との
間であれば、どこででも注入可能である0本実施例の場
合、注入酸素として空気が使用されている。空気は石炭
ガス化燃料中に噴射されると、未反応のまま拡散し、均
一な混合状態となる。その後、微量の酸素等を含む石炭
ガス化ガスは加熱手段8において加熱され反応温度に達
する。従って、石炭ガス化燃料と酸素とは可能な限り均
一に混合された状態において反応を開始する。
In the case of this example, the injection of a small amount of oxygen into coal gasified fuel is carried out in the process after H2S, char, etc. are removed.
This is carried out using a nozzle etc. that protrudes into the piping of the coal gasification fuel supply system. However, oxygen can be injected anywhere between the gas cooler 2 of the coal gasifier and the gas turbine combustor 9. In this embodiment, air is used as the injected oxygen. There is. When air is injected into coal gasified fuel, it diffuses unreacted and becomes uniformly mixed. Thereafter, the coal gasification gas containing a trace amount of oxygen is heated in the heating means 8 and reaches the reaction temperature. Therefore, the reaction starts when the coal gasified fuel and oxygen are mixed as uniformly as possible.

尚、注入する酸素として過酸化水素水等の液体を使用す
る場合、気化熱によって冷却されるため拡散がある程度
進まなければ反応温度に達しない。
Note that when a liquid such as a hydrogen peroxide solution is used as the oxygen to be injected, the reaction temperature will not be reached unless diffusion progresses to a certain extent because it is cooled by the heat of vaporization.

しかも、霧滴状で噴射されるため貫通力が強く拡散性が
良好である。
Moreover, since it is sprayed in the form of droplets, it has a strong penetrating force and good dispersion.

次いで、第10図(A)〜(D>に微量の酸素等を注入
した石炭ガス化燃料(以後、酸素注入燃料とも言う)を
反応温度以上に加熱する手段の一例を示す、まず、第1
0図(A)、(A)’に、ガスタービン燃焼器9の燃焼
室の熱を利用して酸素注入燃料を加熱する方法を示す、
この加熱手段8は、多数の反応管11を内ケーシング板
11aで連結して燃焼室を画成するライナー27を形成
する一方、このライナー27の周囲を空気案内筒12で
包囲すると共に更にその外部を外ケーシング13で囲繞
し、反応管11の先@側を燃料ノズル14に基端側を石
炭ガス化燃料供給系に夫々接続し、400°C程度の酸
素注入燃料を反応gII内に導入して燃焼室の熱を利用
して反応温度である700°C以上に加熱し、燃料ノズ
ル14から燃焼室内へ噴射するまでにNト(3を分解す
るようにしたものである。また、燃焼用空気は、外ケー
シング13内に導入された庚、空気案内筒12に沿って
ライナー27の周囲を遭遇して一部がスワラ−25へ供
給され、加温された後燃焼室26内へ旋回噴射され、一
部が内ケーシング板11aの穴から二次空気として燃焼
室26内へ供給される。
Next, FIGS. 10A to 10D show an example of a means for heating coal gasified fuel injected with a small amount of oxygen (hereinafter also referred to as oxygen-injected fuel) to a temperature higher than the reaction temperature.
0 (A) and (A)' show a method of heating oxygen-injected fuel using the heat of the combustion chamber of the gas turbine combustor 9.
This heating means 8 includes a liner 27 that connects a large number of reaction tubes 11 with an inner casing plate 11a to define a combustion chamber, and also surrounds the liner 27 with an air guide tube 12 and further extends the outside of the liner 27. is surrounded by an outer casing 13, the tip side of the reaction tube 11 is connected to the fuel nozzle 14, and the base end side is connected to the coal gasification fuel supply system, and oxygen-injected fuel at about 400°C is introduced into the reaction gII. The fuel is heated to the reaction temperature of 700°C or higher using the heat in the combustion chamber, and is decomposed by the time it is injected from the fuel nozzle 14 into the combustion chamber. The air introduced into the outer casing 13 passes around the liner 27 along the air guide cylinder 12, and a part of the air is supplied to the swirler 25, heated, and then swirled into the combustion chamber 26. A part of the air is supplied into the combustion chamber 26 as secondary air from the hole in the inner casing plate 11a.

尚、図中、符号15は集合管である。In addition, in the figure, the code|symbol 15 is a collecting pipe.

また、池の実施例として第10図(B)にガスタービン
燃焼器から吐出される燃焼ガスの熱を利用して酸素注入
燃料を反応温度以上に加熱する例を示す、この実施例に
よると、ガスタービン燃焼器9の出口に熱交換器16を
設置する一方、該熱交換器16の入口側に石炭ガス化燃
料供給系を接続すると共に出口側をガスタービン燃焼器
9の入口に流路17を以て接続し、燃料供給系から導入
される400°C程度の酸素注入燃料をガスタービン1
0へ向かう燃焼ガスと熱交換して反応温度以上に加熱し
、熱交換器16内でNH3の分解反応を進めるようにし
たものである。一方、燃焼用空気はライナー27とこれ
を囲繞するケーシング18との間で構成される空気室1
9に導入され、部がスワラ−25を通じて反応後の石炭
ガス化燃料と共に燃焼室26内へ旋回噴射され、一部が
ライナー27に穿孔された噴射孔20を通じて二次空気
として噴射される。尚、符号17は高温ガス配管である
Further, as an example of the pond, FIG. 10(B) shows an example in which the oxygen-injected fuel is heated to a temperature higher than the reaction temperature using the heat of the combustion gas discharged from the gas turbine combustor. According to this example, A heat exchanger 16 is installed at the outlet of the gas turbine combustor 9, while a coal gasification fuel supply system is connected to the inlet side of the heat exchanger 16, and a flow path 17 is connected to the outlet side of the gas turbine combustor 9. The oxygen-injected fuel at about 400°C introduced from the fuel supply system is connected to the gas turbine 1.
The NH3 decomposition reaction is carried out in the heat exchanger 16 by exchanging heat with the combustion gas heading toward 0 to heat it above the reaction temperature. On the other hand, combustion air is supplied to the air chamber 1 formed between the liner 27 and the casing 18 surrounding it.
9, a portion is swirled and injected into the combustion chamber 26 together with the reacted coal gasified fuel through a swirler 25, and a portion is injected as secondary air through an injection hole 20 bored in a liner 27. In addition, the code|symbol 17 is a high temperature gas piping.

また、第1O図(C)にガスタービン10から排出され
る高温排ガスを利用して酸素注入燃料を反応温度以上に
加熱する例を示す、複合発電システムによると、ガスタ
ービン10から排出される排ガスは更に蒸気タービン6
の熱源として利用されるため、相当の熱例えば少なくと
も酸素注入燃料のNト【3分解反応温度以上の700〜
800℃程度の熱を保有している。そこで、タービン2
0の排気系の途中に熱交換器21を股1し、該熱交換器
21に石炭ガス化燃料供給系を接続して酸素注入燃料を
排ガスとの間で熱交換させ、反応温度以上に加熱した後
ガス−タービン燃焼器9へ供給するようにしている。尚
、酸素注入燃料は反応温度例えば700℃(微量のNO
を同時に注入する場合には600℃)程度以上に加熱す
る必要があるので、蒸気タービン6の熱サイクル側と熱
交換する前の排ガスとの間で熱交換することが好ましい また、第10図(D)にガスタービン燃焼器内の燃焼ガ
スの流れによって酸素注入燃料が受ける熱をコントロー
ルして反応温度以上に加熱する方法を示す、この方法は
、ライナー27に設けた大きな穴22から燃焼室26内
へ大量の二次エア及び必要あれば三次エアを供給すると
共に、それらよりも上流側において燃焼室26内に酸素
注入燃料をライナー27に沿って旋回噴射させ、燃焼室
中央の適量な02a度領域(燃焼領域)23の周辺に渦
を巻くように形成される再循環流24に乗せるようにし
たものである。このとき、再循環流24にのった酸素注
入燃料は、空気量が極めて少ないため燃焼しないが、燃
焼領域23からの輻射熱を受けて加熱され700℃以上
に温まりNH3の分解反応だけを進める。
Further, according to a combined power generation system, in which an example of heating oxygen-injected fuel above the reaction temperature using high-temperature exhaust gas discharged from the gas turbine 10 is shown in FIG. 1O(C), the exhaust gas discharged from the gas turbine 10 furthermore steam turbine 6
Since it is used as a heat source for the oxygen-injected fuel, it is used as a heat source, for example, at least 700 ~
It has a heat of around 800℃. Therefore, turbine 2
A heat exchanger 21 is installed in the middle of the exhaust system of 0, and a coal gasification fuel supply system is connected to the heat exchanger 21 to exchange heat between the oxygen-injected fuel and the exhaust gas and heat it to a temperature higher than the reaction temperature. After that, it is supplied to the gas-turbine combustor 9. Note that the oxygen-injected fuel has a reaction temperature of, for example, 700°C (a trace amount of NO
When injecting at the same time, it is necessary to heat the gas to about 600° C. or higher, so it is preferable to exchange heat between the heat cycle side of the steam turbine 6 and the exhaust gas before heat exchange. D) shows a method of controlling the heat received by the oxygen-injected fuel by the flow of combustion gas in the gas turbine combustor and heating it above the reaction temperature. In addition to supplying a large amount of secondary air and tertiary air if necessary, oxygen-injected fuel is injected swirling along the liner 27 into the combustion chamber 26 on the upstream side thereof, and an appropriate amount of 02a degree in the center of the combustion chamber is supplied. It is arranged to be placed on a recirculation flow 24 that is formed in a swirling manner around a region (combustion region) 23. At this time, the oxygen-injected fuel carried in the recirculation flow 24 does not burn because the amount of air is extremely small, but receives radiant heat from the combustion region 23 and is heated to a temperature of 700° C. or higher to proceed only with the decomposition reaction of NH3.

尚、酸素注入燃料の加熱手段としては、上述のもめに限
定されるものではなく、要は反応温度以上のない温度領
域で微量の酸素等を混入して均一に拡散させ、それを反
応温度以上に加熱して反応温度を進めるようにすればよ
いのであるから、ヒータやその他の熱源を別途設置して
も可能である。
Note that the means for heating oxygen-injected fuel is not limited to the above-mentioned method; the key is to mix a small amount of oxygen, etc., and diffuse it uniformly in a temperature range that is not above the reaction temperature. Since the reaction temperature can be increased by heating to a certain temperature, it is also possible to separately install a heater or other heat source.

以下、NH3の分解について説明する。The decomposition of NH3 will be explained below.

(1)酸素(02)によるNH3の分解第1図は石炭ガ
ス化燃料中のNH3濃度が10001)Ill−Vにお
いてガス温度が1000℃に達した時の注入02濃度と
反応時間0.l5eC後のNH3濃度の関係を示す0図
より、02濃度が1500ρpi以上あれば石炭ガス化
燃料中のNH3濃度は1000ρpiから1 pl)l
以下に分解されることが理解できる。注入02濃度が1
500pH以下ではNH3の分解率は悪化し、特に10
00ρpl以下では急激に悪化し、例えば500ρp1
の02濃度に対してはNH3濃度は600ppnまでし
か分解されない、このときのNH3に対する02の量は
濃度比で1.5である。
(1) Decomposition of NH3 by oxygen (02) Figure 1 shows the injection 02 concentration and reaction time when the NH3 concentration in the coal gasified fuel is 10001) Ill-V when the gas temperature reaches 1000°C and the reaction time is 0. From the 0 diagram showing the relationship between NH3 concentration after l5eC, if the 02 concentration is 1500ρpi or more, the NH3 concentration in the coal gasified fuel will be 1 pl)l from 1000ρpi.
It can be understood that it is broken down into the following. Injection 02 concentration is 1
Below 500 pH, the decomposition rate of NH3 worsens, especially at 10
Below 00ρpl, the condition deteriorates rapidly, for example, 500ρpl.
With respect to the 02 concentration, the NH3 concentration is decomposed to only 600 ppn, and the concentration ratio of 02 to NH3 at this time is 1.5.

第2図は反応温度が1000’C、N Hs濃度が10
000011の石炭ガス化燃料中に1500ppnの0
2を注入した時の反応時間とNH3濃度等の関係を示し
たちのである。該図より明らかなようにN H,9は0
.01秒程度で分解される。
Figure 2 shows that the reaction temperature is 1000'C and the NHs concentration is 10
1500 ppn of 0 in coal gasified fuel of 000011
This shows the relationship between the reaction time and the NH3 concentration when 2 is injected. As is clear from the figure, N H,9 is 0
.. It decomposes in about 0.01 seconds.

また、第3図は石炭ガス化燃料中のN H9濃度が10
00DOII−Vにおいてガス温度が1000℃のとき
の0.1秒後の反応における酸素によるアンモニアの分
解と生成窒素酸化物濃度との関係を示すグラフである。
In addition, Figure 3 shows that the NH9 concentration in coal gasified fuel is 10
It is a graph showing the relationship between the decomposition of ammonia by oxygen and the concentration of produced nitrogen oxide in the reaction after 0.1 seconds when the gas temperature is 1000° C. in 00DOII-V.

これによると027NH3がモル比において1を下回る
とアンモニア分解率が90%を切り急激に低下し、4.
5を上回ると生成窒、11:酸化物濃度が許容の一応の
目安ともいえる150pρ1を越えてしまう、しかしな
がら、実際の反応においては、石炭ガス化燃料中のNH
3と02とが所定のモル比で完全に均一に混合されるわ
けではないので、局部的に過剰酸素となってNOが生成
される虞があることから、1〜3の範囲に収めることが
好ましい。
According to this, when the molar ratio of 027NH3 is less than 1, the ammonia decomposition rate drops below 90%, and 4.
If it exceeds 5, the concentration of nitrogen produced, 11: oxide exceeds 150 pρ1, which can be said to be a tentative guideline for tolerance.However, in actual reactions, NH in coal gasified fuel
Since 3 and 02 are not completely and uniformly mixed at a predetermined molar ratio, there is a risk that locally excess oxygen will occur and NO will be produced, so it is best to keep the molar ratio within the range of 1 to 3. preferable.

また、第4図はNH3に対し、モル比で1.5mの02
を注入する際の0.1秒後の反応温度とアンモニア分解
率との関係を示すグラフである。
In addition, Figure 4 shows that the molar ratio of 02 to NH3 is 1.5 m.
It is a graph showing the relationship between the reaction temperature after 0.1 seconds and the ammonia decomposition rate when injecting the ammonia.

鎖国より明らかなようにアンモニア分解率は700゛C
以下になると低下し始め、約670℃以下になると急激
に分解率を悪化させる。
As is clear from the isolation, the ammonia decomposition rate is 700°C.
When the temperature drops below about 670°C, the decomposition rate begins to decrease, and when the temperature drops below about 670°C, the decomposition rate deteriorates rapidly.

以上の結果より、ある温度では02の注入により石炭ガ
ス化燃料中のNH3が分解されることが明らかである0
反応温度を1000 ’C1石炭ガス化燃料中のNH3
fi度を100001311とするとき、注入すべき0
2濃度が15001)1111以上あれば理論的にはN
H31度は11)H以下に減少する。15000p1以
上の02の注入に対してはNH3と02の反応によるN
Oの生成がみられるようになる。しかし、Noの生成が
少々の場合にはNH9が分解されるメリットの方がはる
かに大きい。
From the above results, it is clear that NH3 in coal gasified fuel is decomposed by injection of 02 at a certain temperature.
Reaction temperature 1000'C1 NH3 in coal gasified fuel
When fi degree is 100001311, 0 to be injected
2 concentration is 15001)1111 or higher, theoretically N
H31 degrees decreases to below 11)H. For injection of 02 over 15000 p1, N due to the reaction between NH3 and 02
Production of O can be seen. However, if only a small amount of No is generated, the advantage of decomposing NH9 is much greater.

(2)窒素酸化物と02によるN)f3の分解石炭ガス
化燃料中に窒素酸化物のみを注入してもガス化燃料中の
NH3は分解されない4NOは02の共存下でのみアン
モニア分解反応を起しかつNH3を分解する下限温度を
低下させる。例えば第5図は石炭ガス化燃料中にN H
3が1000pI)18−まれる#J合、反応温度が1
000℃において窒素酸化物としてNoを1000ρρ
1注入した時の反応時間の経過に対する各種化学種の濃
度変化を示したものである0反応時間が1.0sec7
.QにおいてもNH3は初期濃度である1000ppl
のままである。
(2) Decomposition of N) f3 by nitrogen oxides and 02 Even if only nitrogen oxides are injected into the coal gasified fuel, NH3 in the gasified fuel will not be decomposed. 4NO will undergo an ammonia decomposition reaction only in the coexistence of 02. lowering the lower limit temperature at which NH3 is generated and decomposed. For example, Figure 5 shows N H in coal gasified fuel.
3 is 1000 pI) 18-, the reaction temperature is 1
1000ρρ of No as nitrogen oxide at 000℃
This shows the change in concentration of various chemical species with respect to the reaction time when 1 injection is made. 0 reaction time is 1.0 sec7
.. Even in Q, NH3 has an initial concentration of 1000 ppl.
It remains as it is.

シカシナカラ、NOを一緒4:1000Dl]1g <
7) 02を注入するとN)(3は急激に分解される。
Shikashinakara, NO together 4:1000Dl] 1g <
7) When 02 is injected, N)(3 is rapidly decomposed.

第6図は石炭ガス化燃料中のNH3濃度が1000uI
の時に、NOと02をそれぞh1000ρρ階ずつ注入
した時の反応時間0.1sec7iのNH3、No、0
2のそれぞれの濃度を反応温度に対して示したものであ
る0図より、反応温度が770 ’C以上であればNH
3はほとんど分解されることが明らかである。
Figure 6 shows that the NH3 concentration in coal gasified fuel is 1000uI.
NH3, No, 0 with a reaction time of 0.1 sec7i when NO and 02 are injected by h1000ρρ steps each.
From Figure 0, which shows the concentration of each of 2 against the reaction temperature, if the reaction temperature is 770'C or higher, NH
It is clear that 3 is almost decomposed.

例えば反応温度が770℃においてはNH3濃度は約0
.02ρρfに低減され、反応温度が1200℃におい
ても0.2ppn程度まで分解される。
For example, when the reaction temperature is 770°C, the NH3 concentration is approximately 0.
.. Even at a reaction temperature of 1200° C., it is decomposed to about 0.2 ppn.

但し、この場合は反応温度の増加に伴いN O;3度が
増加し、反応温度が1000’C以上では石炭ガス化燃
料中のN04度は100pρ1以上となる。
However, in this case, the N04 degree in the coal gasified fuel increases by 3 degrees as the reaction temperature increases, and when the reaction temperature is 1000'C or higher, the N04 degree in the coal gasified fuel becomes 100 pρ1 or more.

また、第6図において留意すべきはN H3を含む石炭
ガス化燃料中に02とNOを一緒に注入しても、ある温
度以下ではNH3の分解反応の進行が緩かならのとなる
いうことである。第6図の条件においては最も分解に適
した温度は770’Cと判断される。
Also, what should be noted in Figure 6 is that even if 02 and NO are injected together into coal gasified fuel containing NH3, the decomposition reaction of NH3 will proceed slowly below a certain temperature. It is. Under the conditions shown in FIG. 6, the most suitable temperature for decomposition is determined to be 770'C.

第7図は1000ppnのNH3を含む石炭ガス化燃料
に02のみを1500111)l注入した時と同濃度の
02と共に50001)IIのNoを注入した時の反応
時間0.1secf&のNHs 、No、02の各濃度
を反応温度に対して示したものである。第7図において
NH3の分解を最大とする反応温度は02のみの注入時
の場合は840℃であるが、Noを5001)01人し
た時は750°Cに低下している。即ち、02と共にN
oを注入する効果としてはN113の分解と有効にする
反応温度域を低減させることにある。A、反応温度が7
00 ”C程度の場合、500ppIINOが同時に添
加されていると、NHalA度は2pρlN (NO添
加のない場合、点線のNH3)となり、NH3の分解率
は99.8%であり、反応最、W温度は850°Cであ
ってもN l(3の分解効果の上からは700°Cでも
十分である。(Ijシ、700゛C付近の温度域では温
度が少しでも低下すると、NH3の分解が悪くなるので
実用上は反応温度域は700’CLIJ上とすることが
好ましい。
Figure 7 shows the reaction time of 0.1 secf & NHs when 1500111)l of 02 alone was injected into the coal gasified fuel containing 1000ppn NH3, and 50001)2 No was injected together with 02 at the same concentration. The concentration of each is shown relative to the reaction temperature. In FIG. 7, the reaction temperature at which the decomposition of NH3 is maximized is 840° C. when only 02 is injected, but it drops to 750° C. when No. 5001)01 is injected. That is, N along with 02
The effect of injecting O is to reduce the reaction temperature range in which N113 is decomposed and effective. A, reaction temperature is 7
00"C, if 500ppIINO is added at the same time, the NHalA degree is 2pρlN (NH3 shown by the dotted line when NO is added), the decomposition rate of NH3 is 99.8%, and the reaction temperature is 99.8%. Even if it is 850°C, 700°C is sufficient in terms of the decomposition effect of NH3. In practice, it is preferable that the reaction temperature range be above 700' CLIJ.

第8図は1000ppnのNH3を含む石炭ガス化燃料
中に02を1000ppl注入する時、それと同時に注
入するNo濃度と反応時間0.1sec後のN H3濃
度、No濃度の関係を示したものである0反応温度は1
000’Cである。No濃度は70011pII以上あ
ればNH3は1ρp11以下にまで分解する。しかしな
がら、注入すべきN OJ度が増加すると石炭ガス化燃
料中に残存するN04度も急激に増加する。
Figure 8 shows the relationship between the No concentration simultaneously injected when 1000 ppl of 02 is injected into coal gasified fuel containing 1000 ppn NH3, and the NH3 concentration and No concentration after a reaction time of 0.1 sec. 0 reaction temperature is 1
It is 000'C. If the No concentration is 70011pII or more, NH3 is decomposed to 1ρp11 or less. However, as the amount of NOJ to be injected increases, the amount of N04 remaining in the coal gasified fuel also increases rapidly.

2000ρpIのNoを注入すると第6図においては石
炭ガス化燃料中のNOaM度は約1000ppIlとな
る。
When 2000 ρpI of No is injected, the NOaM degree in the coal gasified fuel becomes about 1000 ppIl in FIG. 6.

また、第9図は窒素酸化物の添加によるアンモニア分解
促進効果とrt OIA度との関係を示すグラフである
。鎖国より明らかなようにN O/ N H3がモル比
において0.5を下回るとアンモニア分解率が急激に悪
化し、1.0を上回るとNo生成4度が許容される濃度
を越えてしまうことが理解できる。
Further, FIG. 9 is a graph showing the relationship between the ammonia decomposition promoting effect due to the addition of nitrogen oxides and the rt OIA degree. As is clear from Seikoku, when the molar ratio of N O / N H3 is less than 0.5, the ammonia decomposition rate deteriorates rapidly, and when it exceeds 1.0, the No production level exceeds the allowable concentration. I can understand.

斯様に、注入すべき02濃度とNO濃度を適切に選択し
、十分均一に拡散混合してから最適な反応温度まで加熱
することが生成されるNOや残存する他の組成物が大き
な影響を与−えない範囲でアンモニアを分解するに重要
である0例えばNH3の分解に最適な温度域は石炭ガス
化燃料中に含まれるN T−(3濃度に対して注入する
02a度、N。
In this way, it is important to appropriately select the 02 concentration and NO concentration to be injected, sufficiently uniformly diffuse and mix, and then heat to the optimal reaction temperature to ensure that the generated NO and other remaining components have a large influence. For example, the optimal temperature range for decomposing NH3 is the temperature range that is important for decomposing ammonia within a range that does not give 0.

濃度によって決定される。また反応温度か決定されると
、NH3の分解率とガス化燃料中に残存するN04度か
ら石炭ガス化燃料中のN H3濃度に対して注入すべき
02濃度及びN04度が決定される。
Determined by concentration. When the reaction temperature is determined, the 02 concentration and N04 degrees to be injected to the NH3 concentration in the coal gasified fuel are determined from the NH3 decomposition rate and the N04 degrees remaining in the gasified fuel.

尚、本発明によるアンモニアの分解効果を確認するため
の反応計算にあたっては、注入した。2および窒素酸化
物は石炭ガス化燃料中に均一に混合しているものとして
、反応温度は設定した初期温度において一定とした。
Incidentally, in the reaction calculation for confirming the ammonia decomposition effect according to the present invention, injection was performed. It was assumed that 2 and nitrogen oxides were uniformly mixed in the coal gasified fuel, and the reaction temperature was kept constant at the set initial temperature.

(発明の効果) 以上の説明より明らかなように、本発明は、ガス化炉を
出たN 1−13分解反応温度以下(400’C程度)
の石炭カス化燃料にitの酸素を含む気体あるいは酸素
をを含む気体と窒素酸化物を注入し、混合拡散させた後
反応温度(700’C)以上に加熱することによって均
一な濃度分布状態でNll3の分解反応を進め得るよう
にしているので、石炭ガス化燃料中のN H3が02と
!)るいはN H3の02による分解反応過程に伴うN
oと反応して、窒素(N2)と水(N20)に分解され
て除去される。
(Effects of the Invention) As is clear from the above explanation, the present invention has the advantage that the N 1-13 decomposition reaction temperature after exiting the gasifier is below (approximately 400'C)
A gas containing oxygen or a gas containing oxygen and nitrogen oxide is injected into the coal cassified fuel, mixed and diffused, and then heated to a temperature above the reaction temperature (700'C) to maintain a uniform concentration distribution. Since the decomposition reaction of Nll3 can proceed, the NH3 in the coal gasified fuel becomes 02! ) or N accompanying the decomposition reaction process of H3 with 02
It reacts with o and is decomposed into nitrogen (N2) and water (N20) and removed.

また、02と共に窒素酸化物を同時に注入することによ
り、NH3の分解反応温度が低下するためN H3の分
解がより効果的に促進される。
Furthermore, by simultaneously injecting nitrogen oxides with 02, the decomposition reaction temperature of NH3 is lowered, so that the decomposition of NH3 is promoted more effectively.

したがって、本発明によると、石炭ガス化燃料中のNH
aを乾式で除去することができ、システム全体の熱効率
め低下を招かず、しかも、ガスタービン燃焼器内で生成
されるN H3に起因するNOXかなくなるため、NO
xの発生量を著しく低減することが可能となる。加えて
、触媒式排埋説lii′i装置が不要となり、設備コス
トか下がると共にシステム運転も容易ならのとなる。ま
た、微量内気体を注入するだけなので設備の設置が容易
であり、従来の複合発電プラントをほとんど変更する必
要かない、しかも、02注入を400°Cの比較的低温
度で行なうため、ハンドリングが容易で安全性が高い。
Therefore, according to the present invention, NH in coal gasified fuel
a can be removed dryly, without causing a decrease in the thermal efficiency of the entire system, and because NOx caused by N H3 generated in the gas turbine combustor is eliminated, NOx can be removed in a dry manner.
It becomes possible to significantly reduce the amount of x generated. In addition, a catalytic dumping device is not required, which reduces equipment costs and makes the system easier to operate. In addition, since only a small amount of internal gas is injected, equipment installation is easy, and there is almost no need to change conventional combined cycle power plants.Furthermore, since 02 injection is performed at a relatively low temperature of 400°C, handling is easy. It is highly safe.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は添加する024度に対するNH3濃度、N O
濃度、02の関係を示すグラフ、第2図は反応時間に対
する各化学種の濃度変化を示すグラフ、第3図は02と
NH3の分解と生成NO4度との関係を示すグラフ、第
4図は反応温度とNf13分解率との関係を示すグラフ
、第5図はNOだけを添加した時のNH3の挙動を示す
グラフ、第6図は02とNoの添加によるNH3の分解
状もを示すグラフ、第7図は反応温度とNH3、Noの
挙動の関係を示すグラフ、第8図はNH3の分解に及ぼ
すNO添加の影響を示すグラフ、第9図はNO添加によ
るNH3分解促進効宋効果 O;fi度との関係を示す
グラフ、第10図(A)は微量の酸素等を注入した石炭
ガス化燃利のIJll 悲f、段の一例を示す概略説明
図、第10図(A)′は第10図<A)のX−X線断面
図、第10図(C)〜(D)は曲の加熱手段の例を示す
概略説明図、第11図は本発明を実施する石炭ガス化複
合発電システムの概要を示すブロック図である。 1・・・ガス化炉、2・・・ガス冷却器、4・・・クリ
ーンアップ装置、 7・・・酸素等注入手段、8・・・加熱手段、9・・・
ガスタービン燃焼器、11・・・反応管、3・・・流路
、 16゜ 1・・・熱交換器、 24・・・頁順還流。 孫 特許出頭人 財団法人 電力中央研究所 代 理 人
Figure 1 shows the NH3 concentration and N O
Graph showing the relationship between concentration and 02, Figure 2 is a graph showing changes in concentration of each chemical species with respect to reaction time, Figure 3 is a graph showing the relationship between 02 and NH3 decomposition and NO4 produced, Figure 4 is a graph showing the relationship between 02 and NH3 decomposition and NO4 degree produced. A graph showing the relationship between reaction temperature and Nf13 decomposition rate, Figure 5 is a graph showing the behavior of NH3 when only NO is added, and Figure 6 is a graph showing the decomposition state of NH3 due to the addition of 02 and No. Fig. 7 is a graph showing the relationship between the reaction temperature and the behavior of NH3 and No, Fig. 8 is a graph showing the influence of NO addition on the decomposition of NH3, and Fig. 9 is a graph showing the effect of NO addition on the promotion of NH3 decomposition. Figure 10 (A) is a graph showing the relationship with fi degree, and Figure 10 (A) is a schematic explanatory diagram showing an example of the IJll stage of coal gasification fuel injected with a small amount of oxygen. Fig. 10 is a sectional view taken along the line X-X of <A), Fig. 10 (C) to (D) are schematic explanatory diagrams showing examples of heating means for heating, and Fig. 11 is a coal gasification complex implementing the present invention. FIG. 1 is a block diagram showing an overview of a power generation system. DESCRIPTION OF SYMBOLS 1... Gasification furnace, 2... Gas cooler, 4... Clean-up device, 7... Oxygen etc. injection means, 8... Heating means, 9...
Gas turbine combustor, 11... Reaction tube, 3... Channel, 16° 1... Heat exchanger, 24... Page Sequential reflux. Sohn Patent Applicant Representative of Central Research Institute of Electric Power Industry

Claims (9)

【特許請求の範囲】[Claims] (1)石炭ガス化炉を出てガスタービン燃焼器に供給す
る前の冷却された石炭ガス化燃料中に、酸素あるいは酸
素を含む気体若しくは蒸発して酸素ガスを生ずる化合物
を注入し混合拡散し、その後反応温度以上に加熱して分
解反応させてから前記ガスタービン燃焼器に供給するこ
とを特徴とする石炭ガス化燃料低NOx化処理方法。
(1) Oxygen, a gas containing oxygen, or a compound that evaporates to produce oxygen gas is injected into the cooled coal gasified fuel before it leaves the coal gasifier and is supplied to the gas turbine combustor and is mixed and diffused. A coal gasification fuel NOx reduction treatment method characterized in that the coal gasification fuel is then heated to a reaction temperature or higher to undergo a decomposition reaction and then supplied to the gas turbine combustor.
(2)前記酸素の注入量は石炭ガス化燃焼中のアンモニ
アに対し濃度比O_2/NH_3で1〜3であることを
特徴とする請求項1記載の石炭ガス化燃料低NOx化処
理方法。
(2) The coal gasification fuel NOx reduction treatment method according to claim 1, wherein the amount of oxygen injected is a concentration ratio O_2/NH_3 of 1 to 3 with respect to ammonia during coal gasification combustion.
(3)石炭ガス化炉を出てガスタービン燃焼器に供給す
る前の冷却された石炭ガス化燃料中に、酸素あるいは酸
素を含む気体若しくは蒸発して酸素ガスを生ずる化合物
と共に窒素酸化物を注入し混合拡散し、その後反応温度
以上に加熱して分解反応させてから前記ガスタービン燃
焼器に供給することを特徴とする石炭ガス化燃料低NO
x化処理方法。
(3) Nitrogen oxides are injected into the cooled coal gasified fuel before it leaves the coal gasifier and is supplied to the gas turbine combustor, along with oxygen, a gas containing oxygen, or a compound that evaporates to produce oxygen gas. The low NO coal gasification fuel is characterized in that the coal gasification fuel is mixed and diffused, and then heated to a temperature higher than the reaction temperature to cause a decomposition reaction, and then supplied to the gas turbine combustor.
x conversion processing method.
(4)前記酸素の注入量はアンモニアに対し濃度比O_
2/NH_3で1〜3であり、かつ窒素酸化物の注入量
はアンモニアに対し濃度比NO/NH_3で0.5〜1
の範囲であることを特徴とする請求項3に記載の石炭ガ
ス化燃料低NOx化処理方法。
(4) The amount of oxygen injected is a concentration ratio of O_ to that of ammonia.
2/NH_3 is 1 to 3, and the injection amount of nitrogen oxide is 0.5 to 1 with a concentration ratio of NO/NH_3 to ammonia.
4. The coal gasification fuel NOx reduction treatment method according to claim 3, wherein the NOx reduction treatment method is within the range of .
(5)微量の酸素等を注入した石炭ガス化燃料の熱はガ
スタービン燃焼器の熱を利用することを特徴とする請求
項1ないし4のいずれかに記載の石炭ガス化燃料低NO
x化処理方法。
(5) The low NO coal gasified fuel according to any one of claims 1 to 4, characterized in that the heat of the coal gasified fuel injected with a trace amount of oxygen etc. is the heat of a gas turbine combustor.
x conversion processing method.
(6)ガスタービン燃焼器の燃焼室に沿って微量の酸素
等を注入した石炭ガス化燃料を導入し、燃焼室の熱を利
用して前記燃料を加熱することを特徴とする請求項5記
載の石炭ガス化燃料低NOx化処理方法。
(6) Coal gasified fuel injected with a small amount of oxygen or the like is introduced along the combustion chamber of the gas turbine combustor, and the fuel is heated using the heat of the combustion chamber. Coal gasification fuel NOx reduction treatment method.
(7)ガスタービン燃焼器出口に熱交換器を設置し、燃
焼ガスの熱を利用して加熱することを特徴とする請求項
5記載の石炭ガス化燃料低NOx化処理方法。
(7) The coal gasification fuel NOx reduction treatment method according to claim 5, characterized in that a heat exchanger is installed at the outlet of the gas turbine combustor, and heating is performed using the heat of the combustion gas.
(8)ガスタービンからの排ガスと熱交換し、微量の酸
素等を注入した石炭ガス化燃料を加熱することを特徴と
する請求項5記載の石炭ガス化燃料低NOx化処理方法
(8) The coal gasification fuel low NOx treatment method according to claim 5, characterized in that the coal gasification fuel into which a trace amount of oxygen or the like is injected is heated by exchanging heat with exhaust gas from a gas turbine.
(9)微量の酸素等を注入した石炭ガス化燃料をガスタ
ービン燃焼器の循環流内に噴射し、該循環流内で分解反
応を進めることを特徴とする請求項5記載の石炭ガス化
燃料低NOx化処理方法。
(9) The coal gasified fuel according to claim 5, characterized in that the coal gasified fuel injected with a trace amount of oxygen, etc. is injected into the circulating flow of a gas turbine combustor, and the decomposition reaction proceeds within the circulating flow. Low NOx treatment method.
JP20955988A 1988-08-25 1988-08-25 NOx reduction treatment method for coal gasified fuel Expired - Lifetime JP2587469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20955988A JP2587469B2 (en) 1988-08-25 1988-08-25 NOx reduction treatment method for coal gasified fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20955988A JP2587469B2 (en) 1988-08-25 1988-08-25 NOx reduction treatment method for coal gasified fuel

Publications (2)

Publication Number Publication Date
JPH0258598A true JPH0258598A (en) 1990-02-27
JP2587469B2 JP2587469B2 (en) 1997-03-05

Family

ID=16574831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20955988A Expired - Lifetime JP2587469B2 (en) 1988-08-25 1988-08-25 NOx reduction treatment method for coal gasified fuel

Country Status (1)

Country Link
JP (1) JP2587469B2 (en)

Also Published As

Publication number Publication date
JP2587469B2 (en) 1997-03-05

Similar Documents

Publication Publication Date Title
US6066303A (en) Apparatus and method for reducing NOx from exhaust gases produced by industrial processes
US7976800B1 (en) Integrated exhaust gas cooling system and method
US7005115B2 (en) Gas combustion treatment method and apparatus therefor
BRPI0620195B1 (en) METHOD FOR TREATING A GAS CURRENT RESIDUAL REGENERATOR
CN105295962A (en) Method and device for reducing emission of NOx in waste flue gas of coke oven
KR0164586B1 (en) Method and apparatus for reducing emission of n2o when burning nitrogen containing fuels in fluidized bed reactors
US20060204417A1 (en) Method for treating emissions
US5120516A (en) Process for removing nox emissions from combustion effluents
US6682709B2 (en) Method for reducing NOx from exhaust gases produced by industrial processes
CN103657404A (en) Tail gas catalysis combustion treatment system
CA2046083C (en) Apparatus and method for reducing nitrogen oxide emissions from gas turbines
US9746177B2 (en) Urea decomposition and improved SCR NOx reduction on industrial and small utility boilers
US4981660A (en) Selective hybrid NOx reduction process
CN201335380Y (en) Sulfur production combustion furnace gas mixer
CN215372480U (en) Submerged combustion type gasification device with ultralow NOx emission
JPH0258598A (en) Treatment of coal gasified fuel into low nox content
CN108452677B (en) SCR flue gas denitration method and device using ammonia water as denitration reducing agent
CN106582226A (en) Boiler denitration process taking ammonia-containing waste gas as denitration agent
CN215372479U (en) Novel submerged combustion type gasification device
JP2582139B2 (en) NOx reduction treatment method for coal gasified fuel
CN220582443U (en) Device for treating nitrogen oxides in tail gas generated by incinerating ethylene glycol MF (methyl) produced by coal
CN220981358U (en) Energy-saving and efficient nitrogen-containing organic waste gas treatment device
CN113623659A (en) Submerged combustion type gasifier system for deep denitration
CN212915135U (en) Flue gas high temperature ammonia schizolysis denitrification facility
CN211176863U (en) SCR denitration system capable of thoroughly purging after boiler shutdown