JPH0258206B2 - - Google Patents

Info

Publication number
JPH0258206B2
JPH0258206B2 JP56056068A JP5606881A JPH0258206B2 JP H0258206 B2 JPH0258206 B2 JP H0258206B2 JP 56056068 A JP56056068 A JP 56056068A JP 5606881 A JP5606881 A JP 5606881A JP H0258206 B2 JPH0258206 B2 JP H0258206B2
Authority
JP
Japan
Prior art keywords
alumina
carbonaceous
pore
activated alumina
radius
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56056068A
Other languages
Japanese (ja)
Other versions
JPS57170861A (en
Inventor
Yoichi Kageyama
Kazuhiko Konuma
Toshihiro Kawakami
Shin Kobayashi
Hideyuki Hisa
Tadashi Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP56056068A priority Critical patent/JPS57170861A/en
Publication of JPS57170861A publication Critical patent/JPS57170861A/en
Publication of JPH0258206B2 publication Critical patent/JPH0258206B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は多孔質活性アルミナ成形体の製造法。
詳しくは、優れた機械的強度および大きな比表面
積を有し、且つ比較的微細な細孔を集中的、かつ
多量に有している極めて多孔性の、特に触媒担体
または触媒として好適な活性アルミナ成形体を製
造する方法に関するものである。 活性アルミナは乾燥剤、吸着剤、触媒、触媒担
体等、各種の用途に供されている。特にアルミナ
担持触媒は各種の反応に用いられることは周知で
ある。これらの触媒あるいは担体が有することを
要求される一つの重要な品質が細孔の分布範囲お
よび量であつて、これはこれらのアルミナが用い
られる特定の反応に対して良好な結果を与えるも
のである。またこのような細孔の調節は機械的強
度や耐摩耗性などの物理的性質を損なわず達成せ
ねばならない。 このような特性をもつアルミナ成形体を製造す
るため多くの方法が知られている。そのうちの一
つの方法として、粉末のγ−アルミナ、ベーマイ
トゲル、ベーマイトまたはジプサイト(アルミナ
三水和物)、あるいはジプサイトを部分的に〓焼
して得られるχ−またはρ−アルミナなどを水お
よびその他の助剤を加えて、それぞれに適する成
形法で成形し、次いでこれを加熱、活性化して成
形活性アルミナを得る方法が知られている。また
別の方法として、アルミナゾルを製造し、これを
油中に滴下して球状品を製造する方法も知られて
いる。更に所望の細孔分布を得るために、熟成、
再水和、部分ゲル化等の各種の工程や様々な添加
物の使用が実施あるいは提案されている。 このようにして得られる多孔性アルミナ成形体
の細孔分布を測定すると通常その細孔半径が100
Å前後あるいはそれ以下の部分に大部分の細孔を
有しているが、細孔分布の調整を試みた場合は細
孔分布がブロードな成形体が得られるのが普通で
あり、限られた細孔半径を有する細孔が集中的に
存在するような成形体を得ることは困難であつ
た。 このような事情にかんがみ、本発明者等は、機
械的強度や耐摩耗性などの物理的性質を損なわ
ず、上記のような特性を有する優れた活性アルミ
ナ成形体を得るため鋭意研究を重ねた結果、本発
明に到達したものである。 即ち、本発明の目的は、調節された細孔分布と
大きな細孔容量、即ち0.75c.c./g以上好ましくは
0.8c.c./g以上の細孔容量を有し、半径37.5〜
75000Åの間に有する細孔の90%以上が半径37.5
〜200Åの細孔である多孔質アルミナ成形体の製
造法を提供することにあり、この目的は、活性ア
ルミナ粉末もしくは活性アルミナ前駆体粉末およ
び平均粒径0.5〜20μmに微粉砕された炭素質粉末
10〜70重量%を含む原料を成形して乾燥させたの
ち、酸素含有気流中で焼成し、同時に炭素質を燃
焼除去することにより達成される。 以下本発明を詳細に説明する。 本発明方法に用いるアルミナ原料としてはγ−
アルミナ、η−アルミナ等の活性アルミナ、また
は活性アルミナ前駆体、即ち焼成により活性アル
ミナとなるアルミナあるいはアルミナ水和物例え
ばベーマイト、スードベーマイト、ジプサイト等
または再水和性の遷移アルミナであるχ−アルミ
ナ、ρ−アルミナ等が挙げられる。これらのアル
ミナ原料粉末は成形前に炭素質粉末と均一に混合
することのできる原料であればよい。細孔を調節
するために特殊な助剤、添加物を用いようとする
場合、その原料および製法はかなり限定されるの
が通常であることを考えれば、本発明方法のよう
に、このような制約なしに目的とする特性を有す
るアルミナ成形体が製造できることの利点は極め
て大きい。 次に本発明における多量の細孔を賦与するため
の添加剤である平均粒径0.5〜20μmに微粉砕され
た炭素質粉末について説明する。 炭素質としては、木炭などの木材乾留物、ヤシ
殻炭などの果実殻乾留物、リグニン、石炭類、石
炭または石油系コークス、ピツチなどが使用し得
る。 これらの炭素質は予め平均粒径0.5〜20μm、好
ましくは0.5〜15μmに微粉砕することが必要であ
る。炭素質を微粉砕するには、たとえば、粗砕機
で炭素質を粗砕したのち、スクリーンミル、遠心
分級ミル、ポツトミル、振動ミル、ジエツト粉砕
機などを用いて微粉砕することができる。また、
微粉砕された炭素質粉末は、ジクザク分級機(ム
ルテイプレツクス社製)、ミクロンセパレータ−
(ホソカワミクロン社製)、デイスパージヨンセパ
レーター(日本ニユーマチツク社製)などを用い
て分級することにより、所望の粒度の炭素質微粉
末を得ることができる。 次にこのようなアルミナ原料と炭素質微粉末を
用いて成形を行なう。成形物の形状は粒状、例え
ば球状、円柱状、タブレツト状とすることが多い
が、ほかに板状あるいはハニカム状として成形す
ることもできる。粒状の際の大きさは一般的には
1〜10mm程度であり、流動床触媒担体または触
媒、あるいはクロマトグラム用充填剤として使用
する場合は50μ程度以上が必要である。成形体と
してよく知られている方法は、例えば打錠法(乾
式、湿式)、押出し法、押出し−マルメ法、転動
造粒法、ブリケツテイング法などがある。用いら
れるすべての原料に対してこれらの各種の成形法
のすべてが適用しうるわけではなく、それぞれの
原料に応じた成形法が選択されるが、かといつて
個々の原料に対して、成形法が一種類に限定され
るということではなく、かなり多種多様の成形、
製造法を適用しうることは当業者間に周知であ
る。 成形にあたつてはより良い物理的諸性質を得る
ためにアルミナ原料と炭素質微粉末は可及的均一
に混合されるべきである。アルミナ原料に対する
炭素質微粉末の添加量は10乃至70重量%である。
焼成によつて消失するような添加物を使用する場
合の添加物の量は、得られる成形品の強度などの
物理的性質を損なわないようにするためにせいぜ
い上限10重量%程度とするのが通常であるのに比
し、本発明における炭素質微粉末の添加量は極め
て多量である。しかもこのように多量の添加によ
つて調節された位置に多量の細孔を賦与し、なお
かつ必要とされる物理的諸性質を損なわないとい
うのは極めて驚くべきことであり本発明の重要性
が認識される。 かくして均一に混合された原料アルミナと炭素
質微粉末は、必要ならば更に水およびその他の成
形助剤を加え、混合、混練等の工程ののち、適切
な成形機、成形法をもつて所望の形状に成形され
る。 成形の一例としてスードベーマイト(そのX線
解析がブロードなベーマイト構造を示す一水和ア
ルミナ)を原料に使用する場合を示す。このスー
ドベーマイト100部に例えば30部の炭素質微粉末
を加えミキサーで均一に混合したのちニーダーに
移し、水および助剤を加えて混練する。好ましい
助剤としては無機酸、有機酸あるいはアンモニ
ア、ヒドラジン、脂肪族アミン、芳香族アミン、
複素環式アミン等の塩基性窒素化合物、ポリビニ
ルアルコール等の有機物などが挙げられる。この
ようにして得られた混練物は次に押出成形機で所
望の大きさのダイス孔を通じて押出し成形され
る。成形物は所望により密閉容器中で熟成を行な
うこともできる。 成形のもう一つの例は原料として再水和性遷移
アルミナを用い転動造粒法で成形する方法であ
り、詳しくは例えば特開昭54−158397に示されて
いる。この遷移アルミナと炭素質微粉末および必
要に応じて結晶性セルロース等の助剤を加え均一
に混合したのち、これを転動造粒機にて水をスプ
レーしながら所望の大きさに球状成形する。得ら
れた成形品は次に室温および50〜150℃の温度に
て2段階再水和されて強固な成形品となる。 このように各種の方法で成形されたアルミナ成
形体は次に乾燥ののち焼成され、最終的に多孔質
活性アルミナ成形体となる。この焼成段階でアル
ミナは活性アルミナとなり担体あるいは触媒とし
ての性質を備える。本発明方法においては焼成段
階は炭素質を燃焼除去せしむるというもう一つの
機能を果さなければならない。 この炭素質を除去するための酸化焼成は、充分
に注意深く達成されねばならない。何故なら炭素
質は可燃性であり、しかも添加量が比較的多いの
で、燃焼熱の除去が不充分だと、目的とする温度
を制御できず、高温になるおそれが大きいからで
ある。たとえ上限温度以下であつても急激な温度
上昇は好ましいことではない。 以上のような炭素質の燃焼除去を含めての、活
性アルミナを得るための最終的な焼成温度は、
500℃程度以上である。また焼成の上限温度とし
ては、活性アルミナの形態γ−、あるいはη−形
であるなら800℃程度、θ−形であるなら1200℃
程度である。また焼成時間は特に限定されないが
通常1時間から1日程度である。 かくして、優れた機械的強度、耐摩耗性および
大きな表面積を有し、多量の細孔が調節された位
置に集中的に存在する活性アルミナ成形体が得ら
れる。 このように得られた活性アルミナのユニークな
性質からこれが触媒あるいは触媒担体更には吸着
剤等の多方面の用途に優れた性能が期待できるこ
とが理解される。 以下実施例によつて本発明の内容を更に具体的
に説明するが、本発明はその要旨を超えない限り
これら実施例に限定されるものではない。 実施例での細孔分布および量は水銀圧入式ポロ
シメーターで測定した。使用機はカルロエルバ社
製ポロシメーターシリーズ2000で最高圧2000Kg/
cm2ゲージである。従つて細孔の測定範囲は半径
37.5Åから75000Åである。 表面積は窒素吸着法によりBET法で算出した。
使用機はカルロエルバ社製ソープトマチツク1800
である。 圧縮強度は、木屋式硬度計を使用して押出成形
品の径方向の破壊荷重(Kg/個)を測定し、20個
の平均値を採用した。 炭素質微粉末の調製 石油の連続接触分解にて生成する直径1〜3mm
の球状コークスをPulverizer(ホソカワミクロン
(株)製)にて200mesh篩をほとんど全量通過程度ま
で粗砕し、P−J−M−100型超音速ジエツト粉
砕機(日本ニユーマテイツク社製)で微粉砕後ジ
グザク分級機100MZR(ムルテイプレツクス社製)
にて、各1μ、5μ、10μを目標に分級した。 得られた粉はコールターカウンターモデル
TA11(Coulterelectronic INC製)にて粒度を測
定した。表−1にその結果を示す。
The present invention is a method for producing a porous activated alumina molded body.
Specifically, it is an extremely porous activated alumina molding that has excellent mechanical strength and a large specific surface area, and has relatively fine pores in a concentrated manner and in large quantities, and is particularly suitable as a catalyst carrier or catalyst. The present invention relates to a method of manufacturing a body. Activated alumina is used for various purposes such as desiccants, adsorbents, catalysts, and catalyst carriers. In particular, it is well known that alumina-supported catalysts are used in various reactions. One important quality that these catalysts or supports are required to have is the range and amount of pores that give good results for the particular reaction in which these aluminas are used. be. Moreover, such pore adjustment must be achieved without impairing physical properties such as mechanical strength and abrasion resistance. Many methods are known for producing alumina compacts with such properties. One method is to mix powdered γ-alumina, boehmite gel, boehmite or gypsite (alumina trihydrate), or χ- or ρ-alumina obtained by partially calcining gypsite with water and other materials. A method is known in which alumina is obtained by adding an auxiliary agent, molding by a molding method suitable for each, and then heating and activating this to obtain molded activated alumina. Another known method is to produce an alumina sol and drop it into oil to produce spherical products. Furthermore, in order to obtain the desired pore distribution, aging,
Various processes such as rehydration and partial gelation and the use of various additives have been implemented or proposed. When measuring the pore distribution of the porous alumina compact obtained in this way, the pore radius is usually 100.
Most of the pores are located around or below the pore size, but when attempting to adjust the pore distribution, it is normal to obtain a molded product with a broad pore distribution; It has been difficult to obtain a molded body in which pores having a certain radius are concentrated. In view of these circumstances, the present inventors have conducted extensive research in order to obtain an excellent activated alumina molded body that has the above characteristics without impairing physical properties such as mechanical strength and abrasion resistance. As a result, we have arrived at the present invention. That is, the object of the present invention is to have a controlled pore distribution and a large pore volume, i.e. preferably 0.75 cc/g or more.
Pore capacity of 0.8cc/g or more, radius 37.5~
More than 90% of pores with radius between 75000Å and 37.5
The purpose is to provide a method for producing a porous alumina molded body with pores of ~200 Å, the purpose of which is to provide a method for producing a porous alumina compact with pores of ~200 Å.
This is achieved by molding and drying a raw material containing 10 to 70% by weight, followed by firing in an oxygen-containing air stream and simultaneously burning off carbonaceous matter. The present invention will be explained in detail below. The alumina raw material used in the method of the present invention is γ-
Activated alumina such as alumina, η-alumina, or activated alumina precursor, i.e., alumina or alumina hydrate that becomes activated alumina by calcination, such as boehmite, pseudoboehmite, gypsite, etc., or χ-alumina, which is a rehydratable transition alumina. , ρ-alumina, and the like. These alumina raw material powders may be any raw material that can be uniformly mixed with the carbonaceous powder before molding. When special aids and additives are used to control pores, the raw materials and manufacturing methods are usually quite limited. The advantage of being able to produce an alumina molded body with desired properties without any restrictions is extremely large. Next, the carbonaceous powder finely pulverized to an average particle size of 0.5 to 20 μm, which is an additive for providing a large number of pores in the present invention, will be explained. As the carbonaceous material, wood carbonization products such as charcoal, fruit shell carbonization products such as coconut shell charcoal, lignin, coals, coal or petroleum coke, pitch, etc. can be used. These carbonaceous substances need to be pulverized in advance to an average particle size of 0.5 to 20 μm, preferably 0.5 to 15 μm. To pulverize the carbonaceous material, for example, the carbonaceous material can be coarsely pulverized using a coarse crusher, and then finely pulverized using a screen mill, a centrifugal classification mill, a pot mill, a vibration mill, a jet pulverizer, or the like. Also,
The finely pulverized carbonaceous powder is processed using a jig-zag classifier (manufactured by Multiplex) and a micron separator.
(manufactured by Hosokawa Micron Co., Ltd.), a dispersion separator (manufactured by Nihon Neumatic Co., Ltd.), etc., to obtain a fine carbonaceous powder of a desired particle size. Next, molding is performed using such alumina raw material and carbonaceous fine powder. The shape of the molded product is often granular, for example, spherical, cylindrical, or tablet-like, but it can also be molded into a plate or honeycomb shape. The particle size is generally about 1 to 10 mm, and when used as a fluidized bed catalyst carrier or catalyst, or a chromatogram filler, the size is about 50 μm or more. Well-known methods for forming compacts include, for example, tableting methods (dry and wet methods), extrusion methods, extrusion-malmö methods, rolling granulation methods, and briquetting methods. Not all of these various molding methods can be applied to all raw materials used, and molding methods are selected according to each raw material. It is not limited to one type, but rather a wide variety of moldings,
It is well known to those skilled in the art that manufacturing methods can be applied. During molding, the alumina raw material and carbonaceous fine powder should be mixed as uniformly as possible in order to obtain better physical properties. The amount of carbonaceous fine powder added to the alumina raw material is 10 to 70% by weight.
When using additives that disappear upon firing, the amount of additives should be at most 10% by weight to avoid impairing the strength and other physical properties of the resulting molded product. Compared to the usual case, the amount of carbonaceous fine powder added in the present invention is extremely large. Moreover, it is extremely surprising that a large amount of pores can be provided at controlled positions by adding such a large amount, and the required physical properties are not impaired, and the importance of the present invention is Recognized. The raw material alumina and carbonaceous fine powder mixed uniformly in this way are further added with water and other forming aids if necessary, and after processes such as mixing and kneading, are formed into the desired shape using an appropriate molding machine and molding method. molded into a shape. As an example of molding, a case is shown in which pseudoboehmite (monohydrated alumina whose X-ray analysis shows a broad boehmite structure) is used as a raw material. For example, 30 parts of carbonaceous fine powder is added to 100 parts of this pseudoboehmite, mixed uniformly with a mixer, and then transferred to a kneader, where water and auxiliary agents are added and kneaded. Preferred auxiliaries include inorganic acids, organic acids or ammonia, hydrazine, aliphatic amines, aromatic amines,
Examples include basic nitrogen compounds such as heterocyclic amines, and organic substances such as polyvinyl alcohol. The kneaded product thus obtained is then extruded using an extruder through a die hole of a desired size. The molded product can also be aged in a closed container if desired. Another example of molding is a method in which rehydratable transition alumina is used as a raw material and molded by a rolling granulation method, which is described in detail in, for example, Japanese Patent Application Laid-Open No. 158397-1983. This transitional alumina, carbonaceous fine powder, and if necessary auxiliary agents such as crystalline cellulose are added and mixed uniformly, and then formed into a spherical shape of the desired size using a rolling granulator while spraying water. . The resulting molded article is then rehydrated in two stages at room temperature and at temperatures between 50 and 150°C to form a strong molded article. The alumina molded bodies formed by various methods as described above are then dried and fired, and finally become porous activated alumina molded bodies. In this firing step, alumina becomes activated alumina and has properties as a carrier or catalyst. In the process of the present invention, the calcination step must also serve the additional function of burning off carbonaceous matter. Oxidative calcination to remove this carbonaceous material must be accomplished with great care. This is because carbonaceous materials are flammable and the amount added is relatively large, so if the heat of combustion is insufficiently removed, the desired temperature cannot be controlled and there is a strong possibility that the temperature will become high. A rapid temperature rise is not desirable even if the temperature is below the upper limit temperature. The final calcination temperature to obtain activated alumina, including the combustion removal of carbonaceous substances as described above, is:
The temperature is about 500℃ or higher. The upper limit temperature for firing is approximately 800℃ for activated alumina in the γ- or η-form, and 1200℃ for the θ-form.
That's about it. Further, the firing time is not particularly limited, but is usually about 1 hour to 1 day. An activated alumina molded body is thus obtained which has excellent mechanical strength, wear resistance and a large surface area, and in which a large number of pores are concentrated in controlled locations. It is understood that the unique properties of the activated alumina thus obtained can be expected to provide excellent performance in a wide range of applications such as catalysts, catalyst supports, and adsorbents. The content of the present invention will be explained in more detail with reference to Examples below, but the present invention is not limited to these Examples unless the gist thereof is exceeded. The pore distribution and amount in the examples were measured using a mercury intrusion porosimeter. The machine used is Carlo Erba Porosimeter Series 2000 with a maximum pressure of 2000 kg/
cm2 gauge. Therefore, the measurement range of the pore is the radius
The range is from 37.5 Å to 75000 Å. The surface area was calculated using the BET method using the nitrogen adsorption method.
The machine used is Carlo Erba Soap Tomatics 1800.
It is. For the compressive strength, the radial breaking load (Kg/unit) of the extruded product was measured using a Kiya hardness tester, and the average value of 20 samples was adopted. Preparation of carbonaceous fine powder 1 to 3 mm in diameter produced by continuous catalytic cracking of petroleum
Pulverizer (Hosokawa Micron)
Co., Ltd.) to pass through a 200mesh sieve, and then finely crushed using a P-J-M-100 supersonic jet pulverizer (Nippon Neumatics Co., Ltd.), followed by a zigzag classifier 100MZR (Multipre). (Manufactured by Tsukus)
The samples were classified with the targets of 1μ, 5μ, and 10μ each. The resulting powder is a Coulter counter model.
Particle size was measured using TA11 (manufactured by Coulter electronic INC.). Table 1 shows the results.

【表】 実施例 1 コンデア社製ベーマイト粉末Pural SB(Al2O3
含有率75%)225gおよび炭素質微粉末B67.5g(ベ
ーマイトに対し30重量%)をミキサーで60分乾式
混合したのち、これをバツチ式ニーダー(内容量
2l)に移し、4.3%硝酸水溶液220gを約5分かけ
て混練しながら加え、更に25分混練を続けた。次
に前記混合物に2.1%アンモニア水128gを加え25
分混練したのちスクリユー式押出し成形機で直径
1.5mmに押出し成形した。成形物を120℃で3時間
乾燥したのち、電気炉中で乾燥空気流通下温度を
徐々に上げ最終的に600℃の温度で3時間焼成し
て活性アルミナ成形体を得た。焼成後の押出し品
の直径は約1.2mmであり、圧縮強度は平均で2.0
Kg/ケであつた。また表面積は298m2/gであつ
た。 この成形体の細孔容量および細孔分布は次の通
りであつた。 半径37.5Åから200Åまでの細孔容量
0.862c.c./g 全細孔容量(37.5Å〜75000Å) 0.894c.c./g 最頻細孔半径(分布が極大を示す半径) 56Å この成形体の細孔分布曲線を第1図に示す。 比較例 1 炭素質微粉末Bを使用しなかつたこと以外は実
施例1と全く同様の方法で活性アルミナ成形体を
製造した。 得られた成形体の直径は約1.2mmであり、圧縮
強度は2.6Kg/ケ、表面積は195m2/gであつた。
細孔容量および細孔分布は次のとおりであつた。 半径37.5Åから200Åまでの細孔容量
0.710c.c./g 全細孔容量(37.5Å〜75000Å) 0.729c.c./g 細頻細孔半径 62Å また、この成形体の細孔分布曲線を第2図に示
す。 実施例 2 炭素質微粉末Bの添加量をペーマイトに対して
15重量%に変更したこと以外は実施例1と全く同
様にして活性アルミナ成形体を得た。成形体の圧
縮強度は2.5Kg/ケであつた。細孔分布および細
孔容量は下記のとおりである。 半径37.5〜200Åの細孔容量 0.878c.c./g 全細孔容量(37.5〜75000Å) 0.891c.c./g 最頻細孔半径 56Å 実施例 3,4 炭素質微粉末Bのかわりに炭素質微粉末Aまた
はCをベーマイトに対して10重量%使用したこと
以外は実施例1と同様に活性アルミナ成形体を製
造した。それぞれの物性値を表−2に示す。
[Table] Example 1 Boehmite powder Pural SB manufactured by Condea (Al 2 O 3
After dry mixing 225 g (content 75%) and 67.5 g carbonaceous fine powder B (30% by weight relative to boehmite) in a mixer for 60 minutes, the mixture was mixed in a batch kneader (content
2L), 220 g of a 4.3% nitric acid aqueous solution was added thereto over about 5 minutes while kneading, and kneading was continued for an additional 25 minutes. Next, add 128g of 2.1% ammonia water to the mixture and
After mixing and kneading, a screw-type extruder is used to make the diameter
It was extruded to 1.5mm. After drying the molded product at 120°C for 3 hours, the temperature was gradually raised in an electric furnace under flowing dry air and finally fired at a temperature of 600°C for 3 hours to obtain an activated alumina molded product. The diameter of the extruded product after firing is approximately 1.2 mm, and the compressive strength is on average 2.0
It was Kg/ke. The surface area was 298 m 2 /g. The pore volume and pore distribution of this molded body were as follows. Pore capacity from radius 37.5Å to 200Å
0.862 cc/g Total pore capacity (37.5 Å to 75000 Å) 0.894 cc/g Modest pore radius (radius at which the distribution is maximum) 56 Å The pore distribution curve of this molded body is shown in FIG. Comparative Example 1 An activated alumina molded body was produced in exactly the same manner as in Example 1, except that carbonaceous fine powder B was not used. The diameter of the obtained molded body was about 1.2 mm, the compressive strength was 2.6 Kg/ke, and the surface area was 195 m 2 /g.
The pore volume and pore distribution were as follows. Pore capacity from radius 37.5Å to 200Å
0.710 cc/g Total pore capacity (37.5 Å to 75000 Å) 0.729 cc/g Fine pore radius 62 Å The pore distribution curve of this molded body is shown in FIG. Example 2 Addition amount of carbonaceous fine powder B to paemite
An activated alumina molded body was obtained in exactly the same manner as in Example 1 except that the content was changed to 15% by weight. The compressive strength of the molded body was 2.5 kg/piece. The pore distribution and pore capacity are as follows. Pore capacity with radius 37.5 to 200 Å 0.878 cc/g Total pore capacity (37.5 to 75000 Å) 0.891 cc/g Modest pore radius 56 Å Examples 3 and 4 Carbonaceous fine powder A or carbonaceous fine powder B was used instead of carbonaceous fine powder B. An activated alumina molded body was produced in the same manner as in Example 1 except that 10% by weight of C was used based on the boehmite. The physical property values of each are shown in Table-2.

【表】 実施例 5 実施例1と同様にベーマイト225gと炭素質微
粉末A15.8gを混合し、ニーダーに仕込んだ。こ
れに、ポリビニルアルコールNM−14(日本合成
(株)製)9g(ベーマイトに対し4重量%)を水230g
に溶解した溶液を加え、85分混練したのち実施例
1と同様に押出し成形し、次いで乾燥および焼成
を行なつた。得られた活性アルミナ成形体の強度
は平均で2.8Kg/ケ、表面積は239m2/gであつ
た。 このものの細孔容量および分布は次の通りであ
つた。 半径37.5Å〜200Åの細孔容量 0.721c.c./g 全細孔容量(37.5Å〜75000Å) 0.750c.c./g 最頻細孔半径 76Å 比較例 2 炭素質微粉末を使用しなかつたこと以外は実施
例5と同様にアルミナ成形体を製造した。得られ
た活性アルミナ成形体の物性は下記のとおりであ
つた。 強 度 3.0Kg/ケ 表面積 214m2/g 細孔容量(半径37.5Å〜200Å) 0.669c.c./g 全細孔容量(半径37.5Å〜75000Å)
0.681c.c./g 最頻細孔半径 80Å 比較例 3 粒径が74〜149μの炭素質粉末を使用したこと
以外は実施例1と同様にアルミナ成形体を製造し
た。得られた成形体は強度が殆どなく、指触に耐
えられなかつた。
[Table] Example 5 In the same manner as in Example 1, 225 g of boehmite and 15.8 g of carbonaceous fine powder A were mixed and charged into a kneader. To this, polyvinyl alcohol NM-14 (Nippon Gosei
Co., Ltd.) 9g (4% by weight based on boehmite) and 230g of water.
After adding a solution dissolved in , and kneading for 85 minutes, extrusion molding was performed in the same manner as in Example 1, followed by drying and baking. The strength of the obtained activated alumina molded body was 2.8 kg/piece on average, and the surface area was 239 m 2 /g. The pore volume and distribution of this material were as follows. Pore capacity with a radius of 37.5 Å to 200 Å 0.721 cc/g Total pore capacity (37.5 Å to 75000 Å) 0.750 cc/g Modest pore radius 76 Å Comparative Example 2 Example except that no carbonaceous fine powder was used An alumina molded body was produced in the same manner as in Example 5. The physical properties of the obtained activated alumina molded body were as follows. Strength 3.0Kg/ke Surface area 214m 2 /g Pore capacity (radius 37.5Å to 200Å) 0.669cc/g Total pore capacity (radius 37.5Å to 75000Å)
0.681 cc/g Modest pore radius 80 Å Comparative Example 3 An alumina molded body was produced in the same manner as in Example 1 except that carbonaceous powder with a particle size of 74 to 149 μm was used. The obtained molded product had almost no strength and could not withstand finger touch.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はそれぞれ実施例1および
比較例1において製造した活性アルミナ成形体の
細孔分布状態図であり、曲線1および3は細孔分
布の状態を示す曲線であり、曲線2および4は細
孔容量の積算曲線である。
FIG. 1 and FIG. 2 are pore distribution state diagrams of activated alumina molded bodies produced in Example 1 and Comparative Example 1, respectively, where curves 1 and 3 are curves showing the state of pore distribution, and curve 2 and 4 are integrated curves of pore volume.

Claims (1)

【特許請求の範囲】[Claims] 1 活性アルミナ粉末もしくは活性アルミナ前駆
体粉末および平均粒径0.5〜20μmに微粉砕された
炭素質粉末10〜70重量%を含む原料を成形して乾
燥させたのち、酸素含有気流中で焼成し、同時に
炭素質を燃焼除去することを特徴とする半径37.5
〜75000Åの間に有する細孔の90%以上が半径
37.5〜200Åの細孔である多孔質活性アルミナ成
形体の製造法。
1. A raw material containing activated alumina powder or activated alumina precursor powder and 10 to 70% by weight of carbonaceous powder finely pulverized to an average particle size of 0.5 to 20 μm is molded and dried, and then calcined in an oxygen-containing air flow, Radius 37.5 characterized by simultaneous combustion and removal of carbonaceous matter
More than 90% of pores have radius between ~75000Å
A method for producing a porous activated alumina compact with pores of 37.5 to 200 Å.
JP56056068A 1981-04-14 1981-04-14 Manufacture of porous active alumina formed body Granted JPS57170861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56056068A JPS57170861A (en) 1981-04-14 1981-04-14 Manufacture of porous active alumina formed body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56056068A JPS57170861A (en) 1981-04-14 1981-04-14 Manufacture of porous active alumina formed body

Publications (2)

Publication Number Publication Date
JPS57170861A JPS57170861A (en) 1982-10-21
JPH0258206B2 true JPH0258206B2 (en) 1990-12-07

Family

ID=13016757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56056068A Granted JPS57170861A (en) 1981-04-14 1981-04-14 Manufacture of porous active alumina formed body

Country Status (1)

Country Link
JP (1) JPS57170861A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6166612A (en) * 1984-09-11 1986-04-05 東海高熱工業株式会社 Method of forming groove to recrystalline baked vessel
DE3632322A1 (en) * 1986-09-19 1988-03-24 Otto Feuerfest Gmbh CATALYST MOLDED BODY AND METHOD AND DEVICE FOR PRODUCING IT
US4795735A (en) * 1986-09-25 1989-01-03 Aluminum Company Of America Activated carbon/alumina composite
JP2010179267A (en) * 2009-02-07 2010-08-19 Kosei:Kk Support, and method of producing the same
DE102014013530A1 (en) * 2014-09-12 2016-03-17 Clariant International Ltd. Extruded Cu-Al-Mn hydrogenation catalyst

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50161494A (en) * 1974-06-20 1975-12-27
JPS51103100A (en) * 1975-02-04 1976-09-11 Kali Chemie Ag Kyujoaruminaganjuryushinoseiho
JPS57123820A (en) * 1981-01-19 1982-08-02 Mitsubishi Chem Ind Ltd Production of formed body of porous activated alumina

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50161494A (en) * 1974-06-20 1975-12-27
JPS51103100A (en) * 1975-02-04 1976-09-11 Kali Chemie Ag Kyujoaruminaganjuryushinoseiho
JPS57123820A (en) * 1981-01-19 1982-08-02 Mitsubishi Chem Ind Ltd Production of formed body of porous activated alumina

Also Published As

Publication number Publication date
JPS57170861A (en) 1982-10-21

Similar Documents

Publication Publication Date Title
US4508841A (en) Process for producing porous refractory inorganic oxide products
KR930005311B1 (en) Preparation of monolithic support structure containing high surface area agglomerates
US5086031A (en) Pressed parts based on pyrogenically produced silicon dioxide, method of their production and their use
US3353910A (en) Alumina particles and method of preparation
US4894189A (en) Process for the production of spherical particles
JPS62292364A (en) Crystallite alumina abrasive and manufacture thereof
US3679605A (en) Extruded alumina catalyst support and the preparation thereof
US4224302A (en) Process for producing an alumina catalyst carrier
JPS6234685B2 (en)
JPH02199058A (en) Press work based on titanium pioxide obtained from thermal decomposition method; manufacture thereof;and catalytic support consisting thereof, and its catalyst
JPH0134929B2 (en)
JP2000313611A (en) Active carbon and its production
JPH0258206B2 (en)
JPS626854B2 (en)
JPH0674164B2 (en) Pressed product based on aluminum oxide obtained by thermal decomposition method, production method thereof, and catalyst carrier and catalyst comprising the pressed product
RU2729612C1 (en) Active granulated aluminium oxide
JPH02302366A (en) Pressed articles based on thermally decom- posed titanium dioxide, its production and catalyst or catalyst carrier composed of it
CN112275271A (en) Hydrotalcite slurry, preparation thereof, structured catalyst and preparation method thereof
US4637908A (en) Process for manufacturing highly active, dispersed low apparent density aluminium hydrate
US2631353A (en) Stabilized alumina peebles
US3406125A (en) Activated bauxite aggregates and preparation thereof
JP4526760B2 (en) Zeolite microsphere compact
CA1043539A (en) Low surface area alumina
EP0019674B1 (en) Process for the production of a hollow catalyst carrier made of transition-alumina
JPH0248484B2 (en)