JPH0255934A - Particle size distribution measuring instrument - Google Patents

Particle size distribution measuring instrument

Info

Publication number
JPH0255934A
JPH0255934A JP63206576A JP20657688A JPH0255934A JP H0255934 A JPH0255934 A JP H0255934A JP 63206576 A JP63206576 A JP 63206576A JP 20657688 A JP20657688 A JP 20657688A JP H0255934 A JPH0255934 A JP H0255934A
Authority
JP
Japan
Prior art keywords
ray
particle size
sample cell
size distribution
transmission method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63206576A
Other languages
Japanese (ja)
Other versions
JP2615894B2 (en
Inventor
Shohei Ishida
石田 昇平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP63206576A priority Critical patent/JP2615894B2/en
Publication of JPH0255934A publication Critical patent/JPH0255934A/en
Application granted granted Critical
Publication of JP2615894B2 publication Critical patent/JP2615894B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To measure particle size distribution of various materials by one device by selecting and using either an X-ray transmitting method nor light transmitting method for time variation in the concentration of a suspension obtained by dispersing particle bodies to be measured in a medium. CONSTITUTION:The sample suspension obtained by dispersing particle bodies to be measured in the medium is circulated between a sample cell 1 and a sample tank 3 through a circulation pump 2 and begins to settle when the pump 2 is stopped. The time variation in the suspension concentration in this settling process is detected by using the X-ray or light transmitting method to find the particle size distribution of the particles to be measured according to the Stokes resistance rule. When the X-ray transmitting method is used, the cell 1 is irradiated with X rays from a target 5 and the transmitted rays are made incident on a scintillation counter 10. Further, when the light transmitting method is used, the light of filament 7 is made incident on a photodetecting element 13.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、ストークスの抵抗則に基づく沈降法を利用し
た粒度分布測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a particle size distribution measuring device using a sedimentation method based on Stokes' drag law.

〈従来の技術〉 ストークスの抵抗則に基づく沈降法を利用した粒度分布
測定装置においては、一般に、被測定粉粒体を媒液中に
分散させて懸濁液を作り、これを沈降容器内に収容して
自然もしくは遠心沈降させる。そしてこの沈降過程にお
いて、例えばある−定の沈降距離の位置で、ないしはあ
る一定の条件のもとに位置を移動させつつ、懸濁液の濃
度を刻々と測定する。粒子はその沈降過程においてスト
ークスの抵抗則に基づく挙動を示すが、大径の粒子はど
速く沈降し、従って上述の懸濁液濃度の経時的変化から
被測定粉粒体の粒度分布を求めることができる。
<Prior art> In a particle size distribution measuring device that uses a sedimentation method based on Stokes' drag law, the powder to be measured is generally dispersed in a medium to create a suspension, which is then placed in a sedimentation container. Contain and allow to settle naturally or centrifugally. During this sedimentation process, the concentration of the suspension is measured moment by moment, for example, at a certain sedimentation distance or while moving the position under certain conditions. Particles exhibit behavior based on Stokes' drag law during the sedimentation process, but larger particles settle faster, and therefore it is possible to determine the particle size distribution of the measured powder from the above-mentioned change in suspension concentration over time. Can be done.

ところで、懸濁液濃度の測定法として、X線透過法と光
透過法がある。XwA透過法は懸濁液中の粒子によるX
線の吸収を利用し、沈降容器内の懸濁液にX線を照射し
てその透過線量を検出することによって濃度を測定する
方法である。一方、光透過法は懸濁液中の粒子による光
の遮蔽を利用し、沈降容器内の懸濁液に光を照射してそ
の透過光量を検出することによって濃度を測定する方法
である。
By the way, methods for measuring suspension concentration include an X-ray transmission method and a light transmission method. The XwA transmission method uses particles in suspension to
This is a method of measuring concentration by irradiating a suspension in a sedimentation container with X-rays and detecting the transmitted dose using radiation absorption. On the other hand, the light transmission method is a method of measuring concentration by irradiating light onto the suspension in a sedimentation container and detecting the amount of transmitted light, using light shielding by particles in the suspension.

X線透過法を利用した沈降法に基づく粒度分布測定は信
頬性が高く、光透過法を利用したもののみならず他の種
々の粒度分布測定法に対して基準器的地位を占めている
。しかし、このX線透過法も万能ではなく、X線をほと
んど吸収しない物質、換言すれば原子番号がMgよりも
小さい元素からなる物質、例えばプラスチック、有機物
、カーボンあるいは窒化ボロン等については、原理上測
定不能である。
Particle size distribution measurements based on sedimentation methods using X-ray transmission methods are highly reliable and serve as a standard not only for those using light transmission methods but also for various other particle size distribution measurement methods. . However, this X-ray transmission method is not universal; in principle, it cannot be used for substances that hardly absorb X-rays, in other words, substances consisting of elements with an atomic number smaller than Mg, such as plastics, organic substances, carbon, or boron nitride. Not measurable.

一方、光透過法は、X線透過法に比して信軌性はやや劣
るものの、被測定粉粒体の材質等を選ばず、はとんどの
物質に対して有効である。
On the other hand, although the light transmission method has slightly lower reliability than the X-ray transmission method, it is effective for most substances, regardless of the material of the powder to be measured.

このようなことから、従来、ストークスの抵抗則に基づ
く沈降法を利用した粒度分布測定装置として、X線透過
法を用いたものと、光透過法を用いたものとの2種類の
装置が存在している。
For this reason, conventionally, there are two types of particle size distribution measuring devices using the sedimentation method based on Stokes' resistance law: those using the X-ray transmission method and those using the light transmission method. are doing.

〈発明が解決しようとする課題〉 以上のことから、装置使用者にとっては、高精度の測定
を行うためにはX線透過法を用いた装置を購入する必要
があり、しかもこの装置で測定不能の物質を測定する可
能性がある場合には光透過法を用いた装置を購入しなけ
ればならず、非経済的であるばかりでなく不便である。
<Problem to be solved by the invention> From the above, it is necessary for the device user to purchase a device that uses the X-ray transmission method in order to perform highly accurate measurements, and furthermore, it is necessary for the device user to purchase a device that uses X-ray transmission method. If there is a possibility of measuring substances, it is necessary to purchase a device using a light transmission method, which is not only uneconomical but also inconvenient.

〈課題を解決するための手段〉 本発明は上記した従来の非経済性と不便さを解消すべく
なされたもので、その特徴とするところは、X線源と、
そのX&’jl源からのX線の試料セル透過線量を検出
するためのX線検出器と、可視光源と、その可視光源か
らの光の試料セル透過光量を検出するための光検出器と
を設けるとともに、X線源と可視光源のいずれかを選択
駆動するための選択手段と、その選択手段による選択動
作と連動し、X線検出器および光検出器の出力信号のう
ち対応する信号を懸濁液濃度の検出信号として採用する
ための信号切換スイッチを設けたことにある。
<Means for Solving the Problems> The present invention has been made to solve the above-mentioned uneconomical and inconvenient conventional methods, and its features include an X-ray source,
An X-ray detector for detecting the amount of X-rays transmitted through the sample cell from the X&'jl source, a visible light source, and a photodetector for detecting the amount of light transmitted through the sample cell from the visible light source. In addition, a selection means for selectively driving either the X-ray source or the visible light source, and in conjunction with the selection operation by the selection means, a corresponding signal among the output signals of the X-ray detector and the photodetector is suspended. The reason is that a signal changeover switch is provided for use as a detection signal for the concentration of the turbid liquid.

〈作用〉 X線源と可視光源のいずれかを選択的に試料セルに照射
可能で、その選択されたものに対応する側の検出器の出
力信号が信号切換スイッチにより懸濁:t7.濃度の検
出信号として採用される。
<Function> The sample cell can be selectively irradiated with either the X-ray source or the visible light source, and the output signal of the detector corresponding to the selected one is suspended by the signal changeover switch: t7. It is used as a concentration detection signal.

X線透過法もしくは光透過法をそれぞれ採用した粒度分
布測定装置では、光(線)淵部と受光(線)部とが相違
するだけで他の構成はほとんど同一である。本発明はこ
の点に着目し、上記した構成により、1台の測定装置で
X線透過法と光透過法のいずれをも選択使用することが
でき、所期の目的を達成しようとするものである。
Particle size distribution measuring devices employing the X-ray transmission method or the light transmission method have almost the same structure except for the light (line) edge portion and the light receiving (line) portion. The present invention focuses on this point, and with the above-described configuration, it is possible to selectively use both the X-ray transmission method and the light transmission method with one measuring device, and aims to achieve the intended purpose. be.

〈実施例〉 第1図は本発明実施例の構成を示すブロック図である。<Example> FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention.

試料セル1には液入口と液出口が設けられており、循環
ポンプ2の駆動によりこの試料セル1内と試料槽3内の
間で試料懸濁液を循環させることができる。試料懸濁液
は試料槽3内で撹拌されつつ循環され、この状態では試
料セル1内において被測定粉粒体は媒液中に均一に分散
された状態を保ち、循環ポンプ2を停止した時点から沈
降を開始することになる。
The sample cell 1 is provided with a liquid inlet and a liquid outlet, and the sample suspension can be circulated between the sample cell 1 and the sample tank 3 by driving the circulation pump 2. The sample suspension is circulated while being stirred in the sample tank 3, and in this state, the particles to be measured remain uniformly dispersed in the medium in the sample cell 1, and when the circulation pump 2 is stopped, Sedimentation will begin from this point.

試料セル1に隣接してX線管球4が配設されており、こ
のX線管球4内のターゲット5には高圧。
An X-ray tube 4 is disposed adjacent to the sample cell 1, and a target 5 within the X-ray tube 4 is exposed to high pressure.

安定化電源6が、またフィラメント7にはフィラメント
駆動回路8が接続されている。
A stabilized power source 6 is connected to the filament 7, and a filament drive circuit 8 is connected to the filament 7.

高圧安定化電源6とフィラメント駆動回路8の双方をO
Nにすることによってターゲット5からX線が発生する
が、このX線発生位置と試料セル1を結ぶ水平線上にス
リット9が配設されており、ターゲット5からのX線は
スリット9を介して試料セル1に照射され、その透過線
は同じ水平線上に置かれたシンチレーション計数器10
に入射するよう構成されている。
Both the high voltage stabilized power supply 6 and the filament drive circuit 8 are turned off.
N, X-rays are generated from the target 5, but a slit 9 is arranged on the horizontal line connecting this X-ray generation position and the sample cell 1, and the X-rays from the target 5 pass through the slit 9. The sample cell 1 is irradiated, and the transmitted line is placed on the same horizontal line as the scintillation counter 10.
is configured to be incident on the

フィラメント7と試料セル1を結ぶ水平線上には、集光
レンズ11とスリット12が配設されており、フィラメ
ント7からの光は集光レンズ11およびスリット12を
介して試料セル1に照射され、その透過光は受光素子1
3に入射するよう構成されている。
A condensing lens 11 and a slit 12 are arranged on the horizontal line connecting the filament 7 and the sample cell 1, and the light from the filament 7 is irradiated onto the sample cell 1 through the condensing lens 11 and the slit 12. The transmitted light is transmitted to the light receiving element 1
3.

シンチレーション計数器10および受光素子13の出力
は信号切換スイッチ14に導かれ、いずれか一方が演算
増幅器16に入力される。この演算増幅器16は入力信
号を対数変換し、相対濃度信号としてX−Yレコーダ1
7に供給する。この相対濃度信号はX−Yレコーダ17
のY軸を駆動する。
The outputs of the scintillation counter 10 and the light receiving element 13 are led to a signal changeover switch 14, and either one is input to an operational amplifier 16. This operational amplifier 16 logarithmically converts the input signal and outputs it as a relative concentration signal to the X-Y recorder 1.
Supply to 7. This relative density signal is sent to the X-Y recorder 17.
drive the Y axis of

試料セル1はモータ18の駆動により上下動するよう構
成されており、このモータ18は試料セル駆動回路19
からの信号によって駆動される。
The sample cell 1 is configured to move up and down by driving a motor 18, and this motor 18 is connected to a sample cell drive circuit 19.
is driven by a signal from

試料セル駆動回路19は、プログラム制御器20からの
指令信号もしくは後述する選択回路24からの指令信号
によって駆動制御される。
The sample cell drive circuit 19 is driven and controlled by a command signal from a program controller 20 or a command signal from a selection circuit 24, which will be described later.

プログラム制御器20は、レイトスイッチ21によって
設定された測定条件、すなわち被測定粉粒体の密度、媒
液の密度と粘性係数、および測定開始粒子径等に基づい
て定まる手順に従い、測定開始後に試料セル1を初期位
置から次第に下降させるべく試料セル駆動回路19に指
令を発するとともに、これに連動してX−Yレコーダ1
7のX軸駆動回路22に動作信号を供給する。この動作
信号は、刻々の沈降時間に相関する粒子径信号となる。
The program controller 20 controls the sample after the start of measurement according to the procedure determined based on the measurement conditions set by the rate switch 21, that is, the density of the powder to be measured, the density and viscosity coefficient of the medium, and the particle size at the start of measurement. A command is issued to the sample cell drive circuit 19 to gradually lower the cell 1 from the initial position, and in conjunction with this, the X-Y recorder 1
An operation signal is supplied to the X-axis drive circuit 22 of No. 7. This operating signal becomes a particle size signal that correlates with the instantaneous sedimentation time.

なお、前述した循環ポンプ2への停止指令もこのプログ
ラム制御器20から出力される。
Note that the above-mentioned stop command to the circulation pump 2 is also output from this program controller 20.

さて、この実施例においては、ターゲット5からのX線
を用いたX線透過法を採用するか、フィラメント7から
の光を用いた光透過法を採用するかを、選択スイッチ2
3の操作によって選択することができる。
Now, in this embodiment, the selection switch 2 selects whether to adopt the X-ray transmission method using the X-rays from the target 5 or the light transmission method using the light from the filament 7.
The selection can be made by performing step 3.

すなわち、選択スイッチ23による選択信号は選択回路
24に導かれ、選択回路24はこの選択信号に応じて以
下に示すような信号を各部に供給することにより、装置
状態をXvA透過法または光透過法のいずれかに設定す
るよう構成されている。
That is, the selection signal from the selection switch 23 is guided to the selection circuit 24, and the selection circuit 24 supplies the following signals to each part according to this selection signal, thereby determining the device state by the XvA transmission method or the light transmission method. is configured to be set to one of the following.

X線透過法を選択した場合には、高圧安定化電源6とフ
ィラメント駆動回路8の双方をONにしてX線を発生さ
せ、また、信号切換スイッチ14をシンチレーション計
数器10側にセントする。
When the X-ray transmission method is selected, both the high-voltage stabilized power supply 6 and the filament drive circuit 8 are turned on to generate X-rays, and the signal changeover switch 14 is set to the scintillation counter 10 side.

同時に、試料セル駆動回路19に初期位置設定信号を発
し、試料セル1上の規定の沈降距離の部位がターゲット
5.スリット9およびシンチレーション計数器10を結
ぶ直線上に位置するよう、試料セル1の初期位置の位置
決めを行う。
At the same time, an initial position setting signal is issued to the sample cell drive circuit 19, and the position on the sample cell 1 at a specified descending distance is set to the target 5. The initial position of the sample cell 1 is determined so that it is located on a straight line connecting the slit 9 and the scintillation counter 10.

光透過法を選択した場合には、高圧安定化電源6をOF
Fにしてフィラメント駆動回路8のみをONにし、また
、信号切換スイッチ14を受光素子13側にセットする
。更に試料セル駆動回路19には、試料セルi上の上述
した規定部位がフィラメント7、スリット12および受
光素子13を結ぶ直線上に位置するよう、初期位置設定
信号を供給する。
If the light transmission method is selected, turn off the high voltage stabilized power supply 6.
F, turn on only the filament drive circuit 8, and set the signal changeover switch 14 to the light receiving element 13 side. Further, an initial position setting signal is supplied to the sample cell drive circuit 19 so that the above-mentioned specified portion on the sample cell i is located on a straight line connecting the filament 7, the slit 12, and the light receiving element 13.

次に使用方法並びに各部の動作を述べる。測定に先立ち
、レイトスインチ21により測定条件を設定するととも
に、被測定粉粒体の材質や測定目的に応じて19選選択
スイッチ23操作してX線透過法または光透過法のいず
れかを選択する。これによって選択回路24から各部に
信号が供給され、装置状態はX線または光透過法のいず
れかに設定される。
Next, how to use it and the operation of each part will be described. Prior to measurement, the measurement conditions are set using the rate scan 21, and the 19-selection selection switch 23 is operated to select either the X-ray transmission method or the light transmission method, depending on the material of the powder to be measured and the measurement purpose. . As a result, signals are supplied from the selection circuit 24 to each section, and the device state is set to either the X-ray method or the light transmission method.

循環ポンプ2を駆動した状態で、まずプログラム御器2
0からの指令によってこの循環ポンプ2に停止指令が与
えられ、これによって被測定粉粒体は試料セル1内で沈
降を開始する。同時に、設定された測定条件に従って試
料セル1が初期位置から下降を始めるとともに、X−Y
レコーダ17のX軸が駆動を開始する。同時にまた、信
号切換スイッチ14を介して演算増幅器16に濃度検出
信号が導入され、Y軸が駆動を開始する。
With the circulation pump 2 running, first set the program controller 2.
A stop command is given to the circulation pump 2 by the command from 0, and the granular material to be measured starts settling within the sample cell 1. At the same time, sample cell 1 begins to descend from the initial position according to the set measurement conditions, and
The X-axis of the recorder 17 starts driving. At the same time, a concentration detection signal is also introduced to the operational amplifier 16 via the signal changeover switch 14, and the Y-axis starts driving.

以上のようにして得られたX−Yレコーダ17によるグ
ラフは、X軸が粒子径、Y軸が相対温度を表わすグラフ
、つまり被測定粉粒体の粒度分布曲線となる。なお、得
られた粒度分布曲線は、X線透過法を選択した場合には
質量分布、光透過法を選択した場合には面積分布となる
The graph obtained by the X-Y recorder 17 as described above is a graph in which the X axis represents the particle diameter and the Y axis represents the relative temperature, that is, a particle size distribution curve of the powder to be measured. The obtained particle size distribution curve is a mass distribution when the X-ray transmission method is selected, and an area distribution when the light transmission method is selected.

第2図は本発明の他の実施例の要部構成図である。この
例では、フィラメント7からの光をミラー30.31に
よってX&9の光軸上のスリット9に導き、試料セル1
に照射するよう構成している。
FIG. 2 is a diagram showing the main part of another embodiment of the present invention. In this example, the light from filament 7 is guided by mirror 30.31 to slit 9 on the optical axis of X & 9, and the sample cell 1
It is configured to irradiate.

ここで、ミラー31は、X線透過法を選択した場合には
X線の進行を妨げないように例えば下方に回動するよう
構成している。
Here, the mirror 31 is configured to rotate downward, for example, so as not to obstruct the progress of the X-rays when the X-ray transmission method is selected.

この例によれば、スリットは1個でよく、また、試料セ
ル1の初期位置を変更する必要がない。ただし、選択状
況に応じて検出器側を移動させる必要がある。
According to this example, only one slit is required, and there is no need to change the initial position of the sample cell 1. However, it is necessary to move the detector side depending on the selection situation.

なお、検出器側を移動させる場合は、第2図の例のほか
、光源側、つまりX線管球4を移動させて、ターゲット
5もしくはフィラメント7をスリット9の軸上に位置決
めするよう構成することもできる。
Note that when moving the detector side, in addition to the example shown in FIG. 2, the light source side, that is, the X-ray tube 4 is moved to position the target 5 or filament 7 on the axis of the slit 9. You can also do that.

また、試料セル1の初期位置を変更せず、かつ、検出器
側をも移動させない構成として、X線管球4を水平方向
に配設するとともに、これに対応してスリットと検出器
側も水平方向に並べて、試料セル1の規定の沈降距離の
部位を含む水平面上でX線と光とのいずれをも照射でき
るよう構成することもできる。
In addition, the X-ray tube 4 is arranged horizontally, and the slit and the detector side are also arranged in a horizontal direction so that the initial position of the sample cell 1 is not changed and the detector side is not moved. It is also possible to arrange them in the horizontal direction so that both X-rays and light can be irradiated on a horizontal plane that includes a portion of the sample cell 1 at a prescribed settling distance.

更に、可視光の光源として、以上の各実施例ではX線管
球のフィラメントを利用したが、別の光源ランプ等を使
用してもよい。
Further, although the filament of an X-ray tube was used as a visible light source in each of the above embodiments, another light source such as a lamp may also be used.

更にまた、本発明は自然沈降法のみならず、遠心沈降法
にも同様に適用できることは勿論である。
Furthermore, it goes without saying that the present invention can be applied not only to the natural sedimentation method but also to the centrifugal sedimentation method.

〈発明の効果〉 以上説明したように、本発明によれば、X線源とX線検
出器を用いたX線透過法と、可視光源と光検出器を用い
た光透過法を、選択スイッチを操作する等によって容易
に選択できるよう構成したから、1台の装置であるゆる
物質の粒度分布を測定することができ、しかも、多くの
構成部品を共通に使用しているので、2種の装置を購入
するよりもはるかに経済的である。
<Effects of the Invention> As explained above, according to the present invention, the X-ray transmission method using an X-ray source and an X-ray detector and the light transmission method using a visible light source and a photodetector can be selected by switching Because it is configured so that it can be easily selected by operating the device, it is possible to measure the particle size distribution of any substance with one device.Moreover, since many components are used in common, it is possible to measure the particle size distribution of any substance with one device. Much more economical than purchasing equipment.

なお、可視光源としてX線管球のフィラメントを利用す
れば、装置構成がより簡素化され、かつ、製造コストも
安くなるという利点がある。
Note that if the filament of an X-ray tube is used as the visible light source, there are advantages in that the device configuration is simpler and the manufacturing cost is also lower.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例の構成図、 第2図は本発明の他の実施例の要部構成図である。 1・・・試料セル 4・・・X線管球 5・・・ターゲット 6・・・高圧安定化電源 7・・・フィラメント 8・・・フィラメント駆動回路 9.12・・・スリット 10・・・・・シンチレーション計数器13・・・・・
受光素子 14・・・・・信号切換スイッチ 16・・・・・演算増幅器 17・・・・・x−yレコーダ 18・・・・・モータ 19・・・・・試料セル駆動回路 20・・・・・・プログラム制御器 22・・・・・X軸駆動回路 23・・・・・選択スイッチ 24・・・・・選択回路 第2図
FIG. 1 is a block diagram of an embodiment of the present invention, and FIG. 2 is a block diagram of main parts of another embodiment of the present invention. 1... Sample cell 4... X-ray tube 5... Target 6... High voltage stabilized power supply 7... Filament 8... Filament drive circuit 9.12... Slit 10... ...Scintillation counter 13...
Light receiving element 14...Signal changeover switch 16...Operation amplifier 17...X-Y recorder 18...Motor 19...Sample cell drive circuit 20... ...Program controller 22...X-axis drive circuit 23...Selection switch 24...Selection circuit Fig. 2

Claims (1)

【特許請求の範囲】[Claims] 媒液中に被測定粉粒体を分散させてなる懸濁液を試料セ
ル内で沈降させ、その沈降過程における懸濁液濃度の経
時的変化を検出して、ストークスの抵抗則に基づいて被
測定粉粒体の粒度分布を求める装置において、X線源と
、そのX線源からのX線の上記試料セル透過線量を検出
するためのX線検出器と、可視光源と、その可視光源か
らの光の上記試料セル透過光量を検出するための光検出
器と、上記X線源と可視光源のいずれかを選択駆動する
ための選択手段と、その選択手段による選択動作と連動
し、上記X線検出器および光検出器の出力信号のうち対
応する信号を上記懸濁液濃度の検出信号として採用する
ための信号切換スイッチを備えたことを特徴とする、粒
度分布測定装置。
A suspension consisting of particles to be measured dispersed in a medium is allowed to settle in a sample cell, and changes in the concentration of the suspension over time during the settling process are detected, and the resistance is determined based on Stokes' law of resistance. An apparatus for determining the particle size distribution of a powder or granular material to be measured includes an X-ray source, an X-ray detector for detecting the amount of X-rays transmitted from the X-ray source through the sample cell, a visible light source, and a visible light source from the visible light source. a photodetector for detecting the amount of light transmitted through the sample cell, a selection means for selectively driving either the X-ray source or the visible light source; 1. A particle size distribution measuring device, comprising a signal changeover switch for employing a corresponding one of the output signals of a line detector and a photodetector as a detection signal for the concentration of the suspension.
JP63206576A 1988-08-19 1988-08-19 Particle size distribution analyzer Expired - Fee Related JP2615894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63206576A JP2615894B2 (en) 1988-08-19 1988-08-19 Particle size distribution analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63206576A JP2615894B2 (en) 1988-08-19 1988-08-19 Particle size distribution analyzer

Publications (2)

Publication Number Publication Date
JPH0255934A true JPH0255934A (en) 1990-02-26
JP2615894B2 JP2615894B2 (en) 1997-06-04

Family

ID=16525688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63206576A Expired - Fee Related JP2615894B2 (en) 1988-08-19 1988-08-19 Particle size distribution analyzer

Country Status (1)

Country Link
JP (1) JP2615894B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011145162A (en) * 2010-01-14 2011-07-28 Japan Atomic Energy Agency X-ray detection method of fine particles in fluid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011145162A (en) * 2010-01-14 2011-07-28 Japan Atomic Energy Agency X-ray detection method of fine particles in fluid

Also Published As

Publication number Publication date
JP2615894B2 (en) 1997-06-04

Similar Documents

Publication Publication Date Title
Hu et al. One‐line measurement of the residence time distribution in screw extruders
EP0359681B1 (en) Characterization of particles by modulated dynamic light scattering
SE440404B (en) SET AND APPARATUS FOR DETERMINING THE IMMUNE REACTIVE COMPONENT OF A TEST TEST
Foster Attenuation of light by wood smoke
US4890925A (en) Method and apparatus for detecting particular particulate substance
JPS58133239A (en) Apparatus for monitoring x-ray irradiated region
US5455675A (en) Apparatus for determination of particle sizes and/or distributions of particle sizes
US4736311A (en) Particle size distribution measuring apparatus
EP0223427B1 (en) Method and apparatus for the determination of the antibody content of blood
JPH0255934A (en) Particle size distribution measuring instrument
JP3895317B2 (en) Sample holder for spectrophotometer and spectrophotometer
US3843268A (en) Sample container for laser light scattering photometers
US7050167B2 (en) Nephelometric detection unit with optical in-process control
JPS62115348A (en) Device and method of measuring luminous intensity by multiple beam
JP4507799B2 (en) Particle size distribution measuring device
CA2390002A1 (en) On-line sensor for colloidal substances
US3890046A (en) Condensation nucleus discriminator
JP2802327B2 (en) Standard substance for quality confirmation in optical sample analyzer and its use
JP2636051B2 (en) Particle measurement method and device
JPH0583139B2 (en)
JPH0251134B2 (en)
Allen Critical review of particle size analysis
WO2022130916A1 (en) Particle size distribution measurement device, particle size distribution measurement method, and program for particle size distribution measurement device
JPH0438279Y2 (en)
JP3433164B2 (en) Garbage processing equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees