JPH0255663A - Non-corrosive flux brazing method of al or al alloy - Google Patents

Non-corrosive flux brazing method of al or al alloy

Info

Publication number
JPH0255663A
JPH0255663A JP20531888A JP20531888A JPH0255663A JP H0255663 A JPH0255663 A JP H0255663A JP 20531888 A JP20531888 A JP 20531888A JP 20531888 A JP20531888 A JP 20531888A JP H0255663 A JPH0255663 A JP H0255663A
Authority
JP
Japan
Prior art keywords
brazing
furnace
cooling
alloy
brazed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20531888A
Other languages
Japanese (ja)
Inventor
Kazunori Ishikawa
石川 和徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Aluminum Co Ltd
Original Assignee
Furukawa Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Aluminum Co Ltd filed Critical Furukawa Aluminum Co Ltd
Priority to JP20531888A priority Critical patent/JPH0255663A/en
Publication of JPH0255663A publication Critical patent/JPH0255663A/en
Pending legal-status Critical Current

Links

Landscapes

  • Tunnel Furnaces (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

PURPOSE:To allow a hardening treatment and to improve core strength and the pitting corrosion resistance of the core after brazing by taking a brazing member brazed by heating to the outside of a furnace at a specific temp. or below and introducing the member into a cooling device, thereby rapidly cooling the member. CONSTITUTION:The member consisting of Al or Al alloy is transferred by a mesh belt 6 into a heating zone 2 in the continuous furnace for brazing where an inert atmosphere of <=-40 deg.C dew point and <=1000ppm oxygen concn. is maintained, by which the member is heated and brazed. The brazed member is transferred onto a mesh belt 6' which is separate from the belt 6 of the high-speed taking out zone 3' and is rapidly taken to the outside of the furnace at >=500 deg.C. The member is rapidly cooled by the cooling device of a system consisting in blowing the atm. air by a fan to the member, etc. The production of a heat exchanger consisting of thin and high-strength members is enabled by this method and the intergranular corrosion sensitivity of the core material of the brazing sheet is degraded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はAl又はAl合金の非腐食性フラックスろう付
け方法に関するもので、ろう付け債の冷却速度をコント
ロールすることにより、焼入れ処理を可能にし、ろう付
け侵のコア強度及びコア部材の耐孔食性を改善するもの
である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a non-corrosive flux brazing method for Al or Al alloy, which enables hardening treatment by controlling the cooling rate of the brazed bond. , which improves the core strength of brazing corrosion and the pitting corrosion resistance of the core member.

〔従来の技術〕[Conventional technology]

従来Al又はAl合金からなるろう付け部材のろう付け
法として、例えば自動車用熱交換器のろう付けに、塩化
物系フラックスを使用するろう付け法やフラックスを使
用しない真空ろう付け法が幅広く利用されていたが、近
年フッ化物系の非腐食性フラックスを使用して不活性ガ
ス中で加熱ろう付けする非腐食性フラックスろう付け法
が用いられるようになった。
Conventionally, brazing methods that use chloride-based flux and vacuum brazing methods that do not use flux have been widely used as brazing methods for brazing parts made of Al or Al alloy, for example, for brazing heat exchangers for automobiles. However, in recent years, a non-corrosive flux brazing method has come into use, in which fluoride-based non-corrosive flux is used for heating brazing in an inert gas.

塩化物系フラックスを使用するろう付け法は、腐食性フ
ラックスによるろう付け炉の劣化やろう付け後のフラッ
クス残滓の洗浄除去の煩雑さと共に、公害上の問題があ
る。また真空ろう付け法は設備が高価なばかりか、真空
度維持のためのメンテナンスに問題があり、更に内壁に
付着したM9の除去作業が煩雑なばかりか、フラックス
ろう付け法に比較しろう付け性のバラツキが大きい。
Brazing methods using chloride-based fluxes have problems in terms of pollution, such as deterioration of the brazing furnace due to the corrosive flux and the complexity of cleaning and removing flux residue after brazing. In addition, the vacuum brazing method not only requires expensive equipment, but also has problems with maintenance to maintain the vacuum level.Furthermore, the removal of M9 adhering to the inner wall is complicated, and the brazing performance is lower than that of the flux brazing method. There is a large variation in

これに対しフッ化物系の非腐食性フラックスを使用する
ろう付け法は第2図に示すように予熱ゾーン(1)と加
熱ゾーン(2)と冷却ゾーン(3)を連続してタンデム
に配置し、入口(4)より出口(5)に向かって予熱ゾ
ーン(1)と加熱ゾーン(2)と冷却ゾーン(3)を通
るろう付け部材移送用のメツシュベルト(6)を設け、
加熱ゾーン(2)内にNガス供給口(7)、 (7°)
よりNガスを矢印方向にフローさせて、少なくとも加熱
ゾーン(2)内を露点−40℃以下、酸素濃度1100
0pp以下のNガス雰囲気とした連続炉を用い、ろう付
け部材を脱脂、フラックス塗布、乾燥(200℃)して
から図には示してないが、連続炉の入口(4)よりメツ
シュベルト(6)上にろう付け部材(コア)を乗せて搬
入し、予熱ゾーン(1)を通して予熱した後、加熱ゾー
ン(2)に送入し、600℃程度の温度に加熱してろう
付けを行ない、その後冷却ゾーン(3)を通してハンド
リング可能な温度に冷却し、炉外に取出している。尚、
図において(8)は排ガスの乾式洗浄装置(スクラバー
)を示す。
On the other hand, the brazing method using fluoride-based non-corrosive flux involves arranging a preheating zone (1), a heating zone (2), and a cooling zone (3) in tandem in succession, as shown in Figure 2. , a mesh belt (6) is provided for transferring the brazing member from the inlet (4) to the outlet (5) through the preheating zone (1), the heating zone (2), and the cooling zone (3);
N gas supply port (7) in heating zone (2), (7°)
N gas is caused to flow in the direction of the arrow at least in the heating zone (2) so that the dew point is -40°C or lower and the oxygen concentration is 1100.
Using a continuous furnace with an N gas atmosphere of 0 pp or less, the brazed parts are degreased, fluxed, and dried (200°C).Although not shown in the figure, the mesh belt (6) is inserted from the entrance (4) of the continuous furnace. The material to be brazed (core) is placed on top and carried in, and after being preheated through the preheating zone (1), it is delivered to the heating zone (2) where it is heated to a temperature of approximately 600°C to perform brazing, and then cooled. It is cooled to a handleable temperature through zone (3) and taken out of the furnace. still,
In the figure, (8) indicates a dry cleaning device (scrubber) for exhaust gas.

現在上記不活性ガスろう付け法はコンデンサ、エバポレ
ーター、ラジェーター等のろう付けに使用されているが
、コンデンサーやエバポレーターは第3図に示すように
押出多穴管(9)を蛇行状に折り曲げ、多穴管(9)の
間にフィン(10)を取付けたもので、多穴管には純A
i系。
Currently, the above-mentioned inert gas brazing method is used to braze condensers, evaporators, radiators, etc., but condensers and evaporators are manufactured by bending an extruded multi-hole tube (9) into a meandering shape as shown in Figure 3. A fin (10) is attached between the hole pipes (9), and the multi-hole pipe is made of pure A.
i series.

Al−Cu系、Al−Mn系を使用し、フィン材にはA
、f!−Mn−Zn系の芯材にAl−3i系ろう材をク
ラッドしたプレージングシートを使用する。またラジェ
ーターは第4図に示すように、複数個の電縫チューブ(
11)間にフィン(12)を取付け、チューブ(11)
の端部にヘッダ〜(13)を設けてタンク(14)を取
付けたもので、ヘッダーとチューブ材にはA、f!−M
n系芯材の片面に、/1−3i系ろう材をクラッドし、
他面にAJ−Zn系犠牲材をクラッドしたものを使用し
、フィン材にはA、l!−Mn−Zn系を使用する。尚
フィン材は厚さ0.1〜0.2m、チューブ材は肉厚0
.3〜0.4M、ヘッダー材は1〜1.6Mのものが用
いられている。
Al-Cu system and Al-Mn system are used, and the fin material is A
, f! - A plating sheet is used in which a Mn-Zn core material is clad with an Al-3i brazing material. Also, as shown in Figure 4, the radiator is made up of multiple electrically welded tubes (
11) Attach the fin (12) between the tubes (11)
A header ~ (13) is provided at the end of the tank (14) and a tank (14) is attached to it, and the header and tube material are A, f! -M
One side of the n-based core material is clad with /1-3i-based brazing material,
The other side is clad with AJ-Zn sacrificial material, and the fin material is A, l! -Mn-Zn system is used. The thickness of the fin material is 0.1 to 0.2m, and the thickness of the tube material is 0.
.. 3 to 0.4M, and a header material of 1 to 1.6M is used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

自動車用熱交換器の軽量化のニーズに対してアルミニウ
ム部材の高強度化が検討されて、非熱処理合金だけでけ
でなく、熱処理合金を積極的に使用する試みがなされて
いる。しかし現行の連続炉はろう付け加熱と冷却が同一
のライン速度のメツシュベルト上でなされるため、冷却
により焼き入れ処理を行なうためには、冷却速度が遅く
無理がある。通常の冷却スピードは600℃から100
℃まで平均30〜80℃/minあり、板厚が厚い部分
やコアの熱容量が大きい場合には冷却速度は更に遅くな
るのが実情である。
In response to the need to reduce the weight of automobile heat exchangers, increasing the strength of aluminum members is being considered, and attempts are being made to actively use not only non-heat-treated alloys but also heat-treated alloys. However, in the current continuous furnace, brazing heating and cooling are performed on a mesh belt with the same line speed, so the cooling rate is slow and unreasonable in order to perform the hardening process by cooling. Normal cooling speed is 600℃ to 100℃
The cooling rate is on average 30 to 80°C/min, and the actual situation is that the cooling rate becomes even slower in thick parts or in cases where the heat capacity of the core is large.

また耐食性の点でも徐冷することにより、粒界へ添加元
素が析出し、粒界腐食の発生も増長される。
In addition, from the viewpoint of corrosion resistance, slow cooling causes additive elements to precipitate at grain boundaries, increasing the occurrence of intergranular corrosion.

現在フッ化物系フラックスろう付け用連続炉で冷却速度
が遅くなるのは次の理由によるものである。
The reason why the cooling rate in current continuous furnaces for fluoride flux brazing is slow is as follows.

(リコンベアのスピードが熱交換器コアの均熱によるろ
う付け性の確保のため、遅く設定されており、炉壁を水
冷したウォータージャケットからなる冷却ゾーンも同一
のコンベアスピードとなり、高温域(250’C以上)
の冷却が遅い。
(The speed of the reconveyor is set slow to ensure brazing performance by uniform heating of the heat exchanger core, and the cooling zone consisting of a water jacket that cools the furnace wall with water has the same conveyor speed. C or higher)
cooling is slow.

(2)連続炉内のN雰囲気中の露点、酸素濃度をろう付
け性向上のために各々−40℃以下、1000PPm以
下に保持することが必要で、加熱ゾーンから出口に向っ
てNガスを導入している。ろう付けの最高温度に達した
のち、即ちろう付けのためのフィレットが形成された後
の冷却は加熱ゾーンを出たあとの冷却ゾーンで行なって
いるが、加熱ゾーンを出るまでの時間がかなりある。こ
れはろう付けゾーンへの外部からの820ヤαの流入を
防止し、露点、酸素濃度を低く保つため、ある程度のラ
イン長さをとらざるを得ないからである。
(2) It is necessary to maintain the dew point and oxygen concentration in the N atmosphere in the continuous furnace at -40°C or lower and 1000PPm or lower, respectively, to improve brazing performance, and N gas is introduced from the heating zone toward the outlet. are doing. After reaching the maximum temperature for brazing, that is, after the fillet for brazing is formed, cooling is performed in the cooling zone after leaving the heating zone, but it takes a considerable amount of time to leave the heating zone. . This is because the line has to be a certain length in order to prevent 820 Y α from flowing into the brazing zone from the outside and to keep the dew point and oxygen concentration low.

(3)ろう付けゾーンを通過した後、連続炉内でファン
空冷することも考えられるが、Nガスの流動だけで炉の
温度制御をしている現行炉にとっては、これはろう付け
ゾーンの温度分布を変化させ、ろう付け性に影響を及ば
ず危険がある。
(3) After passing through the brazing zone, it is possible to air-cool the furnace in a continuous furnace with a fan, but for current furnaces that control the furnace temperature only by the flow of N gas, this is because the temperature in the brazing zone is too low. It is dangerous because it changes the distribution and does not affect brazability.

〔課題を解決するための手段〕[Means to solve the problem]

本発明はこれに鑑み種々検討の結果、ろう付け後の冷却
速度をコントロールすることにより、焼入れ処理を可能
にし、ろう付け後のコア強度及びコア部材の耐孔食性を
改善したAI又はAl合金の非腐食性フラックスろう付
(プ方法を開発したものである。
In view of this, as a result of various studies, the present invention has developed an AI or Al alloy that enables quenching treatment and improves the core strength and pitting corrosion resistance of the core member after brazing by controlling the cooling rate after brazing. A non-corrosive flux brazing method was developed.

即ち本発明は、露点−40℃以下、酸素濃度11000
1)t)以下の不活性ガス雰囲気としたろう付け用連続
炉内に、Al又はAl合金からなるろう付け部材を搬入
移送して加熱ろう付けする非腐食性フラックスろう付け
方法において、加熱ろう付けしたろう付け部材を500
℃以上の温度で別系統の搬出系に移載し、急速に炉外に
取出し、冷却装置に導入して急速に冷却することを特徴
とするもので、加熱ろう付けしたろう付け部材を冷却装
置内で500℃から200℃まで100℃/min以上
の冷却速度で冷却する。
That is, the present invention has a dew point of -40°C or lower and an oxygen concentration of 11,000°C.
1) t) In a non-corrosive flux brazing method in which a brazing member made of Al or Al alloy is transported and heated into a continuous brazing furnace with an inert gas atmosphere as shown below, heat brazing is performed. 500 pieces of brazed parts
It is characterized by transferring the brazed parts to a separate delivery system at a temperature of ℃ or higher, rapidly taking them out of the furnace, and introducing them into a cooling device for rapid cooling. Cool from 500°C to 200°C at a cooling rate of 100°C/min or more.

〔作 用〕[For production]

本発明は上記の如くろう付けゾーン以後を別系統の搬送
系を使用し、ろう付け部材を短時間のうちに連続炉から
取出し、冷却装置内へ導入するとともに、冷却装置内で
500 ’Cから200℃まで急速に冷却することによ
り、ろう付け部材の粗大析出物生成を抑制し、ろう付け
性を低下させることな−くろう付け部材の焼入れ処理を
可能にしたものである。
As described above, the present invention uses a separate conveyance system after the brazing zone, takes out the brazing parts from the continuous furnace in a short time, introduces them into the cooling device, and heats them from 50'C in the cooling device. Rapid cooling to 200° C. suppresses the formation of coarse precipitates in the brazing member, making it possible to harden the brazing member without reducing brazing properties.

本発明において500℃から200℃までの冷却速度を
100℃/min以上としたのは、JIS 6951合
金、 JIS 7NO1合金等自動車用熱交換器に使用
される熱処理合金がこの温度域でMgzSi。
In the present invention, the cooling rate from 500°C to 200°C is set to 100°C/min or more because heat-treated alloys used in automobile heat exchangers, such as JIS 6951 alloy and JIS 7NO1 alloy, cannot be heated to MgzSi in this temperature range.

MVZnz等の粗大析出物を生成するのを抑制するため
であり、これ等粗大析出物を生成させない冷却速度は合
金によっても異なるが100’C/min以上が必要で
ある。
This is to suppress the formation of coarse precipitates such as MVZnz, and the cooling rate for preventing the formation of such coarse precipitates is required to be 100'C/min or more, although it varies depending on the alloy.

焼入れのためには、空気、水スプレー等適当な冷却手段
を講ずればよい。また溶体化が必要な場合には、別の加
熱炉内で所定温度に所定時間加熱すればよい。
For hardening, appropriate cooling means such as air or water spray may be used. If solution treatment is required, the material may be heated to a predetermined temperature for a predetermined time in a separate heating furnace.

(実施例) 以下本発明を実施例について詳細に説明1−る。(Example) Hereinafter, the present invention will be explained in detail with reference to Examples.

実施例(1) 第1図に示すように加熱ゾーン(2)の後に、メツシュ
ベルト(6)とは別のメツシュベルト(コンベア)(6
’)による搬送系からなる高速取出ゾーン(3゛)とし
た。加熱ゾーン(2)のメツシュベルト(6)の移動速
度は500 g/minとし、600℃でのろう付け加
熱ろう付Cプを可能にした。
Example (1) As shown in FIG. 1, a mesh belt (conveyor) (6) separate from the mesh belt (6) is installed after the heating zone (2).
A high-speed extraction zone (3゛) consisting of a conveyance system using The moving speed of the mesh belt (6) in the heating zone (2) was set at 500 g/min to enable brazing heating at 600°C.

高速取出しゾーンは移動速度を500〜10000、s
 / m i nと可変とし、ろう付け部材を500℃
以上の温度から炉外に取り出すようにした。移動速度の
異なるメツシュベルト(6)、 (6’ )間にろう付
け部材の移動はろう材が溶融している状態で行なわれる
ため、取出側の速度をろう付け部材の乗り換え時には加
熱ゾーンと同速度とし、半分以上取出メツシュベルトに
乗った竣は高速とする方式を採用した。取出メツシュベ
ルト端部(加熱ゾーン側)は上下動する方式を取り、メ
ツシュベルト間の乗換えをスムーズに行なっIこ 。
The high-speed extraction zone has a moving speed of 500 to 10,000 seconds.
/min, and the brazed parts were heated to 500℃.
It was decided to take it out of the furnace once the temperature exceeded that level. Since the brazing parts are moved between the mesh belts (6) and (6'), which have different moving speeds, while the brazing metal is molten, the speed on the extraction side should be set to the same speed as the heating zone when changing the brazing parts. We adopted a system in which the completion speed is high when more than half of the material has been removed from the mesh belt. The end of the extraction mesh belt (heating zone side) moves up and down, allowing smooth transfer between mesh belts.

またろう付け炉から冷却装置への乗りかえも同上の方式
で同期させて行なった。冷却装置は人気をファンでろう
付け部材にあてる方式と水スプレーを吹き付ける方式を
とった。
The changeover from the brazing furnace to the cooling system was also performed in synchronization using the same method as above. The cooling system uses two popular methods: one that uses a fan to hit the brazed parts, and the other that uses water spray.

このようにしてJIS 6951合金板(厚さ2.Oa
++)を600 ’Cに加熱した後、第1表に示す条件
で炉外に取出し、冷却装置により冷却した。これについ
て4日間放置した後、引張試験により引張強さを測定し
た。また5%NaC,f!液中で白金電極を対極として
電流密度’1mA/ciで1時間アノード電解を行ない
、断面の組織観察により粒界腐食の発生の有無を調べた
。その結果を第1表に併記した。
In this way, JIS 6951 alloy plate (thickness 2.Oa
++) was heated to 600'C, then taken out of the furnace under the conditions shown in Table 1, and cooled by a cooling device. After this was left for 4 days, the tensile strength was measured by a tensile test. Also 5% NaC, f! Anodic electrolysis was performed in the solution for 1 hour at a current density of 1 mA/ci using a platinum electrode as a counter electrode, and the presence or absence of intergranular corrosion was investigated by observing the structure of the cross section. The results are also listed in Table 1.

第1表から明らかなように、500℃以上の温度より炉
外に取出し、冷却装置で100℃/min以上の速度で
冷却した本発明方法Nα1〜5によるものは、何れも引
張強さが高く、粒界腐食を生ぜず、従来方法NQIOに
比較し、はるかに優れていることが判る。
As is clear from Table 1, the products according to the present invention method Nα1 to Nα5, which were taken out of the furnace from a temperature of 500°C or higher and cooled at a rate of 100°C/min or higher with a cooling device, had high tensile strength. It can be seen that this method does not cause intergranular corrosion and is far superior to the conventional method NQIO.

これに対し加熱炉からの引出温度が500℃より低い比
較方法Nα5〜7及び取出温度から200℃までの平均
冷却速度が100 ’C/minより低い比較方法No
、 8〜9は何れも強度が低く、特に比較方法Nα7〜
9では粒界腐食を生ずることが判る。
On the other hand, Comparative Methods No. 5 to 7 in which the drawing temperature from the heating furnace is lower than 500°C and Comparative Method No.
, 8 to 9 all have low strength, especially comparison method Nα7 to
9, it can be seen that intergranular corrosion occurs.

実施例(2) 実施例(1)−と同様にしてJIS 3003合金板(
厚さ2.0m>を600℃に加熱した後第2表に示す条
件で炉外に取出し、冷却装置により冷却した。
Example (2) JIS 3003 alloy plate (
2.0 m thick was heated to 600° C., then taken out of the furnace under the conditions shown in Table 2, and cooled by a cooling device.

これについて実施例(1)と同様にして引張強ざと粒界
腐食の発生を調べた。その結果を第2表に示す。
Regarding this, tensile strength and occurrence of intergranular corrosion were investigated in the same manner as in Example (1). The results are shown in Table 2.

第2表から明らかなように、3003合金は非熱処理型
の合金のため本発明方法による強度の向上は望めないが
、500℃以上の温度より炉外に取出し、冷却装置によ
って100℃/min以上の冷却速度で冷却した本発明
製造法によるものは、粒界腐食感受性が顕著に低下する
ことが判る。
As is clear from Table 2, since the 3003 alloy is a non-heat treated alloy, it cannot be expected that the strength of the 3003 alloy can be improved by the method of the present invention. It can be seen that the susceptibility to intergranular corrosion is significantly reduced in the production method of the present invention, which is cooled at a cooling rate of .

〔発明の効果〕〔Effect of the invention〕

このように本発明によればl又はAl合金の非腐食性フ
ラックスろう付け法において熱処理合金を使用し、薄肉
高強度材からなる熱交換器の製造が可能となり、従来か
ら使用されているプレージングシートの芯材であるJI
S 3003合金(Al−Mn系〉の粒界腐食感受性を
低くすることができる等工業上顕著な効果を奏するもの
である。
As described above, according to the present invention, it is possible to manufacture a heat exchanger made of a thin, high-strength material by using a heat-treated alloy in a non-corrosive flux brazing method for Al or Al alloy, and it is possible to manufacture a heat exchanger made of a thin-walled high-strength material. JI, the core material of the sheet
This has industrially significant effects such as being able to lower the intergranular corrosion susceptibility of S3003 alloy (Al-Mn type).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における連続炉の加熱ゾーンと炉外取出
の搬送・搬出系統の一例を示す説明図、第2図は従来の
非腐食性フラックスろう付け炉の一例を示す説明図、第
3図はコンデンサーの一例を示す正面図、第4図はラジ
ェーターの一例を示す斜視図である。 1、予熱ゾーン 2、加熱ゾーン 3、冷却ゾーン 4、入口 5、出口 6、6’ 、メツシュベルト 7.7’、r+ガス供給口 8゜乾式洗浄装置 9、押出多穴管 10、フィン 11、電縫チューブ 12、フィン 13、ヘッダー 14、タンク
FIG. 1 is an explanatory diagram showing an example of the heating zone of the continuous furnace and the conveyance/export system for taking out of the furnace in the present invention, FIG. 2 is an explanatory diagram showing an example of a conventional non-corrosive flux brazing furnace, and FIG. The figure is a front view showing an example of a condenser, and FIG. 4 is a perspective view showing an example of a radiator. 1, preheating zone 2, heating zone 3, cooling zone 4, inlet 5, outlet 6, 6', mesh belt 7.7', r+ gas supply port 8° dry cleaning device 9, extruded multi-hole tube 10, fin 11, electric Sewn tube 12, fin 13, header 14, tank

Claims (2)

【特許請求の範囲】[Claims] (1)露点−40℃以下、酸素濃度1000PPm以下
の不活性ガス雰囲気としたろう付け用連続炉内に、Al
又はAl合金からなるろう付け部材を搬入移送して加熱
ろう付けする非腐食性フラックスろう付け方法において
、加熱ろう付けしたろう付け部材を500℃以上の温度
で別系統の搬出系に移載し、急速に炉外に取出し、冷却
装置に導入して急速に冷却することを特徴とするAl又
はAl合金の非腐食性フラックスろう付け方法。
(1) Al
Or, in a non-corrosive flux brazing method in which a brazing member made of an Al alloy is carried in and transferred and heat-brazed, the heat-brazed brazing member is transferred to a separate delivery system at a temperature of 500°C or higher, A non-corrosive flux brazing method for Al or Al alloy, characterized by rapidly taking it out of the furnace and introducing it into a cooling device for rapid cooling.
(2)加熱ろう付けしたろう付け部材を冷却装置内で5
00℃から200℃まで100℃/min以上の冷却速
度で冷却する請求項(1)記載のAl又はAl合金の非
腐食性フラックスろう付け方法。
(2) Place the heat-brazed brazing parts in the cooling device for 5 minutes.
2. The non-corrosive flux brazing method for Al or Al alloy according to claim 1, wherein cooling is performed from 00°C to 200°C at a cooling rate of 100°C/min or more.
JP20531888A 1988-08-18 1988-08-18 Non-corrosive flux brazing method of al or al alloy Pending JPH0255663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20531888A JPH0255663A (en) 1988-08-18 1988-08-18 Non-corrosive flux brazing method of al or al alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20531888A JPH0255663A (en) 1988-08-18 1988-08-18 Non-corrosive flux brazing method of al or al alloy

Publications (1)

Publication Number Publication Date
JPH0255663A true JPH0255663A (en) 1990-02-26

Family

ID=16504964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20531888A Pending JPH0255663A (en) 1988-08-18 1988-08-18 Non-corrosive flux brazing method of al or al alloy

Country Status (1)

Country Link
JP (1) JPH0255663A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5333776A (en) * 1993-09-30 1994-08-02 Air Products And Chemicals, Inc. Atmospheres for brazing aluminum and aluminum alloys

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5333776A (en) * 1993-09-30 1994-08-02 Air Products And Chemicals, Inc. Atmospheres for brazing aluminum and aluminum alloys

Similar Documents

Publication Publication Date Title
KR0139548B1 (en) Method pof manufacturing heat exchanger
CN104105804B (en) High corrosion-resistant aluminium alloy brazing sheet material and the runner formation part using it
JP2006045667A (en) Heat exchanger tube made of aluminum and its production method
JP2007517986A (en) Highly conductive finstock alloy, manufacturing method and resulting product
CN111299322A (en) Preparation method of brazing aluminum alloy material and brazing aluminum alloy material
CN101633105B (en) Process and equipment for producing copper-aluminum compound busbar
CN112955281A (en) Aluminum alloy brazing sheet and method for producing same
CN107312952A (en) A kind of high air-heater bar formula radiating is around fin aluminium strip and preparation method thereof
JPH0255663A (en) Non-corrosive flux brazing method of al or al alloy
JPH03170646A (en) Manufacture of copper alloy having fine crystalline grains as well as low strength
JP5545798B2 (en) Method for producing aluminum alloy fin material for heat exchanger
JPH03193849A (en) Copper alloy having fine crystalline grain and low strength and its production
CN108359847A (en) A kind of high-strength aluminum alloy and its production technology
CN108456766B (en) Aluminum chloride molten salt for rapidly and continuously heating thin strip steel and heating method thereof
CN108715925B (en) Sodium chloride series molten salt for rapidly and continuously heating thin strip steel and heating method thereof
JPH03207842A (en) Thermal treatment of deposited hardened alloy products
JPH0688177A (en) Production of copper alloy pipe
Sabadash et al. fluXless BraZIng Of alumInIum allOYs BY BraZIng fIller metal Of al‒Ge sYstem
JPS6230861A (en) Manufacture of copper alloy having superior corrosion resistance
JPS6345352A (en) Production of thin aluminum sheet for brazing
JPS60145327A (en) Method and installation for continuous annealing of cold rolled steel sheet
JPS641202B2 (en)
CN111057974A (en) Hot processing technology of aluminum alloy section
JP3265869B2 (en) ERW steel pipe excellent in carbon dioxide gas corrosion resistance and its manufacturing method
JPH046234A (en) Copper alloy tube for heat exchanger and its manufacture