JPH0255361B2 - - Google Patents

Info

Publication number
JPH0255361B2
JPH0255361B2 JP57147828A JP14782882A JPH0255361B2 JP H0255361 B2 JPH0255361 B2 JP H0255361B2 JP 57147828 A JP57147828 A JP 57147828A JP 14782882 A JP14782882 A JP 14782882A JP H0255361 B2 JPH0255361 B2 JP H0255361B2
Authority
JP
Japan
Prior art keywords
reaction
reactor
sulfuric acid
fluorite
hydrogen fluoride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57147828A
Other languages
Japanese (ja)
Other versions
JPS5939703A (en
Inventor
Keiichi Nakaya
Tomohiro Goto
Masayuki Kitasako
Masaharu Iwasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP14782882A priority Critical patent/JPS5939703A/en
Priority to US06/501,119 priority patent/US4491571A/en
Priority to EP83105557A priority patent/EP0096817B1/en
Priority to DE8383105557T priority patent/DE3372854D1/en
Priority to CA000430186A priority patent/CA1191017A/en
Publication of JPS5939703A publication Critical patent/JPS5939703A/en
Publication of JPH0255361B2 publication Critical patent/JPH0255361B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は弗化水素の製造方法、特に反応装置内
の腐食を抑制した弗化水素の製造方法に係るもの
である。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing hydrogen fluoride, and particularly to a method for producing hydrogen fluoride in which corrosion within a reactor is suppressed.

(従来の技術) 従来工業的に採用されている弗化水素の製造方
法としては、例えば蛍石と硫酸をコニーダーと称
するプレリアクターで一挙に混合し、ペースト状
或はスラリー状で主に、原料顕熱にて反応熱を供
給しながら混合後、外熱式回転炉で反応を進める
方法(特公昭49−8636号公報参照)、或は流動層
を用い、SO3、H2O、H2SO4の存在下に主にSO3
とH2Oの反応熱によつて反応を完結させる方法
(特公昭42−652号公報参照)等が知られている。
(Prior art) As a conventional method for producing hydrogen fluoride that has been adopted industrially, for example, fluorite and sulfuric acid are mixed all at once in a prereactor called a co-kneader, and the raw materials are mainly mixed in the form of a paste or slurry. After mixing while supplying reaction heat with sensible heat, the reaction is proceeded in an external heating rotary furnace (see Japanese Patent Publication No. 1986-8636), or by using a fluidized bed, SO 3 , H 2 O, H 2 Mainly SO3 in the presence of SO4
A method is known in which the reaction is completed using the reaction heat of H 2 O and H 2 O (see Japanese Patent Publication No. 42-652).

(発明が解決しようとする問題点) しかしながら、前者の場合にはペースト状の高
粘性反応物を取扱うこと、後者の場合は高温であ
る為、両法共に材質的な問題が多く、工業的には
非常に高価な耐蝕性合金材料を要する欠点を有し
ている。
(Problems to be solved by the invention) However, in the former case, a paste-like highly viscous reactant is handled, and in the latter case, the temperature is high, so both methods have many material-related problems, making it difficult to use industrially. has the disadvantage of requiring very expensive corrosion-resistant alloy materials.

蛍石とSO3、H2O、H2SO4の反応における装置
や材質上の問題は、工業的実施において重要な問
題である。
Problems regarding equipment and materials in the reaction of fluorite with SO 3 , H 2 O, and H 2 SO 4 are important issues in industrial implementation.

(問題点を解決する為の手段) 本発明者等は、この種の反応において出来るだ
け高価な装置材料を用いずに効果的に防蝕する手
段を見出すことを目的として種々研究、検討した
結果、装置表面に反応生成物による被膜を形成せ
しめることにより、この被膜が形成されている限
り、140〜240℃の温度範囲では驚くべきことに鋼
鉄でさえも耐蝕性を示すことが見出された。
(Means for Solving the Problems) As a result of various studies and examinations, the present inventors have conducted various studies and examinations with the aim of finding means for effectively preventing corrosion in this type of reaction without using as much expensive equipment materials as possible. It has been surprisingly found that by forming a film of the reaction product on the surface of the device, even steel exhibits corrosion resistance in the temperature range of 140 to 240°C, as long as this film is formed.

かくして本発明は、複軸式パドル型撹拌機を備
えた反応器を用い、一端から原料を供給し、他端
から反応生成物を取り出しつつ、蛍石と無水硫
酸、水蒸気及び硫酸との反応により弗化水素を製
造する方法において、前記撹拌機は原料及び/又
は反応生成物中に埋没した状態にし、反応温度
140〜240℃において撹拌羽根先端部周速が20〜
150m/分で撹拌反応せしめることを特徴とする
弗化水素の製造方法を提供するものである。
Thus, the present invention uses a reactor equipped with a double-shaft paddle type stirrer, supplies raw materials from one end, and takes out a reaction product from the other end, while reacting fluorite with sulfuric anhydride, water vapor, and sulfuric acid. In the method for producing hydrogen fluoride, the stirrer is buried in the raw material and/or the reaction product, and the reaction temperature is
At 140 to 240℃, the circumferential speed of the tip of the stirring blade is 20 to
The present invention provides a method for producing hydrogen fluoride, characterized in that the reaction is stirred at 150 m/min.

本発明において、反応器は全体容積に比し、粉
体層表面が大きく、又表面粉体の内部との撹拌が
充分に行なわれる形式のものが用いられ、かかる
反応器としては、第1図及び第2図に部分説明図
を示した如く、2軸式パドル型撹拌器1を備えた
横型反応器2が用いられる。
In the present invention, the reactor used is one in which the surface of the powder layer is large compared to the total volume, and the surface powder is sufficiently stirred with the inside of the powder. As shown in a partial diagram in FIG. 2, a horizontal reactor 2 equipped with a two-shaft paddle stirrer 1 is used.

しかしながら、この反応器内雰囲気は弗酸、硫
酸、SO3等が存在した高温度雰囲気にある上に、
粉体との摩擦による摩耗との相乗効果から、工業
的に使用可能な耐蝕材料を極めて限られている。
However, the atmosphere inside this reactor is a high temperature atmosphere containing hydrofluoric acid, sulfuric acid, SO 3 , etc.
Due to the synergistic effect of wear caused by friction with powder, corrosion-resistant materials that can be used industrially are extremely limited.

本発明者等は、数多くの実験を重ねた結果、原
料や反応生成物と直接接触する撹拌羽根の材料表
面に反応生成物のスケール膜を形成せしめること
により、実質的に材料の腐食を抑制し得ることを
見出した。
As a result of numerous experiments, the present inventors have found that by forming a scale film of reaction products on the material surface of stirring blades that come into direct contact with raw materials and reaction products, corrosion of the material can be substantially suppressed. I found out what I got.

この理由は明らかでないが、この様な温度範囲
においては、スケール膜の内側である装置材料表
面は、腐食性雰囲気から隔離されると共に、粉体
との摩擦による摩耗がくなる等の両面から腐食が
抑制されるものと思われる。
The reason for this is not clear, but in such a temperature range, the surface of the equipment material inside the scale film is isolated from the corrosive atmosphere and is susceptible to corrosion from both sides, such as increased wear due to friction with powder. seems to be suppressed.

しかしながら、このような表面膜を回転する回
転羽根に常に形成する為には特別な条件が好まし
い事を見出した。即ち、通常粉体等の原料を横軸
に設けられた撹拌羽根で撹拌する場合、装置内に
導入される原料の充填高さは、装置上方に位置す
る撹拌羽根先端が原料によつて完全に没すること
をせず、原料から外へ出る程度迄にすることによ
り、充分な撹拌を行なおうとする場合が多いが、
この様な状態で反応を進めると、明確な理由は不
明であるが、スケール膜は維持出来ないことが判
明した。
However, it has been found that special conditions are preferable in order to always form such a surface film on a rotating rotary blade. In other words, when stirring raw materials such as powder with a stirring blade installed on the horizontal axis, the filling height of the raw material introduced into the device is such that the tip of the stirring blade located above the device is completely filled with the material. In many cases, sufficient agitation is attempted by not allowing the material to submerge, but only allowing it to escape from the raw materials.
Although the exact reason is unknown, it has been found that if the reaction is allowed to proceed under such conditions, the scale film cannot be maintained.

そこで、本発明においては、撹拌羽根が完全に
原料中に埋没する状態で撹拌し、反応を実施する
場合には撹拌羽根全体にスケール膜が形成され、
これが維持され、鋼鉄のような材料を用いても殆
んど腐食の進行が見られない。又、この様な状態
において危惧された充填原料表面における硫酸と
蛍石の混合不良による団塊の生成は、第3図に示
す様な状態にせしめることにより、生ずることな
く、又羽根の保護スケールも充分に生成すること
が見出された。
Therefore, in the present invention, when stirring is carried out with the stirring blade completely buried in the raw material to carry out the reaction, a scale film is formed on the entire stirring blade,
This is maintained, and even when materials such as steel are used, almost no progress of corrosion is observed. In addition, the formation of nodules due to poor mixing of sulfuric acid and fluorite on the surface of the filling material, which was feared under such conditions, does not occur by creating the condition shown in Figure 3, and the protective scale of the blades is also reduced. It was found that the product was produced satisfactorily.

即ち、第3図は反応器の縦断面の説明図であ
り、1はパドル型撹拌器、2は反応器本体であ
る。この様な装置において、撹拌羽根上部先端3
から充填原料表面4迄の距離aを、羽根先端回転
直径の約1〜30%、好ましくは2〜20%、更に好
ましくは2〜10%に保たしめる。
That is, FIG. 3 is an explanatory diagram of a longitudinal section of the reactor, in which 1 is a paddle type stirrer, and 2 is the reactor main body. In such a device, the upper tip 3 of the stirring blade
The distance a from the filling material surface 4 to the filling material surface 4 is maintained at approximately 1 to 30%, preferably 2 to 20%, and more preferably 2 to 10% of the rotating diameter of the blade tip.

又、硫酸と蛍石粉末との混合が十分でなくなる
と、撹拌羽根面の保護スケールに対して悪影響を
及ぼす。したがつて、硫酸は、噴霧するなどし
て、粉体表面のある程度広い範囲に均一に供給す
ることが好ましい。このとき、硫酸が噴霧される
部分では粉体表面の単位面積につき単位時間あた
りの硫酸の供給量が、500〜5000Kg/m2時であるこ
とが好ましい。この供給量が、500Kg/m2・時未満
の場合は、硫酸の噴霧範囲が徒に広がり、均一に
供給するためには、供給ノズルを多く設けるなど
の対策が必要になるので好ましくない。逆にこの
供給量が、5000Kg/m2時を超える場合は、硫酸と
蛍石との混合不良が生じて団塊が生成し、あるい
は保護スケールが剥離する恐れがあるので好まし
くない。さらに好ましい前記供給量の範囲は、
700〜3000Kg/m2時である。
Furthermore, if the sulfuric acid and the fluorite powder are not mixed sufficiently, the protective scale on the stirring blade surface will be adversely affected. Therefore, it is preferable to uniformly supply the sulfuric acid to a rather wide range on the powder surface by spraying or the like. At this time, in the part where sulfuric acid is sprayed, it is preferable that the amount of sulfuric acid supplied per unit time per unit area of the powder surface is 500 to 5000 kg/m 2 hours. If this supply amount is less than 500 Kg/m 2 ·hr, the spray range of sulfuric acid will be unnecessarily widened, and countermeasures such as providing a large number of supply nozzles will be required to uniformly supply the sulfuric acid, which is not preferable. On the other hand, if this supply amount exceeds 5000 Kg/m 2 hr, it is not preferable because there is a risk of poor mixing of sulfuric acid and fluorite, resulting in formation of nodules or peeling of the protective scale. A more preferable range of the supply amount is:
700~3000Kg/ m2 .

又、硫酸と蛍石との混合を可及的速やかに行な
い、且羽根に付着したスケールの維持が行なえる
撹拌羽根の回転速度としては、羽根先端部周速に
おいて20〜150m/分、好ましくは40〜100m/
分、更に好ましくは50〜80m/分がよく、これよ
りも速い場合には撹拌羽根先端の摩耗が早くな
り、又遅過ぎると充分な撹拌が行なわれなくな
る。又、隣り合う軸の羽根同志、或は羽根先端と
反応器本体の内壁とがあまり接近し過ぎると、羽
根の回転に際し、羽根に設けられた保護膜(スケ
ール)が剥離するので注意を要す。実験の結果、
許容される上記部分の最接近距離は3mm以上、好
ましくは5mm以上確保するのがよい。
In addition, the rotational speed of the stirring blade that can mix sulfuric acid and fluorite as quickly as possible and maintain the scale attached to the blade is 20 to 150 m/min at the peripheral speed of the blade tip, preferably 20 to 150 m/min. 40~100m/
min, more preferably 50 to 80 m/min; if the speed is faster than this, the tip of the stirring blade will wear out quickly, and if it is too slow, sufficient stirring will not be achieved. Also, if the blades on adjacent shafts or the tips of the blades get too close to the inner wall of the reactor body, the protective film (scale) provided on the blades will peel off when the blades rotate, so care must be taken. . results of the experiment,
The allowable closest distance between the above portions is 3 mm or more, preferably 5 mm or more.

SO3とH2Oガスは常識的には原料充填層中を通
過させるように、例えば該充填層下部から供給す
ることが考えられるが、こうするとノズルの閉塞
等の支障を来たす。本発明者等は種々実験の結
果、横型反応器の上部から反応器上部内壁と原料
充填表面迄の間の空間にSO3、H2Oガスを2流体
ノズル、好ましくは同心ノズルにて供給すること
により、これらガスが反応してH2SO4を生成す
る際発生する反応熱によつて目的とする反応器内
温度を全体的に保持し、制御し得ることを見いだ
した。
Common sense suggests that the SO 3 and H 2 O gases be passed through the raw material packed bed, for example, supplied from the bottom of the packed bed, but this would cause problems such as clogging of the nozzle. As a result of various experiments, the present inventors supplied SO 3 and H 2 O gas from the upper part of the horizontal reactor to the space between the upper inner wall of the reactor and the raw material filling surface using a two-fluid nozzle, preferably a concentric nozzle. The inventors have discovered that by doing so, the desired temperature inside the reactor can be maintained and controlled as a whole by the heat of reaction generated when these gases react to produce H 2 SO 4 .

本発明の製造方法においては、反応器の一方の
端に供給された蛍石が、反応して弗化水素と石膏
を生成しながら反応器の他端に向かつて移動す
る。反応器中に、SO3、H2Oガスを供給する位置
は、反応器の中間点より上流、特に蛍石の供給位
置の近傍が好ましい。
In the production method of the present invention, fluorite supplied to one end of the reactor moves toward the other end of the reactor while reacting to generate hydrogen fluoride and gypsum. The position at which the SO 3 and H 2 O gases are supplied into the reactor is preferably upstream from the midpoint of the reactor, particularly near the fluorite supply position.

本発明における基本反応は蛍石と硫酸が反応
し、弗化水素と石膏が生成するものであり、撹拌
羽根表面に保護膜として形成されるスケールはこ
の石膏である。そしてこの反応は吸熱反応であ
る。
The basic reaction in the present invention is that fluorite and sulfuric acid react to produce hydrogen fluoride and gypsum, and the scale formed as a protective film on the surface of the stirring blade is this gypsum. And this reaction is an endothermic reaction.

そして、硫酸の供給を、上記の如くSO3とH2O
だけで行なう場合にはこの反応熱量の方が反応に
要する吸熱量より多くなり、不必要に高熱とな
る。この為、一部は硫酸及び/又は発煙硫酸を供
給して不必要な反応熱をおさえることが出来る。
硫酸の供給位置としては、SO3、H2Oガス供給位
置より後方で、蛍石供給位置から他端方向に反応
器全長の1/10〜2/3程度離れた位置が好まし
い。この様に各原料を投入して反応せしめること
により、従来の様な粘性の高い石膏の生成が避け
られる。
Then, the supply of sulfuric acid was changed to SO 3 and H 2 O as described above.
If the reaction is carried out alone, the amount of heat of this reaction will be greater than the amount of endothermic heat required for the reaction, resulting in an unnecessarily high temperature. For this reason, unnecessary reaction heat can be suppressed by partially supplying sulfuric acid and/or fuming sulfuric acid.
The sulfuric acid supply position is preferably located behind the SO 3 and H 2 O gas supply position and approximately 1/10 to 2/3 of the total length of the reactor from the fluorite supply position toward the other end. By introducing and reacting each raw material in this way, the production of highly viscous gypsum, which is conventional, can be avoided.

反応により発生する弗化水素ガスの取出しの
為、前記反応器内上部空間でのガス流速は3m/
秒以下、好ましくは2m/秒以下が適当であり、
それ以上になると同伴粉塵量が増し、精製工程で
操作に支障を来たす。
In order to take out the hydrogen fluoride gas generated by the reaction, the gas flow rate in the upper space of the reactor is 3 m/min.
2 m/sec or less, preferably 2 m/sec or less,
If the amount exceeds that amount, the amount of entrained dust will increase, causing problems in the refining process.

以下本発明を実施例により説明する。 The present invention will be explained below with reference to Examples.

第1〜3図に示すような、2軸式パドル型撹拌
器を備えた炭素鋼製試験反応器を使用した。撹拌
器は、軸中心から羽根の先端までの距離4.1cm、
羽根の厚さ5mm、幅10mm、取り付け角度が軸長に
対しほぼ平行の炭素鋼製の羽根を、1軸当たり17
枚有する。反応器は、内容積約10(幅17.5cm、
長さ50cm、高さ11.4cm)で、反応器内面と撹拌羽
根先端との間隔は0.4cmであつた。
A carbon steel test reactor equipped with a twin-screw paddle stirrer as shown in Figures 1-3 was used. The stirrer has a distance of 4.1 cm from the center of the shaft to the tip of the blade.
Carbon steel blades with a blade thickness of 5 mm, a width of 10 mm, and an installation angle almost parallel to the shaft length are installed at 17 mm per shaft.
Have one. The reactor has an internal volume of approximately 10 (width 17.5 cm,
The length was 50 cm and the height was 11.4 cm), and the distance between the inner surface of the reactor and the tip of the stirring blade was 0.4 cm.

この反応器の一端から、蛍石粉末を42Kg/時で
連続的に供給し、無水硫酸と水蒸気を、蛍石の供
給位置から他端方向へ9cmの位置に2流体ノズル
を設けて、それぞれ7.2Kg/時及び2.3Kg/時で供
給し、反応器の蛍石供給位置から他端方向へ17.5
cmの位置にノズルを設けて、6%発煙硫酸(6重
量%のSO3を溶解したH2SO4)を反応器内の粉体
表面上に直径17cmの円形に噴霧して供給した。発
煙硫酸の供給量は40Kg/時であつた。このとき上
記円内での単位面積・単位時間あたりの供給量
は、1760Kg/m2・時となる。
Fluorite powder was continuously supplied from one end of the reactor at a rate of 42 kg/hour, and a two-fluid nozzle was installed at a position 9 cm from the fluorite supply position to the other end to supply sulfuric acid anhydride and water vapor at a rate of 7.2 kg/hour, respectively. Kg/hour and 2.3Kg/hour, 17.5 kg/hour from the fluorite supply position of the reactor towards the other end.
A nozzle was provided at a position of 1.5 cm, and 6% oleum (H 2 SO 4 in which 6% by weight of SO 3 was dissolved) was sprayed onto the powder surface in the reactor in a circular shape with a diameter of 17 cm. The amount of fuming sulfuric acid supplied was 40 kg/hour. At this time, the supply amount per unit area and unit time within the above circle is 1760Kg/m 2 ·hour.

原料粉体の表面と撹拌羽根の位置関係は、第3
図のaの距離が3mmになるようにした。そして撹
拌羽根の先端の周速は約60m/分とした。
The positional relationship between the surface of the raw material powder and the stirring blade is determined by the third
The distance a in the figure was set to 3 mm. The circumferential speed of the tip of the stirring blade was approximately 60 m/min.

上記の条件で反応を実施したところ、反応器内
の温度は170〜180℃に維持された。反応器内上部
空間でのガス流速は、1.8m/秒であり、収率は
蛍石当たり75%であつた。
When the reaction was carried out under the above conditions, the temperature inside the reactor was maintained at 170-180°C. The gas flow rate in the head space of the reactor was 1.8 m/sec, and the yield was 75% per fluorite.

又、撹拌羽根には生成した石膏の保護膜が厚さ
1〜3mm程度で付着しており、上記弗化水素の製
造を790時間実施したが、撹拌器の腐蝕は殆んど
見られなかつた。
In addition, a protective film of gypsum formed was attached to the stirring blades with a thickness of about 1 to 3 mm, and although the above hydrogen fluoride production was carried out for 790 hours, almost no corrosion was observed in the stirring blades. .

比較例 撹拌器の羽根先端が充填原料表面から1.5cm突
き出るようにしたこと以外は実施例と同様に操作
した。羽根の表面には保護被覆は形成されず、16
時間後には羽根は摩耗及び腐蝕の為約6mm羽根長
さが減じていた。
Comparative Example The same procedure as in Example was carried out except that the blade tip of the stirrer was made to protrude 1.5 cm from the surface of the packed raw material. No protective coating is formed on the surface of the blade, 16
After some time, the blade length had decreased by approximately 6 mm due to wear and corrosion.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施に用いられる2軸式パド
ル撹拌器を備えた横型反応器の一例を説明する
為、その天板を除いた部分斜視図。第2図は第1
図反応器の側面を一部切り取つた側面図。第3図
は第1図反応器の縦断面説明図。 1:パドル撹拌器、2:反応器本体、3:羽根
先端、4:充填原料表面。
FIG. 1 is a partial perspective view with the top plate removed to explain an example of a horizontal reactor equipped with a two-shaft paddle stirrer used in the practice of the present invention. Figure 2 is the first
Figure 1 is a partially cutaway side view of the reactor. FIG. 3 is an explanatory longitudinal cross-sectional view of the reactor shown in FIG. 1: Paddle stirrer, 2: Reactor main body, 3: Blade tip, 4: Filled raw material surface.

Claims (1)

【特許請求の範囲】[Claims] 1 複軸式パドル型撹拌機を備えた反応器を用
い、一端から原料を供給し、他端から反応生成物
を取り出しつつ、蛍石と無水硫酸、水蒸気及び硫
酸との反応により弗化水素を製造する方法におい
て、前記撹拌機は原料及び/又は反応生成物中に
埋没した状態にし、反応温度140〜240℃において
撹拌羽根先端部周速が20〜150m/分で撹拌反応
せしめることを特徴とする弗化水素の製造方法。
1 Using a reactor equipped with a double-shaft paddle type stirrer, hydrogen fluoride is produced by the reaction of fluorite, sulfuric anhydride, water vapor, and sulfuric acid while supplying raw materials from one end and taking out the reaction product from the other end. The manufacturing method is characterized in that the stirrer is buried in the raw material and/or the reaction product, and the stirring reaction is carried out at a reaction temperature of 140 to 240°C and a circumferential speed of the tip of the stirring blade of 20 to 150 m/min. A method for producing hydrogen fluoride.
JP14782882A 1982-06-11 1982-08-27 Manufacture of hydrogen fluoride Granted JPS5939703A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP14782882A JPS5939703A (en) 1982-08-27 1982-08-27 Manufacture of hydrogen fluoride
US06/501,119 US4491571A (en) 1982-06-11 1983-06-06 Process for producing hydrogen fluoride
EP83105557A EP0096817B1 (en) 1982-06-11 1983-06-06 Process for producing hydrogen fluoride
DE8383105557T DE3372854D1 (en) 1982-06-11 1983-06-06 Process for producing hydrogen fluoride
CA000430186A CA1191017A (en) 1982-06-11 1983-06-10 Process for producing hydrogen fluoride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14782882A JPS5939703A (en) 1982-08-27 1982-08-27 Manufacture of hydrogen fluoride

Publications (2)

Publication Number Publication Date
JPS5939703A JPS5939703A (en) 1984-03-05
JPH0255361B2 true JPH0255361B2 (en) 1990-11-27

Family

ID=15439151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14782882A Granted JPS5939703A (en) 1982-06-11 1982-08-27 Manufacture of hydrogen fluoride

Country Status (1)

Country Link
JP (1) JPS5939703A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4599673B2 (en) * 2000-07-10 2010-12-15 ダイキン工業株式会社 Hydrogen fluoride production apparatus and production method
JP2011519335A (en) * 2008-04-22 2011-07-07 ゾルファイ フルーオル ゲゼルシャフト ミット ベシュレンクテル ハフツング Production of hydrogen fluoride from waste containing fluorite or calcium fluoride

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5759626A (en) * 1980-09-30 1982-04-10 Asahi Chem Ind Co Ltd Protection of stirring shaft

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5759626A (en) * 1980-09-30 1982-04-10 Asahi Chem Ind Co Ltd Protection of stirring shaft

Also Published As

Publication number Publication date
JPS5939703A (en) 1984-03-05

Similar Documents

Publication Publication Date Title
JP4599673B2 (en) Hydrogen fluoride production apparatus and production method
US3361525A (en) Manufacture of oxides of the elements titanium, zirconium, iron, aluminum and silicon
JPH0569042B2 (en)
KR20020003867A (en) Device and method for producing molten salts and use thereof
JPH0255361B2 (en)
US4010245A (en) Production of hydrogen fluoride and calcium sulfate
PL208220B1 (en) Method for producing melamine
US5683669A (en) Metal chloride generator and improved process for the production of metal chlorides used in the manufacture of titanium dioxide by the chloride process
EP0096817B1 (en) Process for producing hydrogen fluoride
ES2246071T3 (en) PROCEDURE TO PERFORM REACTIONS ON FLUIDIZED PARTICLE MILKS.
US3063815A (en) Apparatus for the continuous production of hydrogen halides
WO2016006527A1 (en) Method for producing hydrogen fluoride
US2945747A (en) Apparatus for the granulation of fertilizers
KR890003670B1 (en) Process for manufacture of hydro-fluoric acid by reaction of sulphuric acid with fluorospar in rotating oven
US5147625A (en) Process for the preparation of phosphorous acid
US3393043A (en) Method and apparatus for producing alkali metal and/or alkali-earth metal phosphates
US5540915A (en) Method for making highly oxidized lead powder used for a lead storage battery
CS204016B2 (en) Method of producing nitrous oxide by the thermal decomposition of ammonium nitrate
JPS6256085B2 (en)
JP4848098B2 (en) Method for producing hydrogen fluoride in a rotary tube furnace
US1497173A (en) Process of and apparatus for oxidizing gases
US3284159A (en) Pigmentary tio2 manufacture
US3387922A (en) Method and apparatus for producing alkali metal and/or alkali earth metal phosphates
JP2002316805A (en) Method and device for manufacturing hydrogen fluoride
US4455423A (en) Process for the manufacture of cyanuric acid by heating urea at a temperature above its melting point