JPH0254951A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0254951A
JPH0254951A JP20699488A JP20699488A JPH0254951A JP H0254951 A JPH0254951 A JP H0254951A JP 20699488 A JP20699488 A JP 20699488A JP 20699488 A JP20699488 A JP 20699488A JP H0254951 A JPH0254951 A JP H0254951A
Authority
JP
Japan
Prior art keywords
wiring
layer
film
titanium nitride
line width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20699488A
Other languages
Japanese (ja)
Inventor
Kazuhiko Katami
形見 和彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP20699488A priority Critical patent/JPH0254951A/en
Publication of JPH0254951A publication Critical patent/JPH0254951A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To improve coating efficiency and breakdown strength of an interlayer insulating film or a coating layer formed in a succeeding process and to prevent disconnection or short circuit of wiring in a semiconductor device of lamination structure which is composed of a conductive film of two or more layers by making a line width of a conductive film of an uppermost layer smaller than that of a conductive film of a lower layer. CONSTITUTION:An Si substrate 101 is covered with an SiO2 film 102. A titanium nitride 103 of barrier metal which becomes a first wiring is formed at a central section of the surface and a layer 104 of aluminum/copper alloy which is main wiring material is laminated thereon. Then a titanium nitride layer 105 of cap metal which becomes a second wiring is provided thereon; a line width thereof is made smaller than that of layers 104, 103 which are placed below the layer 105. According to this constitution, coating efficiency of an interlayer insulating film 106 which covers these wirings as well as the second wiring 107 which covers the layer 106 is improved, thus also improving breakdown strength of the film 106 and preventing disconnection of the wiring 107.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、半導体装置における配線の構造並びにその形
状に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the structure and shape of wiring in a semiconductor device.

[従来の技術] 従来の半導体装置では、一般にその配線はアルミニウム
・シリコン合金単層でできており、その膜厚もy o 
o o K1度であった。しかし近年の微細化の進展に
より、コンタクト抵抗の低減やエレクトロマイグレーシ
ョン耐性の向上環が必要となってきており、これらを改
善するために、従来前述のように単層酵造であった金属
配線を多層構造化し、例えば第3図のように、最下層に
バリアメタルとして第1の窒化チタン層303を100
0人形成し、シリコン基板3o1とアルミニウム・銅合
金層504との直接接触を避け、シリコンとアルミニウ
ムとの反応を防止した後に、主配線として、従来のアル
ミニウム・シリコン合金よりもエレクトロマイグレーシ
ョン耐圧が大キいアルミニウム・銅合金304を700
0X形成し、さらにその上に、キャップメタルとして第
2の窒化チタンJi3osを1oooX形成し、アルミ
ニウム・銅合金304中でアルミニウム結晶が局部的に
太き(成長する、いわゆるヒルロックを防止するととも
に、アルミニウム・銅合金層304表面での強い光の反
射防止することが必要不可欠となってきていた。このと
き、寸法制御精度をよくする必要上、エツチングはドラ
イエツチングで行なっており、しかも単一条件で5層を
同時に異方的にエツチングし、その形状は垂直になって
いた。
[Prior Art] In conventional semiconductor devices, the wiring is generally made of a single layer of aluminum-silicon alloy, and the film thickness is also yo
o o K1 degree. However, with the recent progress in miniaturization, it has become necessary to reduce contact resistance and improve electromigration resistance. For example, as shown in FIG.
After avoiding direct contact between the silicon substrate 3o1 and the aluminum/copper alloy layer 504 and preventing the reaction between silicon and aluminum, it is used as the main wiring, which has a higher electromigration withstand voltage than the conventional aluminum/silicon alloy. Hard aluminum/copper alloy 304 to 700
On top of that, a second titanium nitride Ji3os is formed as a cap metal to prevent so-called hillocks, where aluminum crystals locally thicken (grow) in the aluminum-copper alloy 304, and to - It has become essential to prevent the reflection of strong light on the surface of the copper alloy layer 304. At this time, in order to improve the precision of dimensional control, etching is performed by dry etching, and moreover, it is necessary to perform etching under a single condition. Five layers were etched anisotropically at the same time, and their shapes were vertical.

[発明が解決しようとする課題] しかしながら、前述の従来技術では、ドライエツチング
により異方的にエツチングしているために、その形状は
垂直になっており、後工程の層間絶縁膜(酸化珪素膜3
06)及び第2の配線(第2のアルミニウム・銅合金層
607)を形成する場合などにおいて、被覆性が劣化し
、配線層間の絶縁耐圧が低下したり、第2の配線が短絡
したり、断線することがあり、歩留シ及び信頼性が低下
する場合があった。
[Problems to be Solved by the Invention] However, in the above-mentioned conventional technology, since etching is performed anisotropically by dry etching, the shape is vertical, and the interlayer insulating film (silicon oxide film) 3
06) and when forming the second wiring (second aluminum/copper alloy layer 607), the coverage may deteriorate, the dielectric strength between the wiring layers may decrease, the second wiring may be short-circuited, Wires may break, resulting in lower yield and reliability.

本発明は、このような課題を解決するもので、その目的
とするところは、後工程の層間絶縁膜やさらにその上層
の配線層の被覆性を向上させ、絶縁耐圧の劣化や上層の
配線の短絡や断線を防止することのできるような形状を
有する2層以上の導電膜よりなる構造の配線を提供する
ところにある[課題な解決するための手段] 本発明は、少なくとも2層以上の導電膜より構成される
積層構造を有する配線の形状において、最上層の導電膜
の線幅が、その下層の導電膜の線幅よりも小さいことを
特徴とする。
The present invention is intended to solve these problems, and its purpose is to improve the coverage of the interlayer insulating film in the subsequent process and the wiring layer above it, thereby preventing deterioration of dielectric strength voltage and the wiring layer in the upper layer. [Means for Solving Problems] The present invention provides a wiring structure consisting of two or more layers of conductive films having a shape that can prevent short circuits and disconnections. In the shape of a wiring having a laminated structure composed of films, the line width of the uppermost conductive film is smaller than the line width of the lower conductive film.

[実施例] 第1図は、本発明の半導体装置の一実施例を示す主要断
面図であり、以下、第1図に基づき詳細に説明していく
[Embodiment] FIG. 1 is a main cross-sectional view showing an embodiment of a semiconductor device of the present invention, and a detailed explanation will be given below based on FIG. 1.

第1の配線はバリアメタルの窒化チタン105、主配線
材のアルミニウム・銅合金104.キャップメタルの窒
化チタン10505層より構成されており、最上層の窒
化チタン105の線幅はその下のアルミニウム・銅合金
104や窒化チタン1030線幅よりも小さくなってお
り、この様な形状になっていることにより、層間絶縁膜
106や第2の配線107の被覆性は良(なり、層間絶
縁膜の絶縁耐圧の劣化もないし、第2の配線の断線や短
絡する事もない。
The first wiring is titanium nitride 105 as a barrier metal, and aluminum/copper alloy 104 as the main wiring material. It is composed of a layer of titanium nitride 10505 as a cap metal, and the line width of the top layer titanium nitride 105 is smaller than the line width of the aluminum-copper alloy 104 and titanium nitride 1030 below, resulting in this shape. As a result, the coverage of the interlayer insulating film 106 and the second wiring 107 is good (there is no deterioration in the dielectric strength of the interlayer insulating film, and there is no disconnection or short circuit of the second wiring).

さらに、本発明の実施例における工程断面図を第2図(
α)〜C6)に示し、以下工程順に詳細に説明していく
Furthermore, FIG. 2 (
The steps are shown in α) to C6), and will be explained in detail in the order of the steps below.

まず最初に、第2図(cL)に示したように、半導体基
板201上方の酸化珪素膜202上に第1の窒化チタン
膜205を1oooX、アルミニウム・銅合金膜204
を7000X、第2の窒化チタン膜205を1oooi
、連続的に形成する。
First, as shown in FIG. 2(cL), a first titanium nitride film 205 is deposited at 1oooX on a silicon oxide film 202 above a semiconductor substrate 201, and an aluminum/copper alloy film 204 is deposited.
7000X, second titanium nitride film 205 at 1oooi
, forming continuously.

次に、第2図(b)のように、配線となるように設計さ
れた部分に7オトレジスト206によりパターンを形成
する。
Next, as shown in FIG. 2(b), a pattern is formed using a 7-photoresist 206 in a portion designed to become a wiring.

次に、第2図(C)のように、フォトレジスト206を
マスクとして第2の窒化チタン膜205を等方的にエツ
チングする。このとき、エツチングはドライエツチング
によって行なっており、その条件は、OF、=90sc
cm、02 =10sccm 、15Pa、200Wで
、この条件下では、窒化チタンは容易に等方的にエツチ
ングされ、エツチング時間を過剰にすることにより、第
2の窒化チタン205の線幅を7ナトレジスト2060
線幅よりも小さ(することができる。また、このエツチ
ング条件下ではアルミニウム・銅合金は全くエツチング
されない。
Next, as shown in FIG. 2C, the second titanium nitride film 205 is isotropically etched using the photoresist 206 as a mask. At this time, the etching was performed by dry etching, and the conditions were: OF, = 90sc
cm, 02 = 10 sccm, 15 Pa, 200 W. Under these conditions, titanium nitride is easily etched isotropically, and by excessive etching time, the line width of the second titanium nitride 205 is reduced to 7.
(can be smaller than the line width. Also, under these etching conditions, the aluminum-copper alloy is not etched at all.

引続き、第2図(tL)のように、アルミニウム・銅合
金膜204、及び第1の窒化チタン膜205を連続的に
エツチングする。このときのエツチング条件は、反応ガ
スが、BOI3=100cc、C1,=50cc、02
=5cc、圧力が6Pa、RIP電力が800Wである
Subsequently, as shown in FIG. 2 (tL), the aluminum-copper alloy film 204 and the first titanium nitride film 205 are continuously etched. The etching conditions at this time are that the reaction gas is BOI3=100cc, C1,=50cc, 02
=5cc, pressure is 6Pa, and RIP power is 800W.

最後に、第2図(e)のように、フォトレジスト206
を除去し、配線が形成される。
Finally, as shown in FIG. 2(e), the photoresist 206
is removed and wiring is formed.

なお本実施例においては、3層の導電膜より成る配線の
構造について示しているが、2層構造でも、4層以上の
構造でも同様の効果が期待できる[発明の効果コ 以上述べたように、本発明によれば、2層以上の導電膜
より成る多層構造の配線において、最上層の導電膜の線
幅がその下の導電膜の線幅よりも小さ(することにより
、後工程において形成される眉間絶縁膜や配線層の被覆
性を改善し、眉間絶縁膜の絶縁耐圧を向上させるととも
に、その上に形成される配線の断線や短絡を防止するこ
とができるという効果を有し、これにより高歩留りで高
信頼性の半導体装置を造ることができるようになった。
Although this example shows a wiring structure consisting of three layers of conductive films, the same effect can be expected with a two-layer structure or a structure with four or more layers. According to the present invention, in a wiring having a multilayer structure consisting of two or more layers of conductive films, the line width of the uppermost conductive film is smaller than the line width of the conductive film below it (by doing so, it is possible to form the conductive film in a later process). It has the effect of improving the coverage of the glabella insulating film and wiring layer, increasing the dielectric strength of the glabella insulating film, and preventing disconnection and short circuits of the wiring formed thereon. This has made it possible to manufacture high-yield, highly reliable semiconductor devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の半導体装置の一実施例を示す主要断
面図。 第2図(α)〜(e)は、本発明の半導体装置の製造工
程を示す断面図。 第3図は、従来の半導体装置を示す主要断面図101.
201.501・・・・・・シリコン基板102.20
2.!502・・・・・・第1の酸化珪素膜103.2
03,503・・・・・・第1の窒化チタン層 104.204,504・・・・・・第1のアルミニウ
ム・銅合金層 5.305・・・・・・第2の窒化チタン膜層 6・・・・・・・・・・・・・・・・・・第2の酸化珪
素膜(層間絶縁膜) 7・・・・・・・・・・・・・・・・・・第2のアルミ
ニウム・銅合金 ・・・・・・・・・・・・・・・・・・フォトレジスト
以上
FIG. 1 is a main sectional view showing an embodiment of a semiconductor device of the present invention. FIGS. 2(α) to 2(e) are cross-sectional views showing the manufacturing process of the semiconductor device of the present invention. FIG. 3 is a main cross-sectional view 101. showing a conventional semiconductor device.
201.501...Silicon substrate 102.20
2. ! 502...First silicon oxide film 103.2
03,503...First titanium nitride layer 104.204,504...First aluminum/copper alloy layer 5.305...Second titanium nitride film layer 6・・・・・・・・・・・・・・・・・・Second silicon oxide film (interlayer insulating film) 7・・・・・・・・・・・・・・・・・・2 Aluminum/copper alloy・・・・・・・・・・・・・・・More than photoresist

Claims (1)

【特許請求の範囲】[Claims] 少なくとも2層以上の導電膜より構成される積層構造を
有する半導体装置において、最上層の導電膜の線幅が、
その下層の導電膜の線幅よりも小さいことを特徴とする
半導体装置。
In a semiconductor device having a stacked structure composed of at least two or more conductive films, the line width of the uppermost conductive film is
A semiconductor device characterized in that the line width is smaller than that of an underlying conductive film.
JP20699488A 1988-08-19 1988-08-19 Semiconductor device Pending JPH0254951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20699488A JPH0254951A (en) 1988-08-19 1988-08-19 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20699488A JPH0254951A (en) 1988-08-19 1988-08-19 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH0254951A true JPH0254951A (en) 1990-02-23

Family

ID=16532426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20699488A Pending JPH0254951A (en) 1988-08-19 1988-08-19 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0254951A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0587695U (en) * 1992-04-24 1993-11-26 眞幸 小川 Signal device
US5363003A (en) * 1991-06-06 1994-11-08 Nippon Densan Corporation Motor and circuitry for protecting same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61242039A (en) * 1985-04-19 1986-10-28 Nec Corp Semiconductor device
JPS6242434A (en) * 1985-08-19 1987-02-24 Nec Corp Manufacture of semiconductor device
JPS62104141A (en) * 1985-10-31 1987-05-14 New Japan Radio Co Ltd Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61242039A (en) * 1985-04-19 1986-10-28 Nec Corp Semiconductor device
JPS6242434A (en) * 1985-08-19 1987-02-24 Nec Corp Manufacture of semiconductor device
JPS62104141A (en) * 1985-10-31 1987-05-14 New Japan Radio Co Ltd Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5363003A (en) * 1991-06-06 1994-11-08 Nippon Densan Corporation Motor and circuitry for protecting same
JPH0587695U (en) * 1992-04-24 1993-11-26 眞幸 小川 Signal device

Similar Documents

Publication Publication Date Title
JPH10284600A (en) Semiconductor device and fabrication thereof
JPH0254951A (en) Semiconductor device
JPS63240045A (en) Semiconductor device
KR940002757B1 (en) Bipolar type semiconductor device
JPH01248537A (en) Semiconductor integrated circuit
JPH05226475A (en) Manufacture of semiconductor device
JPH0642481B2 (en) Manufacturing method of semiconductor device
KR100808794B1 (en) Method for fabricating semiconductor device
JPS6347952A (en) Semiconductor device
JPH09153488A (en) Insulation film structure of semiconductor element and its flattening method
JPH05335307A (en) Semiconductor integrated circuit device and its production
JPH0758204A (en) Manufacture of semiconductor device
JPH0936222A (en) Semiconductor device and its manufacture
JPS62296443A (en) Semiconductor device and manufacture thereof
JPH08316310A (en) Method for manufacturing semiconductor device
JPH0462855A (en) Semiconductor device and manufacture thereof
KR20010029919A (en) Semiconductor device and method of manufacturing the same
JPS6132555A (en) Formation of multilayer interconnection structure
JPS62188230A (en) Semiconductor device
JPH03104140A (en) Semiconductor device
JPS62200746A (en) Semiconductor device
JPS63182838A (en) Manufacture of semiconductor device
JPS62156834A (en) Semiconductor integrated circuit device
JPS63296355A (en) Semiconductor device
JPS6237945A (en) Manufacture of semiconductor device