JPH0254704A - Production of noble metal particle - Google Patents

Production of noble metal particle

Info

Publication number
JPH0254704A
JPH0254704A JP20617288A JP20617288A JPH0254704A JP H0254704 A JPH0254704 A JP H0254704A JP 20617288 A JP20617288 A JP 20617288A JP 20617288 A JP20617288 A JP 20617288A JP H0254704 A JPH0254704 A JP H0254704A
Authority
JP
Japan
Prior art keywords
noble metal
liquid drops
soln
org
metal particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20617288A
Other languages
Japanese (ja)
Inventor
Kenjiro Meguro
目黒 謙次郎
Kunio Esumi
江角 邦男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP20617288A priority Critical patent/JPH0254704A/en
Publication of JPH0254704A publication Critical patent/JPH0254704A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce noble metal particles which have less fluctuations in particle size by the simple method by dissolving noble metal compds. into an org. solvent, forming the soln. thereof into liquid drops and thermally decomposing the drops, thereby forming the noble metal particles. CONSTITUTION:The noble metal-contg. soln. 2 formed by dissolving the org. noble metal compds. (acetyl acetone noble metal compds., etc.) into the org. solvent (xylene, etc.) is put into a mist generating chamber 1 and is oscillated by an ultrasonic oscillator 3. An inert gas is introduced from a gas introducing pipe 6 into the chamber 1 to generate the liquid drops of the noble metal-contg. soln. 2. The liquid drops move in a mist conduit 7 and the large liquid drops are dropped by a flow regulating plate 8. The small liquid drops are moved into an electric furnace 9 where the liquid drops are thermally decomposed at the temp. slightly higher than the b.p. of the liquid drops. The formed noble metal particles are captured on a filter 10 and the gaseous org. compds. are discharged from a discharge port 11. The particle size can be controlled by regulating the blowing rate of the inert gas, ultrasonic oscillation and soln. viscosity at this time. The noble metal particles of arbitrary sizes having the less fluctuations in the particle size are thus obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、触媒、各種ペースト、プリントの材料、その
他電気材料分野に利用される貴金属粒子の製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing noble metal particles used in the field of catalysts, various pastes, printing materials, and other electrical materials.

(従来技術とその問題点) 貴金属粒子を利用して、貴金属を含有するペースト、イ
ンキの原料や、触媒、機能膜等に貴金属を担持、あるい
は被膜を形成する等、その利用範囲は多く、しかも高価
な貴金属を有効に活用するため、粒子径が用途に合った
大きさで、安定していることが望まれている。
(Prior art and its problems) There are many uses for noble metal particles, such as supporting noble metals on pastes and ink materials containing noble metals, catalysts, functional films, etc., or forming coatings. In order to make effective use of expensive precious metals, it is desirable that the particle size be suitable for the intended use and be stable.

また、貴金属微粒子以外の共存成分が分解或いは除去処
理において使用上で他に影響を与えにくいものであるこ
と等も望まれている。
It is also desired that the coexisting components other than the noble metal fine particles do not easily affect other components during decomposition or removal treatment.

しかし、従来法は貴金属塩化物が多く用いられ、該塩化
物を水に溶解し還元剤を加えて貴金属を還元し、濾過分
離するか、有機溶媒中に分散させたのち濾過分離する方
法が用いられている。
However, in conventional methods, precious metal chlorides are often used, and the chloride is dissolved in water, a reducing agent is added to reduce the precious metal, and the precious metal is separated by filtration, or the chloride is dispersed in an organic solvent and then filtered and separated. It is being

上記、従来法の欠点は貴金属塩化物溶液の還元条件によ
り貴金属粒子径のバラツキを生じやすくなり、任意の粒
子径を効率良く製造することが難しく、また、還元剤の
選択や貴金属塩化物溶液を予め酸やアルカリを用いて溶
液のPH等を調製することをし、貴金属粒子を生成させ
ても、該生成粒子の分離と洗浄が不十分となり、不純物
としての塩などが残ってしまうという欠点があった。
The disadvantage of the conventional method described above is that the noble metal particle size tends to vary depending on the reducing conditions of the noble metal chloride solution, making it difficult to efficiently produce particles of any desired size. Even if noble metal particles are generated by adjusting the pH of the solution using acid or alkali in advance, the separation and cleaning of the generated particles is insufficient, and salts as impurities remain. there were.

(発明の目的) 本発明は、上記従来法の欠点を解決するためになされた
もので、貴金属粒子の粒子径バラツキが少なく、しかも
、不純物が分解しにくい無機塩を含まない、任意の大き
さの貴金属粒子を簡便な方法で製造できる方法を提供す
るものである。
(Purpose of the Invention) The present invention has been made to solve the drawbacks of the conventional method described above, and it is possible to obtain precious metal particles of any size with little variation in particle size and without containing inorganic salts that are difficult to decompose impurities. The purpose of the present invention is to provide a method for manufacturing noble metal particles in a simple manner.

(問題点を解決するだめの手段) 本発明は、有機貴金属化合物を有機溶媒に溶解した溶液
を液滴としたのち、熱分解して貴金属微粒子を生成させ
ることを特徴とする貴金属粒子の製造方法である。
(Means for solving the problem) The present invention is a method for producing noble metal particles, which comprises forming droplets from a solution of an organic noble metal compound dissolved in an organic solvent, and then thermally decomposing the droplets to generate noble metal fine particles. It is.

以下、本発明の詳細について説明する。The details of the present invention will be explained below.

本発明に用いる有機貴金属化合物としては、トリスまた
はビス(アセチルアセトナト)貴金属化合物、貴金属酢
酸塩、アセチルアセトン貴金属化合物、貴金属レジネー
ト等で、有機溶媒としては、キシレン、ベンゼン、メチ
ルイソブチルケトン(MIBK)、酢酸イソアミル等で
上記貴金属有機化合物を溶解するものを主に用いて均一
な溶液とすることができ、他にジオキサン、トリエチル
アミン、アセトン、エーテル、アルコール、ジブチルカ
ルピトール(DBC)等を加えてもよく、その加える積
は有機溶媒により変化させるが、おおむね40%以下で
、液滴をつくる場合に重要となる溶液の粘度の調製をす
るためと、液滴を熱分解するのに低温で分解できるとい
う利点があるからである。
Examples of the organic noble metal compound used in the present invention include tris or bis(acetylacetonato) noble metal compound, noble metal acetate, acetylacetone noble metal compound, and noble metal resinate, and examples of the organic solvent include xylene, benzene, methyl isobutyl ketone (MIBK), A homogeneous solution can be obtained by mainly using isoamyl acetate to dissolve the above noble metal organic compound, and dioxane, triethylamine, acetone, ether, alcohol, dibutylcarpitol (DBC), etc. may also be added. Although the added product varies depending on the organic solvent, it is approximately 40% or less, and is said to be used to adjust the viscosity of the solution, which is important when forming droplets, and to be able to decompose at low temperatures to thermally decompose the droplets. This is because there are advantages.

該有機貴金属化合物を有機溶媒に溶解した溶液を液滴に
する方法は、単一流体あるいは二流体ノズルを用いる方
法、回転体を用いる遠心噴霧法、超音波振動子法などで
ある。
Methods for forming droplets from a solution of the organic noble metal compound dissolved in an organic solvent include a method using a single fluid or two-fluid nozzle, a centrifugal spray method using a rotating body, and an ultrasonic vibrator method.

以下、本発明の方法を図面に基づいて説明する。Hereinafter, the method of the present invention will be explained based on the drawings.

第1図は本発明の方法の一例を示すものである。FIG. 1 shows an example of the method of the present invention.

ミスト発生槽1に有機貴金属化合物を有機溶媒に溶解し
た貴金属含有溶液2を入れ、超音波振動子3で該溶液を
振動させる。
A noble metal-containing solution 2 in which an organic noble metal compound is dissolved in an organic solvent is placed in a mist generating tank 1, and the solution is vibrated with an ultrasonic vibrator 3.

次いで、ガス吹き込み口4より不活性ガスを吹き込むと
、不活性ガスはトラップ5にはいり、ガス導管6内を通
過してミスト発生槽1内の貴金属含有溶液2中に吹き込
まれ、不活性ガスと貴金属含有溶液の液滴が貴金属含有
溶液2の液面より発生する。
Next, when inert gas is blown into the gas inlet 4, the inert gas enters the trap 5, passes through the gas conduit 6, and is blown into the precious metal-containing solution 2 in the mist generation tank 1, where it is combined with the inert gas. Droplets of the noble metal-containing solution are generated from the surface of the noble metal-containing solution 2.

液滴はミスト導管7内を移動し、液滴の大きいものは整
流板8に衝突して落ち、小さな液滴はそのまま移動し、
電気炉9で加熱され分解して貴金属の粒子が生成する。
The droplets move in the mist conduit 7, large droplets collide with the current plate 8 and fall, small droplets continue to move,
It is heated and decomposed in an electric furnace 9 to generate noble metal particles.

該貴金属粒子はフィルタ10で補集されガス状の有機化
合物はガス排出口11より排出する。
The noble metal particles are collected by a filter 10 and gaseous organic compounds are discharged from a gas outlet 11.

フィルタで補集した貴金属粒子はアルコール等で洗浄し
て乾燥すればよく、用途により有機溶媒中に移して用い
ることもできる。
The noble metal particles collected by the filter may be washed with alcohol or the like and dried, and depending on the purpose, they may be transferred to an organic solvent for use.

貴金属粒子の粒子径の調節は、貴金属含有溶液中の貴金
属濃度を調製する、不活性ガス吹き込み速度の調節、超
音波振動の強弱、溶液の粘度を調節する、および整流板
の調節により液滴の大きさを調節することで、0.5〜
5ミクロンの任意の粒子径を得ることができる。
The particle size of the noble metal particles can be adjusted by adjusting the noble metal concentration in the noble metal-containing solution, adjusting the inert gas blowing rate, adjusting the strength of ultrasonic vibration, adjusting the viscosity of the solution, and adjusting the flow plate. By adjusting the size, 0.5~
Any particle size of 5 microns can be obtained.

また、本発明において不活性ガスを用いるのは、酸化性
のガスまたは、還元性ガスでは酸化還元反応を生じ目的
以外の化学反応が生じてしまうためであり、窒素ガス、
アルゴンガスまたは、へ+J ’7ムガスを用いる必要
がある。
Further, the reason why an inert gas is used in the present invention is that an oxidizing gas or a reducing gas causes an oxidation-reduction reaction and causes an undesired chemical reaction.
It is necessary to use argon gas or H+J'7 gas.

熱分解する温度は、液滴の沸点よりやや高い温度で、沸
点より5〜20%高くすればよい。
The thermal decomposition temperature is slightly higher than the boiling point of the droplets, and may be 5 to 20% higher than the boiling point.

(実施例1) Pd (acac)2を有機溶媒として、メチルイソブ
チルケトンにアセトンを5%加えた混合溶液を用いて、
0.2モル/1の溶液とし、第1図に示した装置を用い
て不活性ガスは窒素ガスを21/分で吹き込み、超音波
振動は2にヘルツで液滴をつくり、熱分解する温度は1
60℃で行った。
(Example 1) Using Pd (acac)2 as an organic solvent, a mixed solution of methyl isobutyl ketone and 5% acetone was used.
A 0.2 mol/1 solution was prepared, and nitrogen gas was blown into the inert gas at a rate of 21/min using the apparatus shown in Figure 1, and the ultrasonic vibration was applied at a temperature of 2 Hz to form droplets and thermal decomposition. is 1
The temperature was 60°C.

フィルタ上に堆積した粒子をエチルアルコールで洗浄し
て室温乾燥し、該粒子を拡大して観察したところ平均粒
子径が1ミクロンであった。
The particles deposited on the filter were washed with ethyl alcohol and dried at room temperature, and when observed under magnification, the average particle diameter was 1 micron.

(実施例2) Pd (acac)2を有機溶媒として、メチルイソブ
チルケトンにアセトンを5%加えた混合溶液を用いて、
0.05.0.1.0.4.0.8モル/1の4種類の
濃度の溶液とし、実施例1と同一条件で行った。
(Example 2) Using Pd(acac)2 as an organic solvent, a mixed solution of 5% acetone added to methyl isobutyl ketone was used.
The experiments were conducted under the same conditions as in Example 1 using solutions with four different concentrations: 0.05, 0.1, 0, 4, and 0.8 mol/1.

フィルタ上に堆積した粒子をエチルアルコールで洗浄し
て室温乾燥し、該粒子を拡大して観察したところ平均粒
子径は下記の表−1のような結果であった。
The particles deposited on the filter were washed with ethyl alcohol and dried at room temperature, and when the particles were observed under magnification, the average particle diameter was as shown in Table 1 below.

表−1 表−2 (実施例3) 有機貴金属化合物と有機溶媒を下記のような組み合わせ
とし、それぞれ0.1モル/βの溶液にし、実施例1と
同様にそれぞれの熱分解温度で行ったところ下記の表−
2のような結果を得た。
Table-1 Table-2 (Example 3) The following combinations of organic noble metal compounds and organic solvents were made into solutions of 0.1 mol/β, and the experiments were conducted at the respective thermal decomposition temperatures in the same manner as in Example 1. However, the table below-
I got results like 2.

(以下余白) 生成した粒子を観察したところ、粒子径は平均粒子径が
0. 7〜0.9ミクロンであった。
(Left below) When the generated particles were observed, the average particle size was 0. It was 7-0.9 microns.

(発明の効果) 本発明は、従来法では問題となっていた貴金属微粒子の
粒子径がバラツキを生じ易くなることと、簡便な方法で
任意の粒子径が得にくく、洗浄分離しにくいため不純物
の影響が用途により問題となるという点を有機貴金属化
合物を有機溶媒に溶解し溶液より液滴をまず生成して、
該液滴の沸点よりやや高い温度で熱分解するという簡便
な方法で、貴金属粒子径のバラツキも少なく、任意の貴
金属粒子を生成でき、しかも不純物は有機化合物が残る
程度でペーストおよびインキ等に用いる場合は、その影
響がなく、化学工業、電気工業、電子工業等のおける利
用分野の拡大に貢献できるものである。
(Effects of the Invention) The present invention solves the problem of the conventional method in which the particle size of precious metal particles tends to vary, and also because it is difficult to obtain a desired particle size with a simple method and difficult to wash and separate. The effect is a problem depending on the application, so we dissolved the organic noble metal compound in an organic solvent and first generated droplets from the solution.
It is a simple method of thermal decomposition at a temperature slightly higher than the boiling point of the droplets, and there is little variation in the noble metal particle size, and any noble metal particles can be generated. Moreover, only organic compounds remain as impurities, so it can be used in pastes, inks, etc. In this case, there is no such influence and it can contribute to the expansion of fields of application in the chemical industry, electrical industry, electronic industry, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の貴金属粒子の製造方法を示す図であ
る。 出願人  田中貴金属工業株式会社
FIG. 1 is a diagram showing the method for producing noble metal particles of the present invention. Applicant Tanaka Kikinzoku Kogyo Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1、有機貴金属化合物を有機溶媒に溶解した溶液を液滴
としたのち、熱分解して貴金属微粒子を生成させること
を特徴とする貴金属粒子の製造方法。
1. A method for producing noble metal particles, which comprises forming droplets from a solution of an organic noble metal compound dissolved in an organic solvent, and then thermally decomposing the droplets to generate noble metal fine particles.
JP20617288A 1988-08-19 1988-08-19 Production of noble metal particle Pending JPH0254704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20617288A JPH0254704A (en) 1988-08-19 1988-08-19 Production of noble metal particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20617288A JPH0254704A (en) 1988-08-19 1988-08-19 Production of noble metal particle

Publications (1)

Publication Number Publication Date
JPH0254704A true JPH0254704A (en) 1990-02-23

Family

ID=16518999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20617288A Pending JPH0254704A (en) 1988-08-19 1988-08-19 Production of noble metal particle

Country Status (1)

Country Link
JP (1) JPH0254704A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5089576A (en) * 1989-04-07 1992-02-18 Nippon Zeon Co., Ltd. Process for producing conjugated diene copolymer
JPH06235007A (en) * 1992-10-05 1994-08-23 E I Du Pont De Nemours & Co Production of palladium by aerosol decomposition and palladium oxide powder
US5928405A (en) * 1997-05-21 1999-07-27 Degussa Corporation Method of making metallic powders by aerosol thermolysis
EP0920435A4 (en) * 1996-06-28 2001-07-25 Advanced Tech Materials Platinum source compositions for chemical vapor deposition of platinum

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5089576A (en) * 1989-04-07 1992-02-18 Nippon Zeon Co., Ltd. Process for producing conjugated diene copolymer
JPH06235007A (en) * 1992-10-05 1994-08-23 E I Du Pont De Nemours & Co Production of palladium by aerosol decomposition and palladium oxide powder
EP0920435A4 (en) * 1996-06-28 2001-07-25 Advanced Tech Materials Platinum source compositions for chemical vapor deposition of platinum
US5928405A (en) * 1997-05-21 1999-07-27 Degussa Corporation Method of making metallic powders by aerosol thermolysis

Similar Documents

Publication Publication Date Title
KR0168639B1 (en) Methdo for making silver-palladium alloy powders by aerosol decomposition
KR960010247B1 (en) Method for making palladium and palladium oxide powders by aerosol decomposition
DK2425916T3 (en) MULTI-REACTOR FEED DEVICE FOR GENERATION OF METAL nanoparticles of
KR100288095B1 (en) Manufacturing method of silver powder by aerosol decomposition
TWI326675B (en)
TW459054B (en) Method for the manufacture of substantially fully densified, finely divided, particles of gold by aerosol decomposition
US5928405A (en) Method of making metallic powders by aerosol thermolysis
JP6364093B2 (en) Hydrogen peroxide decomposition catalyst, method for producing the same, and method for decomposing hydrogen peroxide using the catalyst
US8317894B2 (en) Method of producing metal nanoparticles continuously and metal nanoparticles produced thereby
JPH0254704A (en) Production of noble metal particle
JP2004068072A (en) Manufacturing method of silver particulate colloid dispersion solution
CN107585792A (en) The preparation method and Ferrous dichloride dihydrate solid of Ferrous dichloride dihydrate solid
KR20130138978A (en) Method for manufacturing supported metal nanoparticles on the surface of substrates using plasma
KR102424543B1 (en) Method for producing highly crystalline silver fine particles
CN108658117A (en) The method that hypergravity produces nano-cerium oxide
US20160318011A1 (en) Ceramic-based catalyst and a method for synthesizing the same
JPS63179530A (en) Method and apparatus for washing substrate using supercritical gas or liquefied gas
KR100369739B1 (en) Manufacturing process of potassium dicyanoaurate
KR101299193B1 (en) Method for manufacturing supported catalyst
KR20120021533A (en) Method for manufacturing silver powder from silver nitrate
KR101083005B1 (en) Method for preparing metal nanoparticles using supercritical fluids and metal nanoparticles prepared thereby
EP0574113A1 (en) Process and apparatus for treating copper chloride etching waste liquor
US4920083A (en) Novel process for the production of ceramic flakes
JP3910190B2 (en) Cleaning device
EP0721919A1 (en) Method for making copper (I) oxide powders by aerosol decomposition