JPH025439A - Semiconductor substrate - Google Patents

Semiconductor substrate

Info

Publication number
JPH025439A
JPH025439A JP15553988A JP15553988A JPH025439A JP H025439 A JPH025439 A JP H025439A JP 15553988 A JP15553988 A JP 15553988A JP 15553988 A JP15553988 A JP 15553988A JP H025439 A JPH025439 A JP H025439A
Authority
JP
Japan
Prior art keywords
inas
layer
type
xas
gaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15553988A
Other languages
Japanese (ja)
Inventor
Naotaka Iwata
直高 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP15553988A priority Critical patent/JPH025439A/en
Publication of JPH025439A publication Critical patent/JPH025439A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To form a two-dimensional electron gas field-effect transistor in which InAs is easily used as an operating layer by disposing a high purity InAs layer, an InAs layer in which a P-type impurity is added, to be formed thereon, and an N-type AlXGa1-XAs layer having 0.22 or less of composition ratio of Al to be formed thereon on an InAs substrate. CONSTITUTION:A high purity InAs layer 13, an InAs layer 14 in which a P-type impurity is added, to be formed thereon, and an N-type AlXGa1-XAs layer 15 having 0.22 or less of X of the composition ratio of Al to be formed thereon are disposed on an InAs substrate 11. That is, the N-type AlXGa1-XAs having 0.22 or less of X of the composition ratio of the Al is employed to supply higher concentration electrons than those in case of employing N-type GaAs to an InAs operating layer. This is because the AlXGa1-XAs has larger conduction band state density than that of the GaAs. Thus, a two-dimensional electron gas field-effect transistor in which the InAs can be easily used as the operating layer can be formed without necessity of high growing technique such as AlGaAsSb/InAs hetero growth or the like.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、InAsを動作層として用いる二次元電子ガ
ス電界効果トランジスタ用基板の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to the structure of a substrate for a two-dimensional electron gas field effect transistor using InAs as an active layer.

(従来の技術) InAsは電子の移動度が大きく、超高速デバイス用材
料として注目されている。現在までのところ、InAs
を動作層に用いたデバイスの報告は少な(、Al5k1
0.92A50.08/InAS/GaSb構造のホッ
ト エレクトロン トランジスタ(アプライド フィシ
、クス レターズ(Appl、 Phys、 Lett
、 51(1987)984))等が数例報告されるに
とどまっている。
(Prior Art) InAs has high electron mobility and is attracting attention as a material for ultrahigh-speed devices. To date, InAs
There are few reports of devices using Al5k1 as the operating layer (Al5k1
0.92A50.08/InAS/GaSb structure hot electron transistor (Appl, Phys, Lett
, 51 (1987) 984)) have been reported.

方、表面ポテンシャルを制御して動作する電界効果トラ
ンジスタへの応用は、伝導帯付近に存在する高密度の界
面準位の為、実用化が阻まれている。
On the other hand, practical application to field-effect transistors that operate by controlling the surface potential is hampered by the high density of interface states that exist near the conduction band.

(発明が解決しようとする問題) lnAsの表面は、伝導帯付近に存在する高密度の表面
準位の為、電子が溜まりn形を示すことが一般に知られ
ている。加えて、その高密度の表面準位の為、AU等の
金属層を1nAs表面に形成した場合はショットキー接
合とは成らず、オーミックな接合となる。従って、Ga
Asの場合と異なり、1nAsのショットキー接合型電
界効果トランジスタ、いわゆるMESFETの実現性は
ない。その他の構造の電界効果トランジスタの動作層に
InAsを用いる場合でも、その準位密度を下げること
は重要である。・メタル/絶縁体/半導体のいわゆるM
IS電界効果トランジスタ、又はメタル/電子供給層/
動作層のいわゆる二次元電子ガス電界効果トランジスタ
を例にとれば、界面準位密度を下げる方法として、それ
ぞれ絶縁体、又は電子供給層用材料として1nAsと格
子整合する材料を選ぶことが挙げられる。すなわち、例
えばエピタキンヤル成長によりヘテロ界面を形成するこ
とにより、界面において未結合の元素を無くすことであ
る。しかしながら、1nAsと格子整合するワイド バ
ンド ギャップ材料として、一般に良く使われ、しかも
その性質が良く知られている材料は皆無である。強いて
挙げるならばAlGaAsSb系が挙げられるが、蒸気
圧の高いAsとsbの制御という、非常に高度な結晶成
長技術が必要となる。
(Problem to be Solved by the Invention) It is generally known that the surface of lnAs exhibits n-type behavior due to the high density of surface states existing near the conduction band, where electrons accumulate. In addition, due to its high density of surface states, when a metal layer such as AU is formed on the 1nAs surface, a Schottky junction is not formed, but an ohmic junction is formed. Therefore, Ga
Unlike the case of As, there is no possibility of realizing a 1 nAs Schottky junction field effect transistor, so-called MESFET. Even when InAs is used for the active layer of field effect transistors having other structures, it is important to lower the level density.・So-called M for metals/insulators/semiconductors
IS field effect transistor or metal/electron supply layer/
Taking a so-called two-dimensional electron gas field effect transistor as an active layer as an example, one way to lower the interface state density is to select a material that is lattice-matched to 1nAs as an insulator or an electron supply layer material, respectively. That is, by forming a hetero interface by, for example, epitaaxial growth, there are no unbonded elements at the interface. However, there are no materials that are commonly used as wide band gap materials that lattice match with 1nAs, and whose properties are well known. The AlGaAsSb system is a strong choice, but it requires very advanced crystal growth technology to control As and sb, which have high vapor pressures.

本発明の目的は、InAsを動作層として用いる二次元
電子ガス電界効果トランジスタ作成において、A lG
aAs5b/ InAs等の高度な成長技術を必要とせ
す、容易にInAsを動作層として用いる二次元電子ガ
ス電界効果トランジスタが作成できる半導体結晶ウェハ
構造を提供することである。
The purpose of the present invention is to create a two-dimensional electron gas field effect transistor using InAs as an active layer, using AlG
It is an object of the present invention to provide a semiconductor crystal wafer structure in which a two-dimensional electron gas field effect transistor using InAs as an active layer can be easily fabricated, which requires advanced growth techniques such as aAs5b/InAs.

(問題点を解決するための手段) 本発明の半導体基板の構造は、InAs基板上に高純度
のInAs層、その上にp形不純物を添加したInAs
層、更にその上にAlの組成比のXが0.22以下のn
形AlxGa1−xAS層を配したことを特徴とする。
(Means for Solving the Problems) The structure of the semiconductor substrate of the present invention includes a high-purity InAs layer on an InAs substrate, and an InAs layer doped with p-type impurities on the InAs substrate.
layer, and further on the layer n, the Al composition ratio X is 0.22 or less.
It is characterized by having an AlxGa1-xAS layer.

本発明の半導体基板の構造は、1nAs基板上に高純度
のInAs層、その上にInAsやAlGaAsに対し
てp形不純物となる元素を原子層状に添加した層、更に
その上にAlの組成比のXが0.22以下のn形Alx
Ga+−xAs層を配したことを特徴とする。
The structure of the semiconductor substrate of the present invention includes a high-purity InAs layer on a 1nAs substrate, a layer doped with an atomic layer of an element that becomes a p-type impurity for InAs or AlGaAs, and an Al composition ratio on top of the layer. n-type Alx with X of 0.22 or less
It is characterized by a Ga+-xAs layer.

(作用) InAsとGaAsでは格子定数が約6.7%異なって
いる為、InAs結晶上にGaAsを成長した場合、I
nAs上のGaAs層にはストレスを緩和する為の転移
や点欠陥等がInAs/GaAsの界面付近に大量発生
する。
(Function) Since the lattice constants of InAs and GaAs differ by approximately 6.7%, when GaAs is grown on an InAs crystal, the I
In the GaAs layer on nAs, a large number of dislocations, point defects, etc. are generated near the InAs/GaAs interface to relieve stress.

従って、InAs/GaAsのへテロ界面は、界面準位
密度が高くなる。InAsの界面準位は、伝導帯付近が
最も高濃度である為、1nAsの界面ポテンシャルは、
はぼ伝導帯に固定され、界面には電子が溜まる。このま
まこのウェハを二次元電子ガス電界効果トランジスタ用
のウェハとして用いたならば、作成したトランジスタは
、いつもON状態であり、よほど大きなバイアスを印加
しない限り伝導度の変調ができないことは明らかである
。しかし、界面ポテンシャルをなんらかの方法で、でき
ればフラット バンド状態付近まで持ち上げれば、バイ
アスに対する伝導度の変調度としては大きくなる。その
一方法として、InAs/GaAsヘテロ界面に、p−
1nAs薄膜層を設け、フェルミ レベルを押し上げる
ことが挙げられる。熱平衡時の界面ポテンシャルは、p
−1nAs薄膜層の不純物濃度により制御することがで
きる。現在では、分子線成長法等により極薄膜の制御さ
れた成長も可能であり、p−1nAs薄膜層の代わりに
、InAsやGaAsに対してp形不純物となる元素、
例えばBe等を原子層状にInAs/GaAsヘテロ界
面に挿入することも容易である。この場合は、電子が走
るInAs層内に不純物が無い為、電子の散乱が少なく
、電子の高移動度化、従ってデバイス性能の向上が期待
できる。
Therefore, the InAs/GaAs heterointerface has a high interface state density. Since the interface state of InAs has the highest concentration near the conduction band, the interface potential of 1nAs is
It is fixed in the conduction band, and electrons accumulate at the interface. If this wafer is used as it is as a wafer for a two-dimensional electron gas field effect transistor, it is clear that the fabricated transistor will always be in an ON state and that conductivity cannot be modulated unless a very large bias is applied. However, if the interfacial potential is somehow raised to near the flat band state, the degree of modulation of conductivity with respect to bias will increase. As one method, p-
One example is to increase the Fermi level by providing a 1nAs thin film layer. The interfacial potential at thermal equilibrium is p
It can be controlled by the impurity concentration of the -1nAs thin film layer. Currently, controlled growth of extremely thin films is possible using molecular beam growth, etc., and instead of p-1nAs thin film layers, elements that act as p-type impurities for InAs and GaAs,
For example, it is easy to insert Be or the like into an atomic layer at the InAs/GaAs hetero interface. In this case, since there are no impurities in the InAs layer through which electrons travel, there is less scattering of electrons, and higher electron mobility and therefore improved device performance can be expected.

この場合は、不純物層の面濃度で熱平衡時の界面ポテン
シャルが制御できる。界面ポテンシャルの制御を行うに
はBe層の厚さが1原子層以下であることが望ましい。
In this case, the interfacial potential at thermal equilibrium can be controlled by the surface concentration of the impurity layer. In order to control the interfacial potential, it is desirable that the thickness of the Be layer is one atomic layer or less.

更に、GaAsの代わりにAlの組成比のXが0.22
以下のn形A l xGa 、−、Asを用いることに
より、n−GaAsを用いた場合より、より高l農度の
電子を1nAs動作層に供給できるようになる。これは
N A1−xAsがGaAsより伝導帯の状態密度が大
きいことによる。しかも、Alの組成比のXを0.22
以下とすることで、n−Al、Ga+−xAs中に存在
するDXセンタと呼ばれる高13度の深い準位の悪影響
を防ぐことができる(フィジカル レビs −B(Ph
ys、 Rev、 819 (1979)1015) 
) 、 さらに、AlGaAsはGaAsよりバンドギ
ャップが大きいことにより絶縁性が高まり、ゲートのり
−り電流が小さくなることが期待できる。ところで、分
子線成長法により本発明の半導体結晶を作成する場合を
想定すると、蒸発用セルとしては、Int Ga、Al
、As181% Beの6本が必要になるが、いずれも
通常のm−■族化合物半導体の分子線成長では良く知ら
れたものであり制御性の高い成長が可能となる。
Furthermore, the composition ratio of Al instead of GaAs is 0.22.
By using the following n-type A l xGa , -, As, it becomes possible to supply electrons with a higher yield to the 1nAs active layer than when using n-GaAs. This is because N A1-xAs has a higher density of states in the conduction band than GaAs. Moreover, the Al composition ratio X is 0.22
By setting the following, it is possible to prevent the adverse effects of the deep level of high 13 degrees called DX center that exists in n-Al, Ga+-xAs (Physical Levis -B (Ph
ys, Rev. 819 (1979) 1015)
) Furthermore, since AlGaAs has a larger band gap than GaAs, it is expected that the insulation properties will be improved and the gate current will be reduced. By the way, assuming that the semiconductor crystal of the present invention is created by molecular beam growth method, Int Ga, Al
, As181% Be are required, and all of them are well known in the molecular beam growth of ordinary m-■ group compound semiconductors, and highly controllable growth is possible.

(実施例) 実施例1 第1図は、特許請求の範囲1で示された構造を持つ半導
体基板の断面図であり、これを用いて二次元電子ガス電
界効果トラジスタを作成した。
(Example) Example 1 FIG. 1 is a cross-sectional view of a semiconductor substrate having the structure shown in Claim 1, and a two-dimensional electron gas field effect transistor was created using this.

ウェハの構造は、11 1)−1nAs基板(厚さ二〜
400μm1p=1〜2X1018CI11−3)、1
2p−1nAsバツフア層(厚さ:500人、p=1×
1017cm−3)、13 高純度InAs層(厚さ:
 100OA、!添加) 、14  p−InAs層(
厚さ=50人、1) ” I X 1017cm−3)
、15  n−GaAs層(厚さ:500A1n=IX
1018cm−3)である。なお、p−1nAs層14
の厚さは50Aである必要性はないが、表面ポテンシャ
ル制御と二次元電子伝導のかねあいから考えて200八
以下が望ましい。このウェハは、分子線成長法により作
成した。成長条件は、基板温度=480°Cにて、Ga
フラックス: 4.2X 10−’Torrs I n
フラックス:6.1x l O−’Torr1A sフ
ラックス:7.6X10−’Torrである。なお、p
形不純物としてはBeをn形不純物としてはSiを用い
た。ところで、この条件で作成した無添加の高純度In
As層13は、通常n形を示し、電子l1度は、1×1
01111CIIl−a程度である。これらのデータを
基に計算した熱平均でのバンド図を第2図に示す。ここ
では、界面準位として1nAsの伝導帯に2×10口C
l11−2を見積もっている。GaAs層 1nAsの
界面に21 二次元電子ガスが生じることを計算で確認
できた。実際のデバイスは、ゲート長:2μmで作成し
た。プロセスは、燐酸系エッチャントを用いたGaAs
系デバイス用プロセスをInAsにおいても条件出しを
行なった上で用いた。ゲート電極にはAlを、ソース電
極とドレイン電極にはAuGe/Auを蒸着で形成し、
熱処理せずに用いた。トランジスタ特性としては、77
Kにおいて200m5が得られた。
The structure of the wafer is 111)-1nAs substrate (thickness 2~
400μm1p=1~2X1018CI11-3), 1
2p-1nAs buffer layer (thickness: 500 people, p=1×
1017 cm-3), 13 high-purity InAs layer (thickness:
100OA! addition), 14 p-InAs layer (
Thickness = 50 people, 1) ” I x 1017cm-3)
, 15 n-GaAs layer (thickness: 500A1n=IX
1018 cm-3). Note that the p-1nAs layer 14
It is not necessary that the thickness be 50A, but it is desirable to have a thickness of 200A or less in consideration of surface potential control and two-dimensional electron conduction. This wafer was created by molecular beam growth. The growth conditions were: substrate temperature = 480°C, Ga
Flux: 4.2X 10-' Torrs In
Flux: 6.1xl O-'Torr1A s flux: 7.6X10-'Torr. In addition, p
Be was used as the type impurity, and Si was used as the n-type impurity. By the way, additive-free high-purity In produced under these conditions
The As layer 13 normally exhibits n-type, and the electron l1 degree is 1×1
It is about 01111CIIl-a. Figure 2 shows a thermally averaged band diagram calculated based on these data. Here, the interface state is 2×10 C in the conduction band of 1 nAs.
We are estimating l11-2. It was confirmed by calculation that 21 two-dimensional electron gas was generated at the interface of the 1nAs GaAs layer. The actual device was created with a gate length of 2 μm. The process uses GaAs using a phosphoric acid etchant.
The same process for InAs based devices was used after adjusting the conditions. Al is formed on the gate electrode, and AuGe/Au is formed on the source and drain electrodes by vapor deposition.
It was used without heat treatment. The transistor characteristics are 77
200 m5 were obtained at K.

実施例2 実施例1で示したn−GaAs層15の代わりに、キャ
リア濃度3 X 10 ′8cm−3のn−A lGa
Asを500A形成させた。成長時のAlフラックスは
1.3×10−7Torr、他の成長条件及びデバイス
の作成方法は全て実施例1と同様である。トランジスタ
特性は77にで250m5であった。
Example 2 Instead of the n-GaAs layer 15 shown in Example 1, n-AlGa with a carrier concentration of 3 x 10'8 cm-3 was used.
500A of As was formed. The Al flux during growth was 1.3 x 10-7 Torr, and all other growth conditions and device fabrication methods were the same as in Example 1. The transistor characteristics were 77mm and 250m5.

実施例3 第3図は、特許請求の範囲2で示された構造を持つ半導
体基板の断面図であり、これを用いて一次元電子ガス電
界効果トランジスタを作成した。
Example 3 FIG. 3 is a cross-sectional view of a semiconductor substrate having the structure shown in claim 2, and a one-dimensional electron gas field effect transistor was created using this.

ウェハの構造は、31  p−1nAs基板(厚さ二〜
400μms p= 1〜2X 1018cm−’) 
、32p−1nAsバツフア層(厚さ二500人、p=
1×10 ”cm−3) 、33  高純度InAs層
(厚さ: 1000人、無添加)、34  Be原子層
(厚さ〜l/l000原子層、5 X 10 l2cm
−2) 、35  o−GaAs層(厚さ: 500A
N n:lX10”cm−’)である。このウェハは、
分子線成長法により作成した。
The structure of the wafer is a 31p-1nAs substrate (thickness 2~
400μms p=1~2X 1018cm-')
, 32p-1nAs buffer layer (thickness 2500, p=
1×10”cm-3), 33 high-purity InAs layers (thickness: 1000 layers, no additives), 34 Be atomic layers (thickness ~l/l000 atomic layers, 5 X 10 l2cm)
-2), 35 o-GaAs layer (thickness: 500A
N n:lX10"cm-'). This wafer is
It was created using the molecular beam growth method.

成長条件は、基板温度=480°Cにて、Gaフラック
ス: 4.2X 10−’Torr、 I n7ラノク
ス: 6 、  I X 1010−’Torr1A 
sフラックスニア、 6 X 10−6Torrである
。なお、p 形不純物トしてはBeをn形不純物として
はSiを用いており、34  Be原子層成膜時には、
BeとAs同時に照射し、厚さ約1/1000原子層の
Be層を形成した。なお無添加の高純度InAs層13
は、通常n形を示し、電子濃度は、I X 10 ”c
m−3程度である。実際のデバイスは、ゲート長:2μ
mで作成した。プロセスは、燐酸系エッチャントを用い
たGaAs系デバイス用プロセスをInAsにおいても
条件出しを行なった上で用いた。ゲート電極にはAlを
、ソース電極とドレイン電極にはAuGe/Auを蒸着
で形成し、熱処理せずに用いた。トランジスタ特性とし
ては、77Kにおいて300m5が得うれた。Be原子
層の厚さは1原子層から1/100000原子層の範囲
であれば発明の効果か得られた。またBe以外のp形不
純物例えばZ n N Cdなどでも良い。成長方法は
分子線成長に限らず原子層工ピタキンヤル成長や角゛機
金属気相成長など他の成長方法で良い。
The growth conditions were: substrate temperature = 480°C, Ga flux: 4.2X 10-'Torr, In7 Lanox: 6, IX 1010-'Torr1A
s flux nia, 6 x 10-6 Torr. Note that Be is used as the p-type impurity and Si is used as the n-type impurity, and when forming a 34 Be atomic layer,
Be and As were irradiated simultaneously to form a Be layer with a thickness of about 1/1000 atomic layer. Note that the high purity InAs layer 13 without additives
usually indicates n-type, and the electron concentration is I x 10 ”c
It is about m-3. The actual device has a gate length of 2μ.
Created with m. As for the process, a process for GaAs-based devices using a phosphoric acid-based etchant was used after adjusting the conditions for InAs as well. Al was formed for the gate electrode, and AuGe/Au was formed for the source and drain electrodes by vapor deposition, and these were used without heat treatment. As for the transistor characteristics, 300 m5 was obtained at 77K. The effects of the invention were obtained when the thickness of the Be atomic layer was in the range of 1 atomic layer to 1/100,000 atomic layer. Further, p-type impurities other than Be, such as Z n N Cd, etc. may also be used. The growth method is not limited to molecular beam growth, but may be other growth methods such as atomic layer deposition, crystalline metal vapor phase growth, etc.

(発明の効果) 以上のよ・うに本発明の15導体結晶によれば、AlG
aAsSb/ 1nAsへと口成長等の高度な成長技術
を必dとせず、容易にInAsを動作層として用いる二
次JC’;T!子ガス重ガス電界効果トランジスタでき
る。
(Effect of the invention) As described above, according to the 15-conductor crystal of the present invention, AlG
A secondary JC';T! that easily uses InAs as the active layer without requiring advanced growth techniques such as growth to aAsSb/1nAs; A child gas heavy gas field effect transistor can be created.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、特許請求の範囲1で示された構造を持つ半導
体結晶ウェハの断面図、第2図は、第1の実施例で作成
した二次元電子ガス電界効果トランジスタ用結晶のバン
ド図、第3図は、特許請求の範囲2で示された構造を持
つ半導体結晶ウェハの断面図であろう
FIG. 1 is a cross-sectional view of a semiconductor crystal wafer having the structure shown in claim 1, and FIG. 2 is a band diagram of a crystal for a two-dimensional electron gas field effect transistor produced in the first embodiment. FIG. 3 is a cross-sectional view of a semiconductor crystal wafer having the structure shown in claim 2.

Claims (2)

【特許請求の範囲】[Claims] (1)InAs基板上に高純度のInAs層、その上に
p形不純物を添加したInAs層、更にその上にAlの
組成比のXが0.22以下のn形Al_xGa_1_−
_xAs層を配したことを特徴とする半導体基板。
(1) A high-purity InAs layer on an InAs substrate, an InAs layer doped with p-type impurities on top of that, and an n-type Al_xGa_1_- with an Al composition ratio X of 0.22 or less
A semiconductor substrate characterized by disposing a _xAs layer.
(2)InAs基板上に高純度のInAs層、その上に
InAsやAlGaAsに対してp形不純物となる元素
を原子層状に添加した層、更にその上にAlの組成比の
Xが0.22以下のn形Al_xGa_1_−_xAs
層を配したことを特徴とする半導体基板。
(2) A high-purity InAs layer on an InAs substrate, on top of that a layer doped with an atomic layer of elements that serve as p-type impurities for InAs and AlGaAs, and on top of that a layer with an Al composition ratio of 0.22 The following n-type Al_xGa_1_-_xAs
A semiconductor substrate characterized by having layers arranged thereon.
JP15553988A 1988-06-22 1988-06-22 Semiconductor substrate Pending JPH025439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15553988A JPH025439A (en) 1988-06-22 1988-06-22 Semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15553988A JPH025439A (en) 1988-06-22 1988-06-22 Semiconductor substrate

Publications (1)

Publication Number Publication Date
JPH025439A true JPH025439A (en) 1990-01-10

Family

ID=15608272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15553988A Pending JPH025439A (en) 1988-06-22 1988-06-22 Semiconductor substrate

Country Status (1)

Country Link
JP (1) JPH025439A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5430310A (en) * 1991-03-28 1995-07-04 Asahi Kasei Kogyo Kabushiki Kaisha Field effect transistor
US6291842B1 (en) 1998-03-12 2001-09-18 Nec Corporation Field effect transistor
JP2005277358A (en) * 2004-03-26 2005-10-06 Ngk Insulators Ltd Semiconductor multilayer structure, transistor element, and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5430310A (en) * 1991-03-28 1995-07-04 Asahi Kasei Kogyo Kabushiki Kaisha Field effect transistor
US6291842B1 (en) 1998-03-12 2001-09-18 Nec Corporation Field effect transistor
JP2005277358A (en) * 2004-03-26 2005-10-06 Ngk Insulators Ltd Semiconductor multilayer structure, transistor element, and method of manufacturing the same
JP4642366B2 (en) * 2004-03-26 2011-03-02 日本碍子株式会社 Semiconductor stacked structure, transistor element, and method of manufacturing transistor element

Similar Documents

Publication Publication Date Title
US5952672A (en) Semiconductor device and method for fabricating the same
US5024967A (en) Doping procedures for semiconductor devices
JPH0732247B2 (en) Semiconductor device
JPH025439A (en) Semiconductor substrate
JPH0261151B2 (en)
US8575595B2 (en) P-type semiconductor devices
JP2703885B2 (en) Semiconductor device
JP2808671B2 (en) Field effect transistor
JPH0511656B2 (en)
JP2621854B2 (en) High mobility transistor
JPS6357949B2 (en)
JP3077670B2 (en) Heterojunction field effect transistor
JP2980630B2 (en) Compound semiconductor device
JP3131929B2 (en) Carbon doped compound semiconductor crystal growth method
JPH0458439B2 (en)
JPH028450B2 (en)
JPH03165576A (en) Quantum fine line semiconductor device and manufacture thereof
JP2800457B2 (en) Semiconductor device
KR20230090573A (en) AlGaN/GaN hetero-junction structure of HEMT Device of having multi-strain matching structure
JP2633010B2 (en) Method for manufacturing compound semiconductor device
JP2600755B2 (en) Semiconductor device
KR0170189B1 (en) Lattice mismatched high electron mobility transistor
JPH0774100A (en) Manufacture of semiconductor device
JPS62115831A (en) Manufacture of semiconductor device
JPH0666335B2 (en) Method for manufacturing silicon carbide Schottky junction field effect transistor