JPH025314A - Manufacture of oxide superconductive wire rod - Google Patents

Manufacture of oxide superconductive wire rod

Info

Publication number
JPH025314A
JPH025314A JP63155692A JP15569288A JPH025314A JP H025314 A JPH025314 A JP H025314A JP 63155692 A JP63155692 A JP 63155692A JP 15569288 A JP15569288 A JP 15569288A JP H025314 A JPH025314 A JP H025314A
Authority
JP
Japan
Prior art keywords
powder
oxide
oxide superconductor
heating
atomized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63155692A
Other languages
Japanese (ja)
Inventor
Wataru Komatsu
亘 小松
Ryoji Sedaka
良司 瀬高
Toshiaki Shibata
柴田 俊昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP63155692A priority Critical patent/JPH025314A/en
Publication of JPH025314A publication Critical patent/JPH025314A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To make it possible to manufacture an oxide superconductive wire rod with an excellent performance efficiently by dissolving the material of an oxide superconductor in a solvent to make into a solution, atomizing the solution and applying a thermal reaction to make a minute superconductor powder, attaching the powder on a cooled tube body, and then heating to sinter. CONSTITUTION:Compounds including component elements of an oxide superconductor respectively are dissolved in specific amount of solvents respectively, the resultant solution is atomized and fed to a specific temperature of reaction furnace to make the spray into an oxide superconductor powder. At the same time, said powder is attached to the surface of a cooled tube body arranged in the reaction furnace. Then, the attachment is removed from the tube body while heating to sinter the attachment, and after heating to sinter in the ambiance including oxygen, a specific heat treatment is applied. In this case, to atomize the compounds, the compounds are dissolved in the water or the like, and atomized with a supersonic nebulizer or the like. And as the feeding method of the spray to the reaction furnace continuously, the method to convey it on a carrier gas such as the air or O2 is available.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は酸化物超電導線材の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing an oxide superconducting wire.

〔従来の技術〕[Conventional technology]

近年、アルカリ土金属、希土類元素、銅、ビスマス、タ
リウム等の元素及び酸素からなる酸化物超電導体が見出
されている。
In recent years, oxide superconductors made of oxygen and elements such as alkaline earth metals, rare earth elements, copper, bismuth, and thallium have been discovered.

これらの酸化物超電導体は、液体N2温度以上で超電導
となるため従来の液体He温度で超電導を示す金属超電
導体に較べて格段に経済的であり、各分野での利用が検
討されている。
These oxide superconductors are much more economical than conventional metal superconductors which exhibit superconductivity at liquid He temperatures because they become superconducting above the liquid N2 temperature, and their use in various fields is being considered.

ところで上記の酸化物超電導体は脆いため金属材料のよ
うに塑性加工ができず、これらを線材等に加工するには
、主に粉末冶金法が用いられ、例えば原料粉末の仮焼成
粉を基体上に被覆成形したり、又はAg管等に充填して
伸延加工し、次いでこれを0□含を雰囲気中で加熱焼結
する方法がとられている。
By the way, the above-mentioned oxide superconductors are brittle and cannot be plastically worked like metal materials, so powder metallurgy is mainly used to process them into wire rods, etc. A method is used in which the material is coated and molded into an Ag tube, or filled into an Ag tube or the like and stretched, and then heated and sintered in a 0□-containing atmosphere.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記の粉末冶金法において、基体上に仮焼成粉を被覆成
形する方法には、プラズマ溶射法、ペースト塗布法、粉
体付着法等が用いられているが、プラズマ溶射法は付着
効率が悪く、又ペースト塗布法は乾燥に長時間を要する
上、付着体がポーラスになり、又粉体付着法は焼結時基
体と超電導体層との間で拡散反応が生じて超電導特性が
低下するという問題があった。又仮焼粉をAg管等に充
填する方法は、仮焼粉を管内に連続して高密度に充填す
るのが難しく、特に線材等の長尺材において長手方向に
特性のバラツキを生し易いという問題があった。
In the above powder metallurgy method, plasma spraying, paste coating, powder adhesion, etc. are used to coat and mold the pre-fired powder onto the substrate, but plasma spraying has poor adhesion efficiency; In addition, the paste coating method takes a long time to dry and the adhered body becomes porous, and the powder coating method has the problem that a diffusion reaction occurs between the substrate and the superconductor layer during sintering, resulting in a decrease in superconducting properties. was there. In addition, with the method of filling calcined powder into Ag pipes, etc., it is difficult to fill the tube with calcined powder continuously and at a high density, and it is easy to cause variations in properties in the longitudinal direction, especially in long materials such as wire rods. There was a problem.

〔課題を解決するための手段〕[Means to solve the problem]

本発明はかかる状況に鑑みなされたものでその目的とす
るところは特性に優れた酸化物超電導線材を効率よく製
造する方法を提供することにある。
The present invention was devised in view of this situation, and its purpose is to provide a method for efficiently manufacturing an oxide superconducting wire with excellent properties.

即ち本発明は、酸化物超電導体の構成元素を各々含有す
る化合物をそれぞれ所定量溶媒に溶解し、この溶液を霧
状化して所定温度に加熱した反応炉内に供給して反応さ
せて上記霧状体を酸化物超電導体粉末となすとともに、
上記反応炉内に配置した冷却された管体表面に付着させ
、次いで該付着体を加熱焼結しつつ、上記冷却管体から
連続的に引き離し、引続き上記付着体を酸素含有雰囲気
中で加熱焼結したのち、上記焼結した付着体に所定の加
熱処理を施すことを特徴とするものである。
That is, in the present invention, a predetermined amount of a compound containing each of the constituent elements of an oxide superconductor is dissolved in a solvent, and this solution is atomized and supplied to a reactor heated to a predetermined temperature to cause a reaction. While converting the shaped body into oxide superconductor powder,
The adhered body is deposited on the surface of a cooled tube placed in the reactor, and then the adhered body is heated and sintered while being continuously separated from the cooling tube body, and the adhered body is then heated and sintered in an oxygen-containing atmosphere. After sintering, the sintered adhered body is subjected to a predetermined heat treatment.

本発明において、酸化物超電導体の構成元素を各々含有
する化合物としては、例えばYBa、Cu307−δ(
δ″−i 0.1〜0.3 )の超電導体ニツイて例示
するとY、Ba、Cuのそれぞれ酢酸塩、硝酸塩、ハロ
ゲン化物或いは有機金属化合物等である。
In the present invention, examples of compounds containing each of the constituent elements of the oxide superconductor include YBa, Cu307-δ(
Examples of superconductors with δ″-i 0.1 to 0.3 include acetates, nitrates, halides, and organometallic compounds of Y, Ba, and Cu, respectively.

本発明において上記化合物を霧状化する方法としては、
例えば上記化合物をそれぞれ水等の溶媒に溶解し、これ
を超音波ネプライザ等により霧状化する方法が用いられ
る。
In the present invention, the method for atomizing the above compound is as follows:
For example, a method may be used in which each of the above compounds is dissolved in a solvent such as water and atomized using an ultrasonic nebulizer or the like.

上記の霧状体を反応炉に連続的に供給する方法としては
、これを空気、Ot等のキャリアガスにのせて搬送する
のが供給量のコントロールが容易にできて好ましいもの
である。
As a method for continuously supplying the above-mentioned atomized material to the reactor, it is preferable to transport the atomized material in a carrier gas such as air or Ot, since the amount of the atomized material to be supplied can be easily controlled.

本発明において上記霧状体を酸化物超電導体粉末に加熱
反応させる加熱方法としては、電気抵抗加熱、高周波誘
導加熱、バーナ加熱等の方法が特に適している。
In the present invention, methods such as electric resistance heating, high frequency induction heating, and burner heating are particularly suitable as heating methods for causing the atomized material to undergo a thermal reaction with the oxide superconductor powder.

本発明において反応炉により加熱されて生成する酸化物
超電導体粉末は、例えばY−Ba−Cu−O系酸化物超
電導体について示すと、YBazCu、Oっの化学式で
示される複合酸化物であり、上記の酸化物超電導体中に
は酸素量が欠乏した組成からなる複合酸化物も含まれて
おり、この粉末に酸素含有雰囲気中で所定の加熱焼結並
びに加熱処理を施すと超電導特性が更に向りするもので
ある。
In the present invention, the oxide superconductor powder produced by heating in a reaction furnace is a composite oxide represented by the chemical formula of YBazCu, O, for example, in the case of a Y-Ba-Cu-O-based oxide superconductor. The above oxide superconductor also contains a composite oxide with a composition deficient in oxygen, and when this powder is subjected to prescribed heat sintering and heat treatment in an oxygen-containing atmosphere, the superconducting properties are further improved. It is something to be used for.

本発明において、上記の生成する酸化物超電導体粉末を
冷却された管体に付着させるのは、高温状態にある浮遊
粉末は、冷却管体上に付着し易いという所謂サーモホレ
シス効果を利用したもので、冷却された管体の温度が低
い桟付@量が増加する。
In the present invention, the oxide superconductor powder produced above is attached to the cooled tube by utilizing the so-called thermophoresis effect, in which suspended powder in a high temperature state tends to adhere to the cooled tube. , the amount of crosspieces with low temperature of the cooled tube increases.

本発明において、冷却された管体には内部に冷媒が流さ
れるパイプ等が用いられ、その形状、材質は用途に応じ
て任意に選ぶことができる。
In the present invention, a pipe or the like through which a refrigerant flows is used as the cooled tube, and its shape and material can be arbitrarily selected depending on the purpose.

本発明において、冷却管体上の付着体を加熱焼結する理
由は、付着体に強度をもたせ付着体が冷却管体から引き
離される時破断するのを防止する為で、この加熱焼結は
、付着体が冷却管体」:を移動し易くする為、付着体の
内層が粉末状である程度にとどめるのが望ましい。
In the present invention, the reason why the adhered body on the cooling pipe body is heated and sintered is to give strength to the adhered body and prevent the adhered body from breaking when it is separated from the cooling pipe body. In order to make it easier for the adhered body to move around the cooling pipe body, it is desirable that the inner layer of the adhered body be kept to a certain extent in powder form.

本発明において冷却された管体から引き離された付着体
は、酸素含有雰囲気中で内部まで加熱焼結され、粉末間
の結合並びに酸素の補給がなされ、引続き酸素含有雰囲
気中で所定の加熱処理が施されて更に酸素の補給と結晶
構造の調整がなされる。
In the present invention, the adhered body separated from the cooled tube is heated and sintered to the inside in an oxygen-containing atmosphere to bond the powders and replenish oxygen, and then undergo a predetermined heat treatment in an oxygen-containing atmosphere. Furthermore, oxygen is supplied and the crystal structure is adjusted.

〔作用〕[Effect]

酸化物超電導体原料を溶媒に溶かして溶液となし、この
溶液を霧状化して加熱反応させるので微細な酸化物超電
導体粉末が生成され、更に生成させた粉末をサーモホレ
シス効果を利用して冷却された管体上に付着させるので
高い付着効率が得られるとともに、付着した酸化物超電
導体粉末は冷却管体と接するので拡散反応を起こして変
質するようなことがない。
The oxide superconductor raw material is dissolved in a solvent to form a solution, and this solution is atomized and heated to generate a fine oxide superconductor powder, which is then cooled using the thermophoresis effect. Since the oxide superconductor powder is deposited on the cooling pipe body, high adhesion efficiency can be obtained, and since the deposited oxide superconductor powder comes into contact with the cooling pipe body, it will not undergo a diffusion reaction and change in quality.

又上記冷却管体上に付着した酸化物超電導体粉末は続け
て加熱焼結されるので冷却体からの引き離し時に破断す
ることなく容易に引き離しでき、引続き内部層の加熱焼
結並びに全体の加熱処理が連続してなされるので酸化物
超電導線材が効率よく製造される。
In addition, since the oxide superconductor powder adhering to the cooling pipe body is continuously heated and sintered, it can be easily separated without breaking when removed from the cooling body, and the inner layer is subsequently heated and sintered and the entire heat treatment is performed. Since these steps are performed continuously, the oxide superconducting wire can be manufactured efficiently.

〔実施例〕〔Example〕

以下に本発明を実施例により詳細に説明する。 The present invention will be explained in detail below using examples.

第1図は本発明方法を実施する酸化物超電導線材製造装
置の一例を示す要部説明図である。
FIG. 1 is an explanatory diagram of essential parts showing an example of an oxide superconducting wire manufacturing apparatus for carrying out the method of the present invention.

酸化物超電導線材製造装置は、原料?′?I液lを霧状
化する為の超音波式ネプライザ2、上記霧状体3を輸送
する為のキャリアガス制御用MFC(Mass−Flo
w−Controller) 4、上記霧状体3の粒径
選別用DMA (Differential−Mobi
lity−Analyzer)5、上記の選別された霧
状体3を酸化物超電導体粉末に加熱反応させる為の反応
炉6、反応炉6を内外から加熱する為の2基の反応用電
気炉7.8、上記酸化物超電導体粉末を付着させるため
の冷却された管9.上記の付着した粉末を加熱焼結する
ための表面焼結用電気炉10、上記冷却管9から引き離
した酸化物超電導体粉末のパイプ状体11を加熱焼結す
る為の内部焼結用電気炉12、上記焼結されたパイプ状
体11を加熱処理する為のアニール用電気炉13から構
成されている。
Is oxide superconducting wire production equipment used as raw material? ′? An ultrasonic nebulizer 2 for atomizing liquid I, a carrier gas control MFC (Mass-Flo
w-Controller) 4. DMA for particle size selection of the atomized material 3 (Differential-Mobi
5, a reactor 6 for heating and reacting the selected atomized material 3 into oxide superconductor powder, and two electric reaction furnaces 7 for heating the reactor 6 from the inside and outside. 8. Cooled tube for depositing the oxide superconductor powder 9. A surface sintering electric furnace 10 for heating and sintering the adhered powder, and an internal sintering electric furnace for heating and sintering the pipe-shaped body 11 of the oxide superconductor powder separated from the cooling tube 9. 12. It consists of an annealing electric furnace 13 for heat-treating the sintered pipe-shaped body 11.

上記において、冷却された管9は、超電導体粉末が冷却
管9の先端部分にのみ付着し上部には付着しないような
構成になっている。即ち上記冷却管9は二重構造になっ
ていて中心管から冷媒が入れられ外周管を通って排出さ
れる構造のもので、冷却管9は先端部分に冷媒が流出す
るので先端部分がよく冷却され、冷却管9の上部程冷却
媒体は高温となり上部の冷却は弱まる。更に反応用電気
炉7は冷却管9の上部を加熱できるように配置されてい
る。
In the above, the cooled tube 9 is configured such that the superconductor powder adheres only to the tip portion of the cooling tube 9 and does not adhere to the upper portion. That is, the cooling pipe 9 has a double structure, in which refrigerant is introduced from the center pipe and discharged through the outer peripheral pipe, and since the refrigerant flows out to the tip of the cooling pipe 9, the tip is well cooled. As a result, the higher the cooling pipe 9, the higher the temperature of the cooling medium becomes, and the cooling of the upper part becomes weaker. Further, the reaction electric furnace 7 is arranged so as to be able to heat the upper part of the cooling pipe 9.

実施例1 出発原料としてY (CHs COO) x・4 H□
○、Ba (CH,Coo)、−H,O及びCu (C
H2CO2)よ・H,Oを用い、上記の各々の出発原料
をY:Ba:Cuが原子比で1:2:3になるように秤
量し、これを水に熔解してYBa、Cu3の組成で0.
03モル/1211度の水溶液を用意した。
Example 1 Y (CHs COO) x・4 H□ as a starting material
○, Ba (CH,Coo), -H,O and Cu (C
Using H2CO2), H, and O, weigh each of the above starting materials so that the atomic ratio of Y:Ba:Cu is 1:2:3, and dissolve it in water to obtain the composition of YBa and Cu3. So 0.
An aqueous solution of 0.03 mol/1211 degrees was prepared.

上記水溶液を第1図に示した酸化物超電導線材製造装置
の超音波式ネプライザ2内にセットして50cc/wi
nの速度で霧状化し、次いでこの霧状体3をMFC4か
ら234!/5hinの流量で流入する02気流にのせ
てDMA5に輸送し、上記DMA5により粒径4−以下
の霧状体3を選別してこれを反応炉6内に供給した。
The above aqueous solution was set in the ultrasonic nebulizer 2 of the oxide superconducting wire manufacturing apparatus shown in Fig.
n at a speed of 234! The atomized material 3 having a particle size of 4 mm or less was selected by the DMA 5, and was supplied into the reactor 6.

反応炉6内に供給された上記霧状体3は反応用電気炉7
.8により加熱されて反応して酸化物超電導体粉末とな
し、この粉末を上記反応炉6内の中心部に配置した外径
6閤の銀製冷却管9の先端部分に付着させた。上記冷却
管9の先端部分の表面温度は、冷却水量の上記表面温度
に及ぼす影響を予備実験により求めておいて制御した。
The atomized material 3 supplied into the reaction furnace 6 is transferred to the reaction electric furnace 7.
.. 8 to react and form an oxide superconductor powder, and this powder was attached to the tip of a silver cooling tube 9 with an outer diameter of 6 mm located at the center of the reactor 6. The surface temperature at the tip of the cooling pipe 9 was controlled by determining the influence of the amount of cooling water on the surface temperature through preliminary experiments.

而して上記冷却管9に付着した酸化物超電導体粉末の表
面層を表面焼結用電気炉lOにより加熱焼結し、この表
面層が焼結した付着体を図示していないピンチロールに
より冷却管9から連続的に引き離し、酸化物超電導パイ
プ状体11となし、引続きこのパイプ状体11を上記冷
却管9の下方に配置した内部焼結用電気炉13により内
部迄焼結し、次いで上記内部焼結用電気炉12の下方に
配置したアニール用電気炉13により大気中で加熱処理
を施した。
Then, the surface layer of the oxide superconductor powder adhering to the cooling tube 9 is heated and sintered in an electric furnace for surface sintering IO, and the adhered body with this sintered surface layer is cooled by pinch rolls (not shown). It is continuously separated from the tube 9 to form an oxide superconducting pipe-like body 11, and then this pipe-like body 11 is sintered to the inside in an internal sintering electric furnace 13 disposed below the cooling pipe 9, and then the above-mentioned Heat treatment was performed in the atmosphere using an annealing electric furnace 13 placed below the internal sintering electric furnace 12.

アニール用電気炉13は上部から下部にかけて900°
Cから室温迄直線的温度勾配がつけられており、上記パ
イプ状体11は2°(:/g+inの速度で徐冷した。
The annealing electric furnace 13 has an angle of 90° from the top to the bottom.
A linear temperature gradient was established from C to room temperature, and the pipe-shaped body 11 was gradually cooled at a rate of 2° (:/g+in).

このようにして得られたY B a t Cu 30 
q−δ(δζ0.1〜0.3)の酸化物超電導線材は図
示していないコイラーに連続して巻き取った。
Y B a t Cu 30 thus obtained
The q-δ (δζ0.1 to 0.3) oxide superconducting wire was continuously wound around a coiler (not shown).

実施例2 冷却管の先端部分の表面温度を60゛Cとした他は実施
例1と同じ方法により酸化物超電導線材を製造した。
Example 2 An oxide superconducting wire was produced in the same manner as in Example 1, except that the surface temperature of the tip of the cooling tube was 60°C.

実施例3 霧状化のための水溶液に、B i (CaHwO,) 
 ・7H,OlS r (ChH*OJz ・38zO
,Ca(C−H90h ) t ・5 Ht OとCu
 (ChHwoi)2・2H,OをBi:Sr:Ca:
Cuが1:1:l:2になるように配合し混合した混合
粉末を、エタノール50%十水50%の溶媒に?容かし
てB15rcacuzの組成で0.015モル/l濃度
となしたものを用いた他は実施例1と同様の方法により
B15rCaCu、Ol−δ(δ−0,1〜0.3)の
酸化物超電導線材を製造した。
Example 3 B i (CaHwO,) was added to the aqueous solution for atomization.
・7H,OlS r (ChH*OJz ・38zO
, Ca(C-H90h) t ・5 Ht O and Cu
(ChHwoi)2.2H,O Bi:Sr:Ca:
Mixed powder mixed so that Cu ratio is 1:1:1:2 is mixed in a solvent of 50% ethanol and 50% water? Oxidation of B15rCaCu, Ol-δ (δ-0,1 to 0.3) was carried out in the same manner as in Example 1, except that B15rcacuz was used at a concentration of 0.015 mol/l. A superconducting wire was manufactured.

従来例1 2■φのSUS線上にY B a 2 Cu 30 x
組成のペースト状仮焼成粉をl111ffi厚さに塗布
し、これを乾燥後酸素気流中で900 ’C20時間加
熱焼結したのち、900″Cから室温迄2°(:/wi
nの速度で徐冷して酸化物超電導線材を製造した。
Conventional example 1 Y B a 2 Cu 30 x on 2■φ SUS wire
A paste-like calcined powder of the composition was applied to a thickness of 111ffi, and after drying, it was heated and sintered at 900'C in an oxygen stream for 20 hours, and then heated at 2° from 900'C to room temperature (:/wi
An oxide superconducting wire was produced by slow cooling at a rate of n.

斯くの如くして得られた各々の酸化物超電導線材につい
て、寸法、相対密度及びJ、を測定した。
The dimensions, relative density and J of each of the oxide superconducting wires thus obtained were measured.

結果は製造条件を併記して第1表に示した。The results are shown in Table 1 along with the manufacturing conditions.

第1表より明らかなように本発明方法品(実施例1〜3
)は従来方法品(従来例1)に較べて相対密度、JCと
も高い値を示している。
As is clear from Table 1, the method of the present invention (Examples 1 to 3)
) shows higher values for both relative density and JC than the conventional method product (Conventional Example 1).

本発明方法品において、酸化物超電導体粉末は溶液加熱
分解法により生成するので微細であり、上記粉末の付着
体の密度が高く、又冷却管との界面は温度が低いので拡
散反応を起こすことがなくJ、が高い値となった。又本
発明方法品において冷却管の温度が低い程上記粉末が厚
く付着する。
In the product produced by the method of the present invention, the oxide superconductor powder is produced by a solution thermal decomposition method, so it is fine, the density of the powder adhered to it is high, and the temperature at the interface with the cooling tube is low, so that no diffusion reaction occurs. There was no J, and the value was high. In addition, in the method of the present invention, the lower the temperature of the cooling pipe, the thicker the powder adheres.

本発明方法において、酸化物超電導体粉末の冷却管から
の引き離しは、いずれの場合も−F記粉末のパイプ状体
が破断することなくスムーズになされた。製出したパイ
プ状線材の外内径はともに冷却管の外径より細くなって
いるが、これは引き離し直後自重により伸延し、更に加
熱焼結により縮小した為である。
In the method of the present invention, the oxide superconductor powder was smoothly separated from the cooling tube without breaking the pipe-shaped body of the -F powder in all cases. Both the outer and inner diameters of the produced pipe-shaped wire rod are smaller than the outer diameter of the cooling tube, but this is because it was elongated due to its own weight immediately after being separated, and was further reduced by heating and sintering.

従来方法品のJ、が低いのはペースト状の仮焼成粉をS
US基体上に塗布して加熱焼結した為、酸化物超電導体
層がポーラスとなり、又基体から不純物元素が拡散侵入
した為である。
The J of the conventional method product is low because of the paste-like pre-calcined powder S.
This is because the oxide superconductor layer became porous because it was coated on a US substrate and heated and sintered, and impurity elements diffused into the substrate.

本発明方法において、細径の円形冷却管又は平角状の冷
却管を用い、酸化物超電導体粉末を厚めに付着させて上
記付着体を冷却管から引き離したのち、適度の圧下を施
すことにより中実線材を製造することも可能である。
In the method of the present invention, a small-diameter circular cooling tube or a rectangular cooling tube is used, oxide superconductor powder is deposited thickly, the adhered body is separated from the cooling tube, and then moderate pressure is applied to reduce the temperature. It is also possible to produce solid wire.

〔効果〕〔effect〕

以上述べたように本発明方法によれば、密度及び純度が
高く、超電導特性に優れた長尺の酸化物超電導線材が連
続して効率よく製造し得るので、工業上顕著な効果を奏
する。
As described above, according to the method of the present invention, a long oxide superconducting wire having high density and purity and excellent superconducting properties can be continuously and efficiently manufactured, and therefore it has a significant industrial effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施する酸化物超電導線材製造装
置の一例を示す要部説明図である。 ■・・・溶液、 3・・・霧状体、 6・・・反応炉、
 9・・冷却管、  11・・・酸化物超電導パイプ状
体。
FIG. 1 is an explanatory diagram of essential parts showing an example of an oxide superconducting wire manufacturing apparatus for carrying out the method of the present invention. ■...Solution, 3...Atomized body, 6...Reactor,
9... Cooling pipe, 11... Oxide superconducting pipe-shaped body.

Claims (1)

【特許請求の範囲】[Claims] 酸化物超電導体の構成元素を各々含有する化合物をそれ
ぞれ所定量溶媒に溶解し、この溶液を霧状化して所定温
度に加熱した反応炉内に供給して反応させて上記霧状体
を酸化物超電導体粉末となすとともに、上記反応炉内に
配置した冷却された管体の表面に付着させ、次いで該付
着体を加熱焼結しつつ、上記冷却管体から連続的に引き
離し、引続き上記付着体を酸素含有雰囲気中で加熱焼結
したのち、上記焼結した付着体に所定の加熱処理を施す
ことを特徴とする酸化物超電導線材の製造方法。
A predetermined amount of a compound containing each of the constituent elements of an oxide superconductor is dissolved in a solvent, and this solution is atomized and supplied to a reactor heated to a predetermined temperature to react, and the atomized material is converted into an oxide. The superconductor powder is formed into superconductor powder, and is adhered to the surface of a cooled tube placed in the reactor, and then the adhered body is heated and sintered while being continuously separated from the cooling tube, and then the adhered body is A method for producing an oxide superconducting wire, comprising heating and sintering the sintered body in an oxygen-containing atmosphere, and then subjecting the sintered adhered body to a predetermined heat treatment.
JP63155692A 1988-06-23 1988-06-23 Manufacture of oxide superconductive wire rod Pending JPH025314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63155692A JPH025314A (en) 1988-06-23 1988-06-23 Manufacture of oxide superconductive wire rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63155692A JPH025314A (en) 1988-06-23 1988-06-23 Manufacture of oxide superconductive wire rod

Publications (1)

Publication Number Publication Date
JPH025314A true JPH025314A (en) 1990-01-10

Family

ID=15611457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63155692A Pending JPH025314A (en) 1988-06-23 1988-06-23 Manufacture of oxide superconductive wire rod

Country Status (1)

Country Link
JP (1) JPH025314A (en)

Similar Documents

Publication Publication Date Title
EP0720244B1 (en) Superconducting oxide-metal composites
JPH025314A (en) Manufacture of oxide superconductive wire rod
JPH01321031A (en) Manufacture of oxide superconducting wire
US5077267A (en) Process for making composite high temperature superconductor copper wires
JPH02208209A (en) Production of oxide superconductor precursor
JPH01265414A (en) Manufacture of oxide superconductive wire rod
JPH0477302A (en) Production of superconducting layer
JPH03109207A (en) Production of oxide superconducting powder occluding oxygen or gaseous ozone
JPH01286211A (en) Manufacture of oxide superconducting wire rod
JPH02208208A (en) Production of oxide superconductor precursor film
JPH11323558A (en) Liquid raw material supply device for cvd
JPS63291318A (en) Manufacture of oxide superconductive wire
USH1718H (en) Method of producing high temperature superconductor wires
JP2575443B2 (en) Method for producing oxide-based superconducting wire
JPS63310707A (en) Production of oxide superconducting powder
JPH01278416A (en) Production of precursor substance for oxide superconductor
JPS63274017A (en) Superconductive wire material
JPH01278402A (en) Synthesis of precursor substance for oxide superconductor
JPH01313324A (en) Production of superconducting film
JPH02204309A (en) Production of film of precursor of oxide superconductor
JPH01313905A (en) Method and device for manufacturing oxide superconductor coil
JPH01320223A (en) Synthesizing method for oxide superconductor
JPH0240813A (en) Manufacture of ceramic superconductive wire
JPH03265507A (en) Production of superconductor layer
JPH0198277A (en) Forming method for superconductor thin film