JPH0252004B2 - - Google Patents

Info

Publication number
JPH0252004B2
JPH0252004B2 JP59165573A JP16557384A JPH0252004B2 JP H0252004 B2 JPH0252004 B2 JP H0252004B2 JP 59165573 A JP59165573 A JP 59165573A JP 16557384 A JP16557384 A JP 16557384A JP H0252004 B2 JPH0252004 B2 JP H0252004B2
Authority
JP
Japan
Prior art keywords
cross
porous hollow
hollow
crimped
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59165573A
Other languages
Japanese (ja)
Other versions
JPS6147807A (en
Inventor
Mikio Tashiro
Shiro Murakami
Tetsuya Motomya
Kazunori Orii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP16557384A priority Critical patent/JPS6147807A/en
Publication of JPS6147807A publication Critical patent/JPS6147807A/en
Publication of JPH0252004B2 publication Critical patent/JPH0252004B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は高度に優れた三次元捲縮を呈し、優れ
た嵩高性、嵩回復性、保湿性及び柔軟な風合を呈
する捲縮多孔中空繊維及びその製造方法に関す
る。更に、詳細にはカーペツト、ハイパイル、毛
布、モケツトや衣料用織編物等の他、特に詰綿に
用いたときに羽毛調の優れた特性を示す捲縮多孔
中空繊維及びその製造方法に関する。 (従来技術) 溶融紡糸方法によつて繊維に三次元的捲縮を付
与する方法は従来から提案されているが、実用上
満足できるとはいい難い。即ち、 (A) 収縮性の異なる二種のポリマーをバイメタル
型あるいは芯成分を偏心させた芯さや型に複合
紡糸する方法がある。この方法は紡糸操作がか
なり難しく、品質の安定した製品を得にくく、
また紡糸装置が複雑であるため設備費が高い等
の欠点を有する。 (B) 溶融紡出糸の片側を加熱し、断面方向に異方
性を付与する方法、例えば(特公昭43−13351
号公報参照)がある。この方法は紡糸操作中に
各単繊維間の融着が起こるため満足な製品を得
ることが困難である。 (C) ポリマーがノズルから吐出される方向と吐出
糸条の引取方向との間にある角度をもたせ、繊
維の断面方向に不均一構造を生成させる方法
(例えば特公昭43−27539号公報参照)がある。
この方法はノズル出口でのポリマーの流動状態
を極度に乱すため紡糸調子が悪く、操業性が非
常に低い等の欠点を有する。 (D) 吐出直後の糸条に冷却用気流を吹きつけ、断
面方向に複屈折度の異方性を付与して三次元捲
縮繊維を得る方法(例えば特公昭38−7511号公
報参照)があり、この改良法として繊維横断面
の実質的中央または偏心した位置に単一の中空
部を設けて、より異方性を高める方法が特公昭
44−20497号公報、同45−36330号公報、同56−
29007号公報に記載されている。 更に、横断面形状が略四角形であつて、4ケの
中空部を有するナイロン吐出糸条の断面を急冷す
る方法が特開昭54−112242号公報に記載されてい
る。 しかしながら、これらの方法によつて得られる
捲縮繊維では、充分に満足し得る嵩高性、嵩回復
性、保温性、及び風合を呈する捲縮繊維が得られ
ず、しかも最適条件の範囲が非常に狭く、生産性
も低い。 (発明の目的) 本発明は以上の事情を背景として為されたもの
であり、その目的とするところは、高度に優れた
三次元捲縮を呈し、優れた嵩高性、嵩回復性、保
温性、及び柔軟な風合を呈する捲縮多孔中空繊維
及びその工業的な製造方法を提供することにあ
る。 (構成) 本発明者等は、前記目的を達成すべく検討した
結果、少くとも1個の中空部を形成し得る中空吐
出孔がスリツトを介して複数個連結されているノ
ズルが配置されている紡糸口金から吐出された多
孔中空繊維の片面を急冷することにより、繊維横
断面方向の異方性が拡大されると共に、得られる
捲縮繊維の風合が柔軟となることを見い出し、本
発明に到達した。 即ち、本発明は、熱可塑性重合体から成り、且
つ長手方向に連続する中空部が複数個存在する捲
縮多孔中空繊維であつて、該繊維の横断面におい
て、外周部に曲線によつて形成される複数個の凹
部及び凸部を有すると共に、断面異方性を有し、
かつ前記凸部は中空部を形成する壁部から構成さ
れていることを特徴とする捲縮多孔中空繊維であ
り、熱可塑性重合体から成る多孔中空繊維を溶融
紡糸するに際し、該多孔中空繊維の少くとも1個
の中空部を形成する中空吐出孔がスリツトを介し
て複数個連結されているノズルが配置されている
紡糸口金から吐出し、引続き吐出糸条の片側を、
前記吐出糸条の走行方向に略直交する方向から
0.2m/秒以上の風速を有する冷却風を吹き付け
ることによつて冷却せしめ、次いで得られる、繊
維断面外周部に曲線によつて形成される複数個の
凹部及び凸部を有すると共に、該凸部は中空部を
形成する壁部から構成されている多孔中空未延伸
糸を延伸した後に弛緩熱処理することを特徴とす
る捲縮多孔中空繊維の製造方法である。 本発明においていう「断面異方性」とは、繊維
横断面のある一方向に複屈折率差等の物性の異方
性(すなわち繊維軸に対して非対称性)が存在す
ることをいう。 本発明について図面を用いて説明する。 第1図及び第2図は本発明において使用する紡
糸口金のノズル断面形状、第3図は従来方法にお
いて使用する紡糸口金のノズル断面形状、第4〜
6図は第1〜3図に示されている断面形状のノズ
ルを用いて得られる本発明の捲縮多孔中空繊維の
夫々の横断面形状を夫々示す。 第1図aにおいてS1〜S5はスリツトを示し、中
空部はスリツトS1とS2、及びスリツトS4とS5で形
成される。 本発明においては、かかるスリツトS1,S2、及
びスリツトS4,S5がスリツトS3で連結されている
ことが大切である。 この第1図aに示すノズルから吐出された繊維
は第4図aに示す様に単一中空部(E1又はE2
を有する繊維があたかも接合している如き断面形
状を呈し、かかる断面形状を呈する繊維の片側を
急冷することによつて容易に高度な断面異方性を
付与することができるのである。 これに対し、第3図イに示す従来の丸中空繊維
用ノズルから得られる第6図イに示す単一中空繊
維では、片面だけを冷却すべく冷却風を吹き付け
ても、冷却風は風下側にも回り込むために均一に
冷却され易く、高度な断面異方性を付与できな
い。 また、第3図ロに示す特開昭54−112242号公報
に示されている多孔中空繊維用ノズルからは第6
図ロに示す略四角形の断面形状を呈する多孔中空
繊維が得られる。 しかしながら、第6図ロに示す様な略四角形の
断面形状を呈する繊維を得ようとして、繊維の片
側に冷却風を吹き付ける場合に、風下側に回り込
む冷却風を若干減少できるため、やや良好な断面
異方性が付与できるものの、本発明の方法により
付与される高度な断面を持つ異方性には及ばない
ため、物理的な捲縮加工を併用する必要があり、
この様に略四角形の断面形状を得ることは困難で
あつて、実質的に円形の断面形状となり易い。 本発明で用いるノズル形状としては、第1図a
の他に、第1図b〜cに示す如く中空部形成吐出
孔が直線状に連結されており、第4図b〜cに示
す断面形状を呈する本発明の捲縮繊維が得られる
もの、或いは第1図d〜gに示す如く中空部形成
吐出孔が環状に連結されており、第4図d〜gに
示す断面形状を呈する本発明の捲縮繊維が得られ
るものが好ましい。中でも、第4図d〜gに示す
断面形状を呈する本発明の捲縮繊維では、中央部
に中空部E′が形成されるため、極めて高度な断面
異方性を付与でき好ましい。 また、第1図hで示す如く、中空部形成吐出孔
を環状に連結し、これを更に複数個連結したノズ
ルを用いてもよい。かかるノズルからは第4図h
で示す断面形状の繊維が得られる。この様な断面
形状を有する捲縮繊維は従来の複合紡糸によつて
は得ることができない。 更に、第2図i〜kに示す如く、複数個の中空
部を形成し得る中空吐出孔を連結したノズルを用
いてもよい。これらノズルからは第5図i〜kに
示す断面形状の繊維が得られる。 次に、本発明において、第1図aに示すノズル
から吐出された第4図aに示す断面形状の繊維の
片側を急冷すべく、吐出糸条の片側に対し、吐出
糸条の走行方向に直交する方向から0.2m/秒以
上の風速を有する冷却風を吹き付けることが大切
である。 ここで、冷却風の吹き付ける方向が吐出糸条の
走行方向に対し著く傾斜していたり、或いは風速
が0.2m/秒未満である場合には、繊維の片側を
急冷することができず、高度な断面異方性を付与
することができない。 かかる冷却風を吹き付ける方向は、吐出糸条の
走行方向に対して直交する方向であればどの方向
からでもよいが、好ましくは第4図aに示す矢印
の方向、即ち繊維断面における突起がない方向か
ら吹き付けるのがよい。このようにすることによ
り、風下側に回りこむ冷却風を減少できるため、
断面異方性をより一層高めることができる。 ま
た、冷却風を吹き付ける位置は紡糸口金面に近い
程効果的であるが、良好な操業性を維持するため
には紡糸口金面下1〜35cmが好ましい。 尚、冷却風用気体としては空気が最も経済的で
あるが、高分子溶融体に対して不活性な気体であ
れば何でもよく、その温度はできるだけ低温の方
が好ましいが、経済的見地から10〜40℃が好適で
ある。 かくして得られた糸条を更に延伸し、弛緩熱処
理ことによつて、捲縮を発現することができる。 この際の延伸条件としては、紡糸工程で付与さ
れた高度の断面異方性が充分に保持される条件を
採用することが好ましい。 かかる延伸条件をポリエステル繊維の場合につ
いて具体的に述べると、延伸温度はTg±20℃
(Tg:ポリエステルのガラス転移点)の範囲内の
温度が好ましく、延伸倍率は最高延伸倍率の65〜
95%が好適である。延伸方法は液浴延伸、ピン延
伸等いかなる方法によつてもよい。 また、弛緩熱処理としては、延伸後の糸条を構
成する各単繊維を可能な限り無拘束状態とし、次
いで熱処理することによつてなされる。熱処理温
度は100〜230℃が好ましい。かかる弛緩熱処理は
トウ状、マルチフイラメント状、ステープル状等
いかなる状態で行つてもよく、弛緩熱処理前に機
械捲縮を付与してもよい。 この様にして得られた捲縮多孔中空繊維の中空
率は5〜60%が好ましい。 ここで言う「中空率」とは、繊維横断面におけ
る中空部の総面積に対し、前記横断面の外周部で
囲まれた面積に対する比である。具体的に第4図
eを用いて説明すると、中空部総面積SEとは中空
部E′,E14の合計面積であり、横断面の外周部
に囲まれた面積STとは前記中空部面積SE及び高分
子重合体が占める面積SPとの合計である。即ち、
中空率は下記式で表わされるものである。 中空率(%)=SE/SE+SP×100 かかる中空率が60%を越えると中空部が変形し
易くなる傾向があり、5%未満であれば断面方向
の異方性を充分に付与できなくなる傾向がある。 尚、本発明でいう熱可塑性重合体とは、溶融紡
糸可能な重合体のことであつて、かかる重合体の
例としては、ポリエチレンテレフタレート、ポリ
エチレンテレフタレート等のポリエステル、ポリ
エチレン、ポリプロピレンなどのポリオレフイン
類、ナイロン6、ナイロン66などのポリアミド類
およびこれらを主とする共重合物や重合混合物で
ある。特に、エチレンテレフタレート単位が85モ
ル%以上であるポリエステルを用いると熱的性質
が良好で好ましい。またポリエチレンテレフタレ
ートの代表的な共重合体としては、5−ナトリウ
ム−スルホイソフタル酸を1.5〜6モル%共重合
したポリエチレンテレフタレートがある。そし
て、かかるポリエステルは25℃−クロロフエノー
ル中で測定した粘度から算出した極限粘度が0.35
〜0.90であるものが好ましい。 尚、前記重合体にはつや消剤、接着剤、帯電防
止剤、防炎剤等の添加剤を含有していてもよい。 (作用) 従来より知られている第3図イ、ロに示すノズ
ルから吐出される繊維の片面を冷却する方法で
は、断面異方性を充分に付与することができない
ため、スタツフイングボツクスや流体処理ノズル
等の物理的な捲縮加工を併用しなければ、充分な
捲縮が得られないのである。 この点、本発明においては、吐出された繊維の
断面形状を冷却風によつて均一に冷却され難い形
状としたため、冷却風が風下側に回り込み難いの
で繊維断面の風上側と風下側との温度差を従来の
ものに比して著しく大きくすることができ、従来
のものに比較して高度な断面異方性を有すること
ができるのである。 そして、かかる繊維に弛緩熱処理を施して捲縮
を発現する結果、大きな捲縮を呈し、優れた嵩高
性、嵩回復性を呈することができ、多孔中空繊維
であるため良好な保温性及び柔軟な風合も呈する
ことができる。 しかも、均一性の良好な捲縮繊維を得るための
最適条件の範囲も従来の方法に比較して広くとれ
るため、生産性が良好で生産コストを低下するこ
とができる。 (発明の効果) 本発明の製造方法によつて得られる捲縮繊維
は、カーペツト、ハイパイ、毛布、モケツトや衣
料用織編物等の他、特に詰綿に用いたときに羽毛
調の優れた特性を示す製品が得られる。 (実施例) 更に、実施例により本発明を更に説明する。 実施例1〜3、比較例1 25℃o−クロロフエノール中で測定した極限粘
度が0.65のポリエチレンテレフタレートを第1表
に示す断面形状のノズルから280℃で溶融吐出し、
750m/minで巻き取り、単繊維繊度25デニール
の未延伸糸を得た。吐出糸条の冷却は、口金面下
1.5〜15cmの位置で25℃の冷却用空気を1.0m/sec
の流速で糸条の進向方向に対して垂直な方向から
吹きつけることにより行つた。このようにして得
られた未延伸糸を集束して70万デニールのトウに
したものを65℃の水浴中で3.5倍に延伸した後ト
ウ状で乾燥して130℃雰囲気中で弛緩熱処理を行
い、捲縮発現後64mmに切断した。かくして得られ
たステープルフアイバーをカードに通してウエツ
プをつくりふとん綿としその性能を測定した。結
果を第1表に併せて示す。
(Field of Industrial Application) The present invention relates to a crimped porous hollow fiber that exhibits highly excellent three-dimensional crimp, excellent bulkiness, bulk recovery, moisture retention, and soft texture, and a method for producing the same. More specifically, the present invention relates to crimped porous hollow fibers that exhibit excellent feather-like characteristics when used in carpets, high piles, blankets, moquettes, clothing fabrics, etc., and especially in stuffing, and a method for producing the same. (Prior Art) Methods for imparting three-dimensional crimp to fibers by melt spinning have been proposed in the past, but these methods cannot be said to be practically satisfactory. That is, (A) there is a method in which two types of polymers with different contractility are composite-spun into a bimetal type or a core-sheath type in which the core component is eccentric. With this method, the spinning operation is quite difficult and it is difficult to obtain products with stable quality.
Further, since the spinning device is complicated, there are drawbacks such as high equipment costs. (B) A method of heating one side of the melt-spun yarn to impart anisotropy in the cross-sectional direction, for example (Japanese Patent Publication No. 43-13351
(See Publication No.). With this method, it is difficult to obtain a satisfactory product because fusion occurs between each single fiber during the spinning operation. (C) A method in which a non-uniform structure is created in the cross-sectional direction of the fiber by creating a certain angle between the direction in which the polymer is discharged from the nozzle and the direction in which the discharged yarn is taken (see, for example, Japanese Patent Publication No. 43-27539). There is.
This method has drawbacks such as extremely poor spinning performance and very low operability since the flow state of the polymer at the nozzle outlet is extremely disturbed. (D) A method for obtaining three-dimensional crimped fibers by blowing a cooling air stream onto the yarn immediately after discharge and imparting birefringence anisotropy in the cross-sectional direction (for example, see Japanese Patent Publication No. 7511/1983). However, as an improvement method to this, a method was proposed by Tokuko Sho to further increase the anisotropy by providing a single hollow section at the substantial center or eccentric position of the fiber cross section.
Publication No. 44-20497, Publication No. 45-36330, Publication No. 56-
It is described in Publication No. 29007. Further, JP-A-54-112242 describes a method of rapidly cooling the cross section of a nylon discharged yarn having a substantially rectangular cross-sectional shape and four hollow portions. However, with the crimped fibers obtained by these methods, it is not possible to obtain crimped fibers that exhibit sufficiently satisfactory bulk, bulk recovery, heat retention, and texture, and the range of optimal conditions is very limited. It is narrow and productivity is low. (Objective of the Invention) The present invention has been made against the background of the above circumstances, and its purpose is to provide a highly superior three-dimensional crimp, excellent bulkiness, bulk recovery, and heat retention. An object of the present invention is to provide a crimped porous hollow fiber exhibiting a flexible texture and an industrial method for producing the same. (Structure) As a result of studies to achieve the above object, the present inventors have arranged a nozzle in which a plurality of hollow discharge holes capable of forming at least one hollow part are connected via a slit. It has been discovered that by rapidly cooling one side of the porous hollow fibers discharged from a spinneret, the anisotropy in the cross-sectional direction of the fibers is expanded and the texture of the resulting crimped fibers becomes soft, and the present invention has been made based on this discovery. Reached. That is, the present invention provides a crimped porous hollow fiber made of a thermoplastic polymer and having a plurality of hollow portions continuous in the longitudinal direction, which is formed by a curved line on the outer periphery in a cross section of the fiber. has a plurality of concave portions and convex portions, and has cross-sectional anisotropy,
The crimped porous hollow fiber is characterized in that the convex portion is constituted by a wall portion forming a hollow portion, and when melt-spinning the porous hollow fiber made of a thermoplastic polymer, the porous hollow fiber is The yarn is discharged from a spinneret in which a nozzle in which a plurality of hollow discharge holes forming at least one hollow portion are connected via a slit is disposed, and one side of the discharged yarn is then
From a direction substantially perpendicular to the running direction of the discharged yarn
The fiber is cooled by blowing cooling air having a wind speed of 0.2 m/sec or more, and then the obtained fiber cross section has a plurality of concave portions and convex portions formed in curved lines on the outer periphery of the fiber cross section, and the convex portion This is a method for producing crimped porous hollow fibers, which comprises stretching a porous hollow undrawn yarn composed of a wall portion forming a hollow portion, and then subjecting it to relaxation heat treatment. In the present invention, "cross-sectional anisotropy" refers to the presence of anisotropy in physical properties such as birefringence difference (that is, asymmetry with respect to the fiber axis) in one direction of the fiber cross section. The present invention will be explained using the drawings. 1 and 2 show the cross-sectional shape of the nozzle of the spinneret used in the present invention, FIG. 3 shows the cross-sectional shape of the nozzle of the spinneret used in the conventional method, and FIG.
FIG. 6 shows the cross-sectional shapes of the crimped porous hollow fibers of the present invention obtained using the nozzles having the cross-sectional shapes shown in FIGS. 1 to 3, respectively. In FIG. 1a, S 1 to S 5 indicate slits, and the hollow portion is formed by slits S 1 and S 2 and slits S 4 and S 5 . In the present invention, it is important that the slits S 1 and S 2 and the slits S 4 and S 5 are connected by the slit S 3 . The fibers discharged from the nozzle shown in Fig. 1a form a single hollow part (E 1 or E 2 ) as shown in Fig. 4a.
The fibers have a cross-sectional shape as if they were joined, and by rapidly cooling one side of the fibers exhibiting such a cross-sectional shape, a high degree of cross-sectional anisotropy can be easily imparted. On the other hand, with the single hollow fiber shown in Figure 6A obtained from the conventional round hollow fiber nozzle shown in Figure 3A, even if cooling air is blown to cool only one side, the cooling air is directed to the leeward side. Because it also goes around, it tends to be uniformly cooled and cannot provide a high degree of cross-sectional anisotropy. In addition, from the nozzle for porous hollow fibers shown in Japanese Patent Application Laid-Open No. 54-112242 shown in Figure 3B, the sixth
A porous hollow fiber having a substantially rectangular cross-sectional shape as shown in FIG. 2 is obtained. However, when blowing cooling air onto one side of the fiber in an attempt to obtain a fiber with a substantially rectangular cross-sectional shape as shown in Figure 6 (b), it is possible to slightly reduce the amount of cooling air that wraps around to the leeward side, resulting in a slightly better cross-sectional shape. Although anisotropy can be imparted, it is not as good as the anisotropy with a high degree of cross section imparted by the method of the present invention, so it is necessary to use physical crimping in combination.
In this way, it is difficult to obtain a substantially rectangular cross-sectional shape, and a substantially circular cross-sectional shape is likely to be obtained. The nozzle shape used in the present invention is shown in Figure 1a.
In addition, the crimped fiber of the present invention, in which the hollow part forming discharge holes are connected in a straight line as shown in FIGS. 1b to 1c, and the cross-sectional shape shown in FIGS. 4b to 4c, can be obtained; Alternatively, it is preferable that the hollow portion-forming discharge holes are connected in an annular manner as shown in FIG. 1 d to g, and the crimped fiber of the present invention having the cross-sectional shape shown in FIG. 4 d to g can be obtained. Among these, the crimped fibers of the present invention having the cross-sectional shapes shown in FIGS. 4d to 4g are preferable because they have a hollow portion E' formed in the center and can therefore be provided with an extremely high degree of cross-sectional anisotropy. Further, as shown in FIG. 1h, a nozzle may be used in which the hollow-portion-forming discharge holes are connected in an annular manner, and a plurality of these are further connected. From such a nozzle,
A fiber with a cross-sectional shape shown is obtained. A crimped fiber having such a cross-sectional shape cannot be obtained by conventional composite spinning. Furthermore, as shown in FIGS. 2-k, a nozzle may be used in which hollow discharge holes that can form a plurality of hollow portions are connected. From these nozzles, fibers having the cross-sectional shapes shown in FIGS. 5i to 5k are obtained. Next, in the present invention, in order to rapidly cool one side of the fiber having the cross-sectional shape shown in FIG. 4a, which is discharged from the nozzle shown in FIG. It is important to blow cooling air with a wind speed of 0.2 m/sec or more from perpendicular directions. Here, if the direction in which the cooling air is blown is significantly inclined with respect to the running direction of the discharged yarn, or if the wind speed is less than 0.2 m/sec, one side of the fiber cannot be rapidly cooled, and the altitude It is not possible to impart significant cross-sectional anisotropy. The cooling air may be blown from any direction as long as it is perpendicular to the traveling direction of the discharged yarn, but preferably it is in the direction of the arrow shown in FIG. It is best to spray it on. By doing this, you can reduce the amount of cooling air that goes around to the leeward side.
Cross-sectional anisotropy can be further improved. Further, the position at which the cooling air is blown is more effective as it is closer to the spinneret surface, but in order to maintain good operability, it is preferably 1 to 35 cm below the spinneret surface. Although air is the most economical gas for cooling air, any gas may be used as long as it is inert to the polymer melt, and it is preferable that the temperature is as low as possible, but from an economical point of view, ~40°C is preferred. By further drawing the yarn thus obtained and subjecting it to relaxation heat treatment, crimp can be developed. As the stretching conditions at this time, it is preferable to adopt conditions in which the high degree of cross-sectional anisotropy imparted in the spinning process is sufficiently maintained. To describe the stretching conditions specifically for polyester fibers, the stretching temperature is Tg±20°C.
The temperature is preferably within the range of (Tg: glass transition point of polyester), and the stretching ratio is from 65 to the maximum stretching ratio.
95% is preferred. The stretching method may be any method such as liquid bath stretching or pin stretching. Further, the relaxation heat treatment is carried out by making each single fiber constituting the stretched yarn as unrestricted as possible, and then heat-treating it. The heat treatment temperature is preferably 100 to 230°C. Such relaxation heat treatment may be performed in any form such as tow, multifilament, staple, etc., and mechanical crimp may be applied before the relaxation heat treatment. The hollowness ratio of the crimped porous hollow fiber thus obtained is preferably 5 to 60%. The term "hollowness ratio" as used herein is the ratio of the area surrounded by the outer periphery of the cross section to the total area of the hollow portions in the cross section of the fiber. To explain specifically using Fig. 4e, the total area of the hollow part S E is the total area of the hollow parts E', E 1 to 4 , and the area S T surrounded by the outer periphery of the cross section is This is the sum of the hollow area area S E and the area S P occupied by the high molecular weight polymer. That is,
The hollowness ratio is expressed by the following formula. Hollowness ratio (%) = S E /S E +S P ×100 When the hollowness ratio exceeds 60%, the hollow part tends to be easily deformed, and when it is less than 5%, the anisotropy in the cross-sectional direction cannot be sufficiently maintained. There is a tendency that it cannot be granted. The thermoplastic polymer in the present invention refers to a polymer that can be melt-spun, and examples of such polymers include polyesters such as polyethylene terephthalate and polyethylene terephthalate, polyolefins such as polyethylene and polypropylene, These are polyamides such as nylon 6 and nylon 66, and copolymers and polymer mixtures mainly made of these. In particular, it is preferable to use a polyester containing 85 mol % or more of ethylene terephthalate units because it has good thermal properties. A typical copolymer of polyethylene terephthalate is polyethylene terephthalate obtained by copolymerizing 1.5 to 6 mol% of 5-sodium-sulfoisophthalic acid. This polyester has an intrinsic viscosity of 0.35 calculated from the viscosity measured in chlorophenol at 25°C.
~0.90 is preferred. Incidentally, the polymer may contain additives such as a matting agent, an adhesive, an antistatic agent, and a flame retardant. (Function) The conventionally known method of cooling one side of the fiber discharged from the nozzle shown in Fig. 3 A and B cannot impart sufficient cross-sectional anisotropy. Sufficient crimp cannot be obtained unless physical crimp processing such as a processing nozzle is also used. In this regard, in the present invention, the cross-sectional shape of the discharged fibers is made into a shape that makes it difficult to be uniformly cooled by the cooling air, so that the cooling air is difficult to wrap around to the leeward side, so that the temperature on the windward side and the leeward side of the fiber cross section is different. The difference can be made significantly larger than that of conventional materials, and a higher degree of cross-sectional anisotropy can be achieved than that of conventional materials. As a result of applying relaxation heat treatment to such fibers to develop crimps, they can exhibit large crimps and exhibit excellent bulkiness and bulk recovery properties, and because they are porous hollow fibers, they have good heat retention and flexibility. It can also have texture. Moreover, since the range of optimal conditions for obtaining crimped fibers with good uniformity can be set wider than in conventional methods, productivity can be improved and production costs can be reduced. (Effects of the Invention) The crimped fiber obtained by the production method of the present invention has an excellent feather-like property when used in carpets, high pie, blankets, moquettes, woven and knitted fabrics for clothing, and especially when used for stuffing. A product that shows (Examples) Furthermore, the present invention will be further explained by examples. Examples 1 to 3, Comparative Example 1 Polyethylene terephthalate with an intrinsic viscosity of 0.65 measured in o-chlorophenol at 25°C was melted and discharged at 280°C from a nozzle with a cross-sectional shape shown in Table 1.
The yarn was wound at 750 m/min to obtain an undrawn yarn with a single fiber fineness of 25 denier. The discharged yarn is cooled below the mouth surface.
Cooling air at 25℃ at 1.0m/sec at a position of 1.5 to 15cm
This was done by blowing from a direction perpendicular to the direction in which the yarn advances at a flow rate of . The undrawn yarn thus obtained was bundled into a 700,000 denier tow, which was stretched 3.5 times in a water bath at 65°C, dried in tow form, and subjected to relaxation heat treatment in an atmosphere of 130°C. , and cut to 64 mm after crimp development. The staple fiber thus obtained was passed through a card to make a webbing, which was then used as a futon, and its performance was measured. The results are also shown in Table 1.

【表】 第1表に示す如く比較例1に比し、本発明の方
法によつて得られた繊維を用いたふとん綿は比容
積110cm3/g以上、圧縮率60%以上、回復率90%
以上の優れた嵩高性、耐ヘタリ性でソフトな風合
を呈する。実施例1〜3はいずれも紡糸調子は良
好であつたが、比較例は紡糸単繊維切れが発生し
た。 尚、第1表に示す捲縮数はJIS−L1074により
測定した値であり、比容積、圧縮率、回復率は
JIS−L1097により測定した値である。 実施例4、比較例2 25℃m−クレゾール中で測定した極限粘度が
1.1のナイロン6を第1図hに示すノズルを通し
て260℃で溶融吐出し、1500m/minで引取り、
単繊維繊度30デニールの未延伸糸を得た。この未
延伸糸の横断面は第4図hの如き多孔中空断面で
あつた。吐出糸条の冷却は口金面下1.5〜10cmの
位置で25℃の冷却用空気を0.8m/secの流速で糸
条の進行方向に対して垂直な方向から吹きつける
ことにより行つた。紡糸調子は全く問題なかつ
た。この未延伸糸条は単繊維数70本からなり、こ
の未延伸糸条を50℃の延伸温度で3.5倍にピン延
伸した後、130℃雰囲気中で弛緩熱処理して連続
的に巻取つた。得られた延伸熱処理糸をJIS−
L1074に従つて捲縮性能を測定したところ捲縮数
12.5ケ/25mm、捲縮弾性率90%の良好な捲縮を有
していた。尚、第3図ロに示すノズルを用いて同
様に片面急冷し、延伸後弛緩熱処理した場合の捲
縮数及び捲縮弾性率はそれぞれ4.5ケ/25mm、55
%となり非常に劣るものであつた。また紡糸時単
繊維切れが発生した。
[Table] As shown in Table 1, compared to Comparative Example 1, the futon cotton using the fiber obtained by the method of the present invention has a specific volume of 110 cm 3 /g or more, a compression rate of 60% or more, and a recovery rate of 90. %
It exhibits excellent bulkiness, resistance to settling, and a soft texture. In Examples 1 to 3, the spinning condition was good, but in the comparative example, spun single fiber breakage occurred. The number of crimp shown in Table 1 is the value measured according to JIS-L1074, and the specific volume, compression ratio, and recovery rate are
This is a value measured according to JIS-L1097. Example 4, Comparative Example 2 The intrinsic viscosity measured in 25°C m-cresol was
Nylon 6 of 1.1 was melted and discharged at 260℃ through the nozzle shown in Figure 1h, taken off at 1500m/min,
An undrawn yarn with a single fiber fineness of 30 denier was obtained. The cross section of this undrawn yarn was a porous hollow cross section as shown in FIG. 4h. The discharged yarn was cooled by blowing cooling air at 25° C. at a flow rate of 0.8 m/sec from a direction perpendicular to the traveling direction of the yarn at a position 1.5 to 10 cm below the face of the spinneret. There was no problem with the spinning condition. This undrawn yarn consisted of 70 single fibers, and was pin-stretched to 3.5 times at a drawing temperature of 50°C, then subjected to relaxation heat treatment in an atmosphere of 130°C, and continuously wound. The obtained drawn heat-treated yarn is JIS-
When crimp performance was measured according to L1074, the number of crimp
It had a good crimp of 12.5 pieces/25 mm and a crimp modulus of 90%. Furthermore, when one side was similarly rapidly cooled using the nozzle shown in Fig. 3 (b) and subjected to relaxation heat treatment after stretching, the number of crimp and the crimp elasticity were 4.5 crimp/25 mm and 55 crimp, respectively.
%, which was very poor. Furthermore, single fiber breakage occurred during spinning.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明において使用する紡
糸口金のノズル断面形状、第3図は従来方法にお
いて使用する紡糸口金のノズル断面形状、第4〜
6図は第1〜3図に示されている断面形状のノズ
ルを用いて得られる繊維の夫々の横断面形状を
夫々示す。
1 and 2 show the cross-sectional shape of the nozzle of the spinneret used in the present invention, FIG. 3 shows the cross-sectional shape of the nozzle of the spinneret used in the conventional method, and FIG.
FIG. 6 shows the cross-sectional shapes of fibers obtained using the nozzles having the cross-sectional shapes shown in FIGS. 1 to 3, respectively.

Claims (1)

【特許請求の範囲】 1 熱可塑性重合体から成り、且つ長手方向に連
続する中空部が複数個存在する捲縮多孔中空繊維
であつて、該繊維の横断面において、外周部に曲
線によつて形成される複数個の凹部及び凸部を有
すると共に、断面異方性を有し、かつ前記凸部は
中空部を形成する壁部から構成されていることを
特徴とする捲縮多孔中空繊維。 2 捲縮多孔中空繊維の横断面における中空部の
総面積が前記横断面の外周部に囲まれた面積に対
して5〜60%である特許請求の範囲第1項記載の
捲縮多孔中空繊維。 3 熱可塑性重合体がポリエチレンテレフタレー
トである特許請求の範囲第1項記載の捲縮多孔中
空繊維。 4 熱可塑性重合体から成る多孔中空繊維を溶融
紡糸するに際し、該多孔中空繊維の少くとも1個
の中空部を形成する中空吐出孔がスリツトを介し
て複数個連結されているノズルが配置されている
紡糸口金から吐出し、引続き吐出糸条の片側を、
前記吐出糸条の走行方向に略直交する方向から
0.2m/秒以上の風速を有する冷却風を吹き付け
ることによつて冷却せしめ、次いで得られる、繊
維断面外周部に曲線によつて形成される複数個の
凹部及び凸部を有すると共に、該凸部は中空部を
形成する壁部から構成されている多孔中空未延伸
糸を延伸した後に弛緩熱処理することを特徴とす
る捲縮多孔中空繊維の製造方法。 5 捲縮多孔中空繊維の横断面における中空部の
総面積が前記横断面の外周部で囲まれた面積に対
して5〜60%である特許請求の範囲第4項記載の
捲縮多孔中空繊維の製造方法。 6 中空吐出孔が直線状に連結されている特許請
求の範囲第4項記載の捲縮多孔中空繊維の製造方
法。 7 中空吐出孔が環状に連結されている特許請求
の範囲第4項記載の捲縮多孔中空繊維の製造方
法。 8 中空吐出孔が複数個の中空部を形成し得る特
許請求の範囲第4項記載の捲縮多孔中空繊維の製
造方法。 9 熱可塑性重合体がポリエチレンテレフタレー
トである特許請求の範囲第4項記載の捲縮多孔中
空繊維の製造方法。
[Scope of Claims] 1 A crimped porous hollow fiber made of a thermoplastic polymer and having a plurality of hollow parts continuous in the longitudinal direction, which has a curved outer peripheral part in a cross section of the fiber. 1. A crimped porous hollow fiber having a plurality of concave portions and convex portions formed therein, and having cross-sectional anisotropy, the convex portion being constituted by a wall portion forming a hollow portion. 2. The crimped porous hollow fiber according to claim 1, wherein the total area of the hollow portion in the cross section of the crimped porous hollow fiber is 5 to 60% of the area surrounded by the outer periphery of the cross section. . 3. The crimped porous hollow fiber according to claim 1, wherein the thermoplastic polymer is polyethylene terephthalate. 4. When melt-spinning porous hollow fibers made of a thermoplastic polymer, a nozzle is arranged in which a plurality of hollow discharge holes forming at least one hollow part of the porous hollow fibers are connected via slits. The yarn is discharged from the spinneret, and then one side of the yarn is
From a direction substantially perpendicular to the running direction of the discharged yarn
The fiber is cooled by blowing cooling air having a wind speed of 0.2 m/sec or more, and then the obtained fiber cross section has a plurality of concave portions and convex portions formed in curved lines on the outer periphery of the fiber cross section, and the convex portion A method for producing a crimped porous hollow fiber, which comprises stretching a porous hollow undrawn yarn composed of a wall portion forming a hollow portion, and then subjecting it to relaxation heat treatment. 5. The crimped porous hollow fiber according to claim 4, wherein the total area of the hollow portion in the cross section of the crimped porous hollow fiber is 5 to 60% of the area surrounded by the outer periphery of the cross section. manufacturing method. 6. The method for producing a crimped porous hollow fiber according to claim 4, wherein the hollow discharge holes are connected in a straight line. 7. The method for producing a crimped porous hollow fiber according to claim 4, wherein the hollow discharge holes are connected in an annular manner. 8. The method for producing a crimped porous hollow fiber according to claim 4, wherein the hollow discharge hole can form a plurality of hollow parts. 9. The method for producing crimped porous hollow fibers according to claim 4, wherein the thermoplastic polymer is polyethylene terephthalate.
JP16557384A 1984-08-09 1984-08-09 Crimped porous hollow fiber and production therefor Granted JPS6147807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16557384A JPS6147807A (en) 1984-08-09 1984-08-09 Crimped porous hollow fiber and production therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16557384A JPS6147807A (en) 1984-08-09 1984-08-09 Crimped porous hollow fiber and production therefor

Publications (2)

Publication Number Publication Date
JPS6147807A JPS6147807A (en) 1986-03-08
JPH0252004B2 true JPH0252004B2 (en) 1990-11-09

Family

ID=15814925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16557384A Granted JPS6147807A (en) 1984-08-09 1984-08-09 Crimped porous hollow fiber and production therefor

Country Status (1)

Country Link
JP (1) JPS6147807A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01148809A (en) * 1987-11-13 1989-06-12 E I Du Pont De Nemours & Co Novel polyester fibrous filler
JP2722498B2 (en) * 1988-06-28 1998-03-04 東洋紡績株式会社 Heat retaining multilayer yarn
US5380592A (en) * 1993-12-28 1995-01-10 E. I. Du Pont De Nemours And Company Trilobal and tetralobal cross-section filaments containing voids
JP4065592B2 (en) * 1997-02-20 2008-03-26 帝人ファイバー株式会社 High hollow polyester fiber, woven / knitted fabric, pile fiber product and nonwoven fabric structure using the same, and method for producing hollow polyester fiber
JP2002266163A (en) * 2001-03-05 2002-09-18 Teijin Ltd Polyester fiber having modified cross-section
JP4574911B2 (en) * 2001-08-16 2010-11-04 帝人ファイバー株式会社 Polyester-based hollow crimped fiber and method for producing the same
KR100423482B1 (en) * 2002-04-23 2004-03-18 도레이새한 주식회사 Spinneret for shaped fiber, manufacturing method of shaped filament yarn using there of
FR2902114B1 (en) * 2006-06-12 2009-02-06 Promiles Snc POLYMERIC FILAMENT HAVING AT LEAST ONE LONGITUDINAL ETOFFE CHANNEL COMPRISING THESE FILAMENTS, ARTICLE FORMED THEREFROM, AND METHOD OF MAKING SAID FILAMENT

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5936714A (en) * 1982-08-26 1984-02-29 Teijin Ltd Crimped modified hollow yarn

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5936714A (en) * 1982-08-26 1984-02-29 Teijin Ltd Crimped modified hollow yarn

Also Published As

Publication number Publication date
JPS6147807A (en) 1986-03-08

Similar Documents

Publication Publication Date Title
US20090035568A1 (en) Polytrimethylene terephthalate hollow composite staple fibers and process for producing same
JP7319470B2 (en) Method for producing spontaneously crimping elastic mixed yarn used for knitting
US20050106391A1 (en) Centrifugal spinning process
JP2004509238A (en) Poly (trimethylene terephthalate) 4-channel cross section staple fiber
JPH0252004B2 (en)
US5733656A (en) Polyester filament yarn and process for producing same, and fabric thereof and process for producing same
JPH0367122B2 (en)
JP4346197B2 (en) Base for melt spinning
JPH06287809A (en) Production of potentially crimping polyester fiber
JPH0120627B2 (en)
EP0753608B1 (en) Spun yarn of polybenzazole fiber
JPH07173708A (en) Spinneret for modified cross-section fiber and production of modified cross-section fiber using the same
JPH0342323B2 (en)
JPH06313256A (en) Nonwoven fabric surface material for sanitary material and its production
JPH0641648B2 (en) Manufacturing method of latent bulky multifilament and its spinneret
JPS58149318A (en) Polyester yarn and production thereof
JPS6353282B2 (en)
JP3874529B2 (en) Pre-oriented polyester fiber and processed yarn therefrom
JPH0429778B2 (en)
JPH04174753A (en) Nonwoven filament cloth
JPS61194208A (en) Production of polyamide multifilament
JPS6338453B2 (en)
JPS584085B2 (en) Hollow fiber manufacturing method
JP2854093B2 (en) Flat fiber and method for producing the same
JPH0474451B2 (en)