JPH0251877A - Separator for metal harogen battery - Google Patents

Separator for metal harogen battery

Info

Publication number
JPH0251877A
JPH0251877A JP63200125A JP20012588A JPH0251877A JP H0251877 A JPH0251877 A JP H0251877A JP 63200125 A JP63200125 A JP 63200125A JP 20012588 A JP20012588 A JP 20012588A JP H0251877 A JPH0251877 A JP H0251877A
Authority
JP
Japan
Prior art keywords
separator
battery
membrane
bromine
halogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63200125A
Other languages
Japanese (ja)
Inventor
Akihiko Hirota
広田 明彦
Kazuo Fushimi
伏見 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP63200125A priority Critical patent/JPH0251877A/en
Publication of JPH0251877A publication Critical patent/JPH0251877A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • H01M12/085Zinc-halogen cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve bromine barrier performance while maintaining a film electric resistance so as to prevent the self discharge of battery and to improve coulomb and energy efficiencies by composing a separator of a fine porous film having a specified fine pore distribution. CONSTITUTION:This separator for metal halogen battery is composed of a fine porous film capable of patitioning a positive electrolyte from a negative electrolyte and preventing the transmission of halogen molecules, wherein the porousity of the film is 45-50%, the volume of fine pores is 750-850mm<3>/g and the radius of average pore is 1.5-2.0X10A. By using such separator, it is possible to effectively prevent the dispersion of halogen molecules generated at a positive electrode into a negative chamber through the separator. It is thus possible to effectively restrain the self discharge of battery while a film electric resistance is maintained and therefore to enhance the coulomb and energy efficiencies of metal halogen battery.

Description

【発明の詳細な説明】 A、産業上の利用分野 この発明は、金属ハロゲン電池において正極電解液と負
極電解液を隔離するために使用するセパレータに関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application This invention relates to a separator used to separate a positive electrode electrolyte and a negative electrode electrolyte in a metal halogen battery.

B 発明の概要 この発明は、特定の細孔分布を有する微細多孔質膜で金
属ハロゲン電池のセパレータを構成することによって、
従来と同程度にセパレータの膜電気抵抗をX、II持し
ながら、セパレータを介して、充電時に発生する臭素の
負極側への浸透拡散を減少させたものである。
B. Summary of the Invention The present invention provides a method for forming a separator of a metal halogen battery using a microporous membrane having a specific pore distribution.
This reduces the permeation and diffusion of bromine generated during charging to the negative electrode side through the separator, while maintaining the membrane electrical resistance of the separator to the same level as the conventional one.

かかるセパレータは金属ハロゲン電池の自己放電を低く
押さえ、クーロン効率およびエネルギー効率を向上させ
る上で極めて有用である。
Such a separator is extremely useful in suppressing self-discharge of metal halide batteries and improving coulombic efficiency and energy efficiency.

C1従来の技術 金属ハロゲン電池の一例として、例えば亜鉛臭素電池に
おいては、充電時に正極において臭素か発生し、この臭
素が負極に析出した亜鉛と直接反応すると自己放電を引
き起こすため、正極電解液と負極電解液を隔離し、臭素
を負極側に拡散させない臭素バリアー性の高いセパレー
タが必要不可欠である。
C1 Conventional technology As an example of a metal halogen battery, for example, in a zinc-bromine battery, bromine is generated at the positive electrode during charging, and when this bromine directly reacts with zinc deposited on the negative electrode, it causes self-discharge. A separator with high bromine barrier properties that isolates the electrolyte and prevents bromine from diffusing to the negative electrode side is essential.

また、このセパレータは臭素バリアー性に優れるととも
に、セパレータ自体の電気抵抗が低いことが望まれるも
のである。
Further, it is desired that this separator has excellent bromine barrier properties and that the separator itself has low electrical resistance.

従来、このような亜鉛臭素電池のセパレータとしては、
ポリオレフィン系等の樹脂を素材とした各種の微細多孔
質膜の中から適宜選択して用いられていた。
Conventionally, as a separator for such zinc bromine batteries,
It has been used by appropriately selecting from among various microporous membranes made of resins such as polyolefins.

D2発明が解決しようとする問題点 上記のような従来の亜鉛臭素電池のセパレータにおいて
は、臭素バリアー性と膜の電気抵抗は相反する関係にあ
り、求められる二つの特性の両立が困難であった。
D2 Problems to be solved by the invention In the conventional separators for zinc-bromine batteries as described above, the bromine barrier properties and the electrical resistance of the membrane are in a contradictory relationship, making it difficult to achieve both of the required properties. .

即ち、臭素バリアー性を向上させようとするとnqの電
気抵抗が高くなりすぎてしまうため、ある程度のレベル
以上に臭素バリアー性を向上させることができず、臭素
分子かセパレータを透過することによっておこる電池の
自己放電を効果的に防いでクーロン効率を向上させるこ
とができないという問題点を有していた。
In other words, if you try to improve the bromine barrier property, the electrical resistance of nq will become too high, so you will not be able to improve the bromine barrier property beyond a certain level, and this will cause battery damage due to bromine molecules permeating the separator. The problem was that the Coulombic efficiency could not be improved by effectively preventing self-discharge.

この発明は、上記問題点を解決し、膜の電気抵抗を犠牲
にすることなく、臭素バリアー性に優れた金属ハロゲン
電池用セパレータを提供することを目的とするものであ
る。
The object of the present invention is to solve the above problems and provide a separator for metal halogen batteries that has excellent bromine barrier properties without sacrificing the electrical resistance of the membrane.

E、問題点を解決する手段 この発明においては、気孔率が45〜50*、細孔容積
が750〜850InII+37g、平均孔半径が1.
5〜2.0×102人である微細多孔質膜を金属ハロゲ
ン電池のセパレータに用いたことによって上記の問題点
を解決したものである。
E. Means for Solving Problems In this invention, the porosity is 45-50*, the pore volume is 750-850InII+37g, and the average pore radius is 1.
The above-mentioned problems have been solved by using a microporous membrane having a density of 5 to 2.0 x 102 as a separator of a metal halogen battery.

F 作用 この発明にかかる微細多孔質■シおいては、従来金属ハ
ロゲン電池のセパレータに用いられている微細多孔質膜
よりも細孔半径の分布が全体に小さい方にシフトシ、気
孔率、細孔容積および平均半径のいずれもが従来の膜よ
り小さい値になっていることから、ハロゲン分子が微細
孔をiff Aすることが極めて困難で、しかもハロゲ
ンイオンの透過を妨げない構造になっている。
F Function The microporous film according to the present invention has a shift in pore radius distribution, porosity, and pore size to a smaller overall distribution than the microporous membrane conventionally used for separators of metal halide batteries. Since both the volume and the average radius are smaller than conventional membranes, it is extremely difficult for halogen molecules to IF A through the micropores, and the structure does not impede the permeation of halogen ions.

このため、本発明にかかるセパレータを用いれば正極に
おいて発生したハロゲン分子がセパレータを介して負極
室に拡散するのを効果的に防ぐことができる。
Therefore, by using the separator according to the present invention, it is possible to effectively prevent halogen molecules generated at the positive electrode from diffusing into the negative electrode chamber via the separator.

一方、かかる微細多孔質膜の孔径は従来に比較して8i
端に小さくされたものではなく、ハロゲンイオンの透過
を妨げずに膜の電気抵抗に影Uを及ぼさない特定の範囲
にコントロールされているので、1摸の電気抵抗も従来
と同程度の値を維持できている。
On the other hand, the pore diameter of such a microporous membrane is 8i compared to the conventional one.
It is not made smaller at the end, but is controlled within a specific range that does not impede the permeation of halogen ions and does not affect the electrical resistance of the membrane, so the electrical resistance of one sample is the same as conventional ones. It has been maintained.

以−Fのように本発明によるセパレータは従来と同程度
の膜電気抵抗を維持しながら、電池の自己放電を効果的
に押えることができるので、金属ハロゲン電池のクーロ
ン効率およびエネルギー効率を高めることができる。
As shown in F-F, the separator according to the present invention can effectively suppress the self-discharge of the battery while maintaining the membrane electrical resistance at the same level as the conventional one, thereby increasing the coulombic efficiency and energy efficiency of the metal halide battery. Can be done.

Gy:層側 実施例: 本発明にかかるポリオレフィン系の微細多孔質膜a (
FD−120(B6) :商品名 旭化成工業(株)製
)および従来用いられていたポリオレフィン系微細多孔
質膜b (FD−120・商品名 旭化成工業(株)製
)の細孔分布特性を水銀圧入袋「を用いて測定した結果
を第1表および第1図に示す。
Gy: Layer side example: Polyolefin microporous membrane a according to the present invention (
Mercury The results measured using the press-fit bag are shown in Table 1 and Figure 1.

細孔半径の分布は第1図に示されるように膜aはflu
 bに比べると全体的に孔径の分布が小さい方ヘシフト
しており、IOnm以下に極大値を存する。
The distribution of pore radius is as shown in Figure 1.
Compared to sample b, the pore diameter distribution is shifted to smaller values as a whole, and has a maximum value below IO nm.

また、第1表に示されるように気孔率、細孔容積及び平
均孔半径がいずれも従来のn5 bより小さくなってい
る。
Furthermore, as shown in Table 1, the porosity, pore volume, and average pore radius are all smaller than those of the conventional n5b.

実施例=2 上記の2つのn% aおよびbを用いて、第2図に示す
様なU字管2の一方に臭化亜鉛水溶液3を、他方に臭化
亜鉛水溶液と臭素の混合液4を入れて常温で脇の臭素の
バリアー性を調べる試験を行った。
Example = 2 Using the above two n% a and b, a zinc bromide aqueous solution 3 was placed in one side of the U-shaped tube 2 as shown in Fig. 2, and a mixed solution 4 of zinc bromide aqueous solution and bromine was placed in the other side. A test was conducted to examine the barrier properties of bromine in the armpits at room temperature.

この結果を第3図に示す。図に明らかなように数時間の
経過において、一方の管から膜を通して他方の管に透過
した臭素濃度は膜すに比べ膜aでは約2分の1と著しく
少なく、本発明にかかる膜aは従来の膜すよりも臭素バ
リアー性が高くなっている。
The results are shown in FIG. As is clear from the figure, over the course of several hours, the concentration of bromine that permeated from one tube through the membrane to the other tube was significantly lower in membrane a than in membrane A, which was about half, and membrane a according to the present invention It has higher bromine barrier properties than conventional membranes.

このことは本発明にかかる微細多孔質膜を臭化亜鉛電池
のセパレータに使用すると自己放電を効果的に防いでク
ーロン効率を向上させることができることをボしている
This indicates that when the microporous membrane according to the present invention is used in a separator of a zinc bromide battery, self-discharge can be effectively prevented and the Coulombic efficiency can be improved.

実施例=3 次に、金属ハロゲン電池のセパレータとして臭素バリア
ー性とともに重要な特性である膜の電気抵抗について、
第4図に示した装置を用いJIS C−2313に従っ
て測定した。
Example = 3 Next, regarding the electrical resistance of the membrane, which is an important property as well as bromine barrier property as a separator for metal halogen batteries,
Measurement was performed according to JIS C-2313 using the apparatus shown in FIG.

また、金属ハロゲン電池のセパレータは一般にポリオレ
フィン系等の樹脂を膜材の周辺に枠成形して用いら打る
ので、その加工に耐え得る機械強度も必要である。そこ
で、本発明にかかる膜aと従来の膜すの引張強度を引張
試験機を用いて比較した。
In addition, since separators for metal halogen batteries are generally made by molding a frame of polyolefin resin or the like around a membrane material, mechanical strength that can withstand the processing is also required. Therefore, the tensile strengths of the membrane a according to the present invention and the conventional membrane were compared using a tensile tester.

上記の試験の結果を第1表に示す。まず、膜の電気抵抗
についてであるが、第1表に示す様に膜abとも0.0
04−100cm2/枚程度でほとんど差か見られない
。これは、本発明にがかる膜aは臭素バリアー性が著し
く向上しているにもかかわらず、膜の電気抵抗による損
失は従来の膜と同レベルであることをボしている。
The results of the above tests are shown in Table 1. First, regarding the electrical resistance of the membrane, as shown in Table 1, both membrane ab and 0.0
Almost no difference can be seen at about 04-100cm2/sheet. This indicates that although the film a according to the present invention has significantly improved bromine barrier properties, the loss due to electrical resistance of the film is at the same level as the conventional film.

さらにm械強度については、第1表の測定結果に示す如
く、膜aは従来の膜すに比べ引張強度が倍近くにもなっ
ており、本発明にかかる@、細多孔質1模は枠成形のm
械加工に十分耐え得る構造であるということができる。
Furthermore, regarding the mechanical strength, as shown in the measurement results in Table 1, membrane a has nearly double the tensile strength compared to the conventional membrane. molding m
It can be said that the structure can sufficiently withstand machining.

実施例 4 I桑a及び1模すを臭化亜鉛電池のセパレータとして用
い、それぞれ単セルA及び単セルBを構成して作動時ト
を検討した。単セルはA、Bどちらも正極に活性炭素繊
維を熱圧着したカーボンプラスチ ッ り (、fジエ
チレン/カーボンブラック/クラファイト−50715
735重量比)電極を、負極に亜鉛板(圧延亜鉛純度9
99%)を、電解液に 3mol/ l臭化亜鉛水溶液
を使用した。そして電流密度20mA/cm2で8時間
充電し、同電流密度で放電して電圧が0.5Vとなった
時点てカットオフとした。
Example 4 Mulberry I and Mulberry 1 were used as separators in a zinc bromide battery, and a single cell A and a single cell B were constructed, respectively, and their operation was examined. Both single cells A and B are made of carbon plastic with activated carbon fiber bonded to the positive electrode by thermocompression (diethylene/carbon black/craphite-50715).
735 weight ratio) electrode, and a zinc plate (rolled zinc purity 9) as the negative electrode.
99%), and a 3 mol/l zinc bromide aqueous solution was used as the electrolyte. The battery was then charged at a current density of 20 mA/cm2 for 8 hours, discharged at the same current density, and cut off when the voltage reached 0.5V.

この結果を第2表に示した。本発明にがかる膜aを使用
した単セルAは従来の膜すを使用した単セルBに比へる
と電圧効率て約0.6%、クーロン効率で約27%増加
し、エネルギー効率は3%向上した。
The results are shown in Table 2. Single cell A using membrane a according to the present invention has a voltage efficiency of about 0.6%, a coulombic efficiency of about 27%, and an energy efficiency of 3% compared to single cell B using a conventional membrane. % improved.

上記の実施例より、本発明にかかる微細多孔質膜は従来
の膜に比へて基礎特性が向上しており、f:、属ハロゲ
ン電池のセパレータとして使用すればその(衾ねた性能
を電池特性に十分反映できること明確になった。
From the above examples, the microporous membrane according to the present invention has improved basic characteristics compared to conventional membranes, and when used as a separator for halogen batteries of the f: group, the improved performance can be improved. It became clear that this could be fully reflected in the characteristics.

H発明の効果 この発明においては、特定の細孔分布を有する微細多孔
質1摸で金属ハロゲン電池のセパレータを構成すること
によって、従来と同程度の膜電気抵抗を維持しながら臭
素バリアー性を著しく向上させて電池の自己放電を防ぎ
、クーロン効率およびエネルギー効率を向上させること
ができるという極めて漬れた効果を有するものである。
Effects of the Invention In this invention, by constructing the separator of a metal halogen battery with a microporous material having a specific pore distribution, the bromine barrier property can be significantly improved while maintaining the membrane electrical resistance at the same level as before. This has the extremely beneficial effect of preventing self-discharge of the battery and improving coulombic efficiency and energy efficiency.

また、かかる微細多孔質膜は機械強度も従来の膜に比較
して大幅に向上しているので、枠に張設される際等にお
ける破損も極めて少なくなるものである。
Furthermore, since the mechanical strength of such a microporous membrane is greatly improved compared to conventional membranes, there is extremely little chance of damage when the membrane is stretched over a frame.

水溶液、4・・・臭化亜鉛水溶液と臭素の混合液、5・
・・電源、6・・・抵抗、7・・・電流計、8・・・電
流電極、9・・・電圧電極、10・・・電圧計、11・
・・試験用電槽、12・・・サンプル挿入箇所。
Aqueous solution, 4... Mixture of zinc bromide aqueous solution and bromine, 5.
...Power source, 6...Resistance, 7...Ammeter, 8...Current electrode, 9...Voltage electrode, 10...Voltmeter, 11...
...Test battery case, 12...Sample insertion point.

代理人 弁理士 佐 藤 正 年Agent: Patent Attorney Tadashi Sato

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる膜および従来の膜の細分7ti
を表わすグラフ、第2図は臭素バリアー性試験に用いた
装置の模式・図、第3図は臭素バリアー性試験の結果を
示すグラフ、第4図は膜の電気抵抗測定装置の模式図で
ある。
FIG. 1 shows the subdivision 7ti of the membrane according to the present invention and the conventional membrane.
Figure 2 is a schematic diagram of the device used for the bromine barrier property test, Figure 3 is a graph showing the results of the bromine barrier property test, and Figure 4 is a schematic diagram of the membrane electrical resistance measuring device. .

Claims (1)

【特許請求の範囲】[Claims] 金属ハロゲン電池の正極電解液と負極電解液を隔離し、
ハロゲン分子の透過を防ぐ微細多孔質膜からなる金属ハ
ロゲン電池用セパレータにおいて、前記微細多孔質膜の
気孔率が45〜50%、細孔容積が750〜850mm
^3/g、平均孔半径が1.5〜2.0×10^2Åで
あることを特徴とする金属ハロゲン電池用セパレータ。
Separates the positive and negative electrolytes of metal halogen batteries,
In a metal halogen battery separator comprising a microporous membrane that prevents permeation of halogen molecules, the microporous membrane has a porosity of 45 to 50% and a pore volume of 750 to 850 mm.
A separator for metal halogen batteries, characterized in that the average pore radius is 1.5 to 2.0 x 102 Å.
JP63200125A 1988-08-12 1988-08-12 Separator for metal harogen battery Pending JPH0251877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63200125A JPH0251877A (en) 1988-08-12 1988-08-12 Separator for metal harogen battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63200125A JPH0251877A (en) 1988-08-12 1988-08-12 Separator for metal harogen battery

Publications (1)

Publication Number Publication Date
JPH0251877A true JPH0251877A (en) 1990-02-21

Family

ID=16419235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63200125A Pending JPH0251877A (en) 1988-08-12 1988-08-12 Separator for metal harogen battery

Country Status (1)

Country Link
JP (1) JPH0251877A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001093351A1 (en) * 2000-05-30 2001-12-06 Asahi Kasei Kabushiki Kaisha Separator for metal halogen cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001093351A1 (en) * 2000-05-30 2001-12-06 Asahi Kasei Kabushiki Kaisha Separator for metal halogen cell
US7081321B2 (en) 2000-05-30 2006-07-25 Asahi Kasei Kabushiki Kaisha Separator for metal halogen cell
JP4901050B2 (en) * 2000-05-30 2012-03-21 旭化成イーマテリアルズ株式会社 Metal halide battery separator

Similar Documents

Publication Publication Date Title
CA2117730C (en) Manufacturing method of a separator for a lithium secondary battery and an organic electrolyte lithium secondary battery using the same separator
US4791037A (en) Carbon electrode
CN112038541B (en) Composite diaphragm material and preparation method and application thereof
AU605140B2 (en) Cathodic electrode
US4731310A (en) Cathodic electrode
JPH10172533A (en) Separator for alkaline storage battery
Skelton et al. Improved silver/zinc secondary cells for underwater applications
JPH0251877A (en) Separator for metal harogen battery
JP2673336B2 (en) Air-metal hydride secondary battery
CN114374059A (en) High-flux lithium ion battery porous ultrathin membrane and preparation method thereof
WO2020208909A1 (en) Separator for liquid-type lead storage battery and liquid-type lead storage battery
JP3555177B2 (en) Sealed lead-acid battery
CN113629354A (en) Lithium ion battery diaphragm suitable for liquid electrolyte based on heavy ion track membrane and preparation method thereof
CN113270689A (en) High-safety battery diaphragm and preparation method thereof
JPS62226580A (en) Redox flow battery
EP1199764A1 (en) Polymer electrolyte
JP2003022793A (en) Separator for battery and battery
JPH04296464A (en) Sealed-type lead-acid battery
JPH02192655A (en) Secondary battery
JPS61151965A (en) Alkaline storage battery
WO2022145034A1 (en) Nickel hydrogen secondary battery
Putra et al. The Physicochemical Properties of PVDF/SiO2 Composite Nanofibers for Potential Application of Lithium-Ion Battery Separators
JP3436058B2 (en) Alkaline storage battery
JP3378761B2 (en) Polymer electrolyte battery
WO2022239205A1 (en) Proton conducting secondary battery