JPH0250002A - Exhaust heat recovery boiler - Google Patents

Exhaust heat recovery boiler

Info

Publication number
JPH0250002A
JPH0250002A JP63197103A JP19710388A JPH0250002A JP H0250002 A JPH0250002 A JP H0250002A JP 63197103 A JP63197103 A JP 63197103A JP 19710388 A JP19710388 A JP 19710388A JP H0250002 A JPH0250002 A JP H0250002A
Authority
JP
Japan
Prior art keywords
superheater
reheating
temperature
reheater
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63197103A
Other languages
Japanese (ja)
Inventor
Naotake Mochida
尚毅 持田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63197103A priority Critical patent/JPH0250002A/en
Publication of JPH0250002A publication Critical patent/JPH0250002A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To reduce the cost by making smaller the heat transfer area by dividing each of a reheating heater and a superheater into small sections and combining them alternately. CONSTITUTION:In an exhaust heat recovery boiler 2 used for reheating cycle a superheater and reheating heater are divided respectively into a plurality of sections and they are alternately arranged, in the order along the flow of the exhaust gas, in a first superheater 14, first reheating heater 15, second superheater 16, second reheating heater 17, and third superheater 18. And, the superheaters 14, 16 and 18 are connected among headers. Likewise, the reheating heaters 15 and 17 are connected by a piping among the headers. The steam generated in an evaporator 5 passes through the superheaters 18, 16 and 14 and is led to a high pressure steam turbine. Further, the steam of low temperature discharged from the high-pressure steam turbine passes through the reheating heaters 17 and 15 and is led to a reheating steam turbine. With this constitution the difference of temperatures between the inlet exhaust gas temperature and outlet steam temperature can be made large in each heat exchanger so that the required heat transfer area is reduced exponentially and the heat exchanger can be formed small and it is possible to reduce the cost.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、再熱蒸気サイクルを有するコンバインドサイ
クル発電プラントの排熱回収ボイラに係わり、特に過熱
器と再熱器の配列構造に関する。
Detailed Description of the Invention [Object of the Invention] (Industrial Application Field) The present invention relates to a heat recovery boiler for a combined cycle power plant having a reheat steam cycle, and in particular to an arrangement of a superheater and a reheater. Regarding structure.

(従来の技術) コンバインドサイクル発電プラントにおける蒸気系は現
在非再熱サイクルが採用されているのが・一般的である
。しかしながらガスタービン高温化により、ガスタービ
ンより排出される熱量が増大するにともない再熱用の熱
量が十分確保できるようになり、再熱サイクルを採用す
ることによりより経済的な発電プラントになりえる。
(Prior Art) Currently, the steam system in a combined cycle power plant generally uses a non-reheat cycle. However, as the temperature of the gas turbine increases, the amount of heat discharged from the gas turbine increases, so it becomes possible to secure a sufficient amount of heat for reheating, and by adopting a reheat cycle, a power generation plant can be made more economical.

従来考えられているコンバインドサイクル発電プラント
の再熱蒸気サイクルでは、再熱器での伝熱面積が大きく
排熱回収ボイラが高価なものとなり、また主蒸気温度と
再熱蒸気の温度差が部分負荷運転において大きくなり、
効率を低下させかつ蒸気タービンでの熱応力が大きくな
るという欠点を有している。
In the conventional reheat steam cycle of a combined cycle power generation plant, the heat transfer area in the reheater is large, making the waste heat recovery boiler expensive, and the temperature difference between the main steam temperature and the reheat steam causes a partial load. Become big in driving,
It has the disadvantage of reducing efficiency and increasing thermal stress in the steam turbine.

従来考えられているコンバインドサイクル発電プラント
の再熱蒸気サイクルを第3図に示す。ガスタービン7よ
り排出された排ガスは排熱回収ボイラ2に供給され過熱
器3.再熱器4.蒸発器5゜節炭器6.にて順次熱交換
を行なった後、大気に放出される。主蒸気は過熱器3、
より高圧蒸気タービン7に導びかれ、排出された低温の
蒸気は再熱器4にて過熱され再熱蒸気タービン8に導び
かれる、排熱回収ボイラ2内では排ガスの流れ順に過熱
器3.再熱器4.蒸発器52節炭器6が配置されており
、各々の熱交換器は複数段の伝熱管より構成されている
Figure 3 shows the reheat steam cycle of a conventional combined cycle power plant. Exhaust gas discharged from the gas turbine 7 is supplied to the exhaust heat recovery boiler 2 and then to the superheater 3. Reheater4. Evaporator 5° Economizer 6. After sequential heat exchange, it is released into the atmosphere. Main steam is superheater 3,
The discharged low-temperature steam is led to a higher pressure steam turbine 7, and is superheated in a reheater 4 and then led to a reheat steam turbine 8.In the exhaust heat recovery boiler 2, the exhaust gas flows through a superheater 3. Reheater4. An evaporator 52 and a economizer 6 are arranged, and each heat exchanger is composed of multiple stages of heat transfer tubes.

1− た 第4図に第3図にwがし薯排熱回収ボイラ2の熱収支曲
線を示す。第4図において横軸は交換熱器、縦軸は温度
を示す。実線は設計点での運転における曲線、破線はガ
スタービン1が部分負荷運転を行なっている時の曲線で
ある。設計点での運転において、排ガスは高温9にて排
熱回収ボイラ2に供給され、熱交換を行なうに従い低温
となり、ある温度10にて大気に放出される。過熱器3
では、蒸発器5の出口の飽和蒸気を加熱し1通常500
℃以上の高温11の蒸気を高圧蒸気タービン7へ供給す
る。再熱器4は、高圧蒸気タービン7の出口蒸気を加熱
し主蒸気とほぼ同じ温度12にて再熱蒸気タービン8へ
供給する。主蒸気温度と再熱蒸気温度をほぼ同じ温度の
高温蒸気にて蒸気タービンへ供給することによりプラン
ト効率が高くなり、また蒸気タービン内での熱応力を低
減することができる。
1- Figure 4 and Figure 3 show the heat balance curve of the potato waste heat recovery boiler 2. In FIG. 4, the horizontal axis shows the heat exchanger and the vertical axis shows the temperature. The solid line is a curve when operating at the design point, and the broken line is a curve when the gas turbine 1 is operating at a partial load. In operation at the design point, the exhaust gas is supplied to the exhaust heat recovery boiler 2 at a high temperature 9, becomes lower as heat is exchanged, and is discharged to the atmosphere at a certain temperature 10. Superheater 3
Then, the saturated steam at the outlet of the evaporator 5 is heated to 1 usually 500
Steam at a high temperature 11 of .degree. C. or higher is supplied to the high pressure steam turbine 7. The reheater 4 heats the outlet steam of the high-pressure steam turbine 7 and supplies it to the reheat steam turbine 8 at approximately the same temperature 12 as the main steam. By supplying high-temperature steam having approximately the same temperature as the main steam temperature and the reheat steam temperature to the steam turbine, plant efficiency can be increased and thermal stress within the steam turbine can be reduced.

(発明が解決しようとする課題) 再熱器4は過熱器3の排ガス流れで下流側に設置される
為、再熱器入口排ガス温度13は過熱器入口排ガス温度
9に比較し低温となってしまう。その結果再熱器入口排
ガス温度13と再熱器出口再熱蒸気温度12の差が小さ
くなり、再熱器の伝熱面積を対数的に増加し極端に大き
くして設計する必要が出てくる。
(Problem to be Solved by the Invention) Since the reheater 4 is installed on the downstream side of the exhaust gas flow of the superheater 3, the reheater inlet exhaust gas temperature 13 is lower than the superheater inlet exhaust gas temperature 9. Put it away. As a result, the difference between the reheater inlet exhaust gas temperature 13 and the reheater outlet reheated steam temperature 12 becomes smaller, and it becomes necessary to logarithmically increase the heat transfer area of the reheater and design it to be extremely large. .

またガスタービン1が部分負荷運転となった場合、排ガ
ス量が減少し、ガスタービン排ガス温度が低温となる為
、排ガス温度は排熱回収ボイラ2内にて熱交換を行なう
ことにより急激に温度が低下してしまう、それにより再
熱器入口排ガス温度13′も過熱器3での熱交換量に大
きく左右され、運用により大きく左右されてしまう。そ
の為過熱器出口主蒸気温度11′ と再熱器出口再熱蒸
気温度12′の差が大きくなり、蒸気タービン内での熱
応力が発生してしまう。
Furthermore, when the gas turbine 1 is in partial load operation, the amount of exhaust gas decreases and the temperature of the gas turbine exhaust gas becomes low, so the exhaust gas temperature rapidly decreases due to heat exchange in the exhaust heat recovery boiler 2. As a result, the reheater inlet exhaust gas temperature 13' is greatly influenced by the amount of heat exchanged in the superheater 3, and is greatly influenced by the operation. Therefore, the difference between the main steam temperature 11' at the superheater outlet and the reheated steam temperature 12' at the reheater outlet increases, causing thermal stress within the steam turbine.

本発明の目的は、上記の如き技術の欠点を排除し再熱器
及び過熱器を細分化し、交互に組み合わせることにより
再熱器入口排ガス温度13と再熱器出口再熱蒸気温度1
2の差を十分数ることができ伝熱面積の小さな設計にて
安価な排熱回収ボイラを提供することにある。
The purpose of the present invention is to eliminate the drawbacks of the above-mentioned techniques, subdivide the reheater and superheater, and combine them alternately to increase the reheater inlet exhaust gas temperature 13 and the reheater outlet reheated steam temperature 1.
An object of the present invention is to provide an inexpensive waste heat recovery boiler that is designed to have a small heat transfer area and can sufficiently account for the difference between 2 and 3.

また本発明の別の目的は過熱器入口ガス温度9と再熱器
入口ガス温度13の差を小さく設計することにより、部
分負荷での運用において、高圧主蒸気温度11と再熱主
蒸気の温度12の差が小さい蒸気タービンにて熱応力が
発生しにくい排熱回収ボイラを提供することである。
Another object of the present invention is to design the difference between the superheater inlet gas temperature 9 and the reheater inlet gas temperature 13 to be small, so that the temperature between the high-pressure main steam temperature 11 and the reheat main steam temperature can be reduced in partial load operation. To provide an exhaust heat recovery boiler in which thermal stress is less likely to occur in a steam turbine with a small difference in temperature.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は、コンバインドサイクル発電プラントのガスタ
ービンの排ガスから熱を回収する過熱器および再熱器を
有し、再熱蒸気タービンサイクルを構成する排熱回収ボ
イラにおいて、過熱器および再熱器はそれぞれ複数の伝
熱管群よりなり、これら伝熱管群が排ガスの流れ方向に
沿って交互に配列されたことを特徴とするものである。
(Means for Solving the Problems) The present invention provides an exhaust heat recovery boiler that includes a superheater and a reheater that recover heat from the exhaust gas of a gas turbine of a combined cycle power plant and constitutes a reheat steam turbine cycle. , the superheater and the reheater each include a plurality of heat transfer tube groups, and the heat transfer tube groups are arranged alternately along the flow direction of the exhaust gas.

(作  用) 排ガス流上流側の過熱器での熱交換量を小さくすること
ができ、排ガス流上流側の再熱器入口での入口排ガス温
度が高くなり、再熱主蒸気温度との差が大きくなり、ま
た各熱交換器における入口排ガス温度と出口蒸気温度の
差が十分数れるため、必要伝熱面積は小さくてすむ。
(Function) The amount of heat exchanged in the superheater on the upstream side of the exhaust gas flow can be reduced, and the inlet exhaust gas temperature at the inlet of the reheater on the upstream side of the exhaust gas flow increases, reducing the difference from the reheated main steam temperature. Moreover, since the difference between the inlet exhaust gas temperature and the outlet steam temperature in each heat exchanger is sufficiently large, the required heat transfer area can be small.

(実 施 例) 第1図は本発明における再熱サイクル用排熱回収ボイラ
の熱交換器の配列を示すものである。過熱器及び再熱器
は複数に分割され排ガス流れ順に第一過熱器14、第一
再熱器15、第二過熱器16、第二再熱器17、第三過
熱器18と交互に配列されている。また第一過熱器14
、第二過熱器16、第三過熱器18は各々のヘッダー間
を配管にて接続されている。同様に第一再熱器15と第
二再熱器17もヘッダー間を配管にて接続されている。
(Embodiment) FIG. 1 shows the arrangement of heat exchangers in a heat recovery boiler for reheat cycle according to the present invention. The superheater and reheater are divided into a plurality of parts, and are arranged alternately as a first superheater 14, a first reheater 15, a second superheater 16, a second reheater 17, and a third superheater 18 in the order of exhaust gas flow. ing. Also, the first superheater 14
, the second superheater 16, and the third superheater 18 are connected by piping between their respective headers. Similarly, the first reheater 15 and the second reheater 17 are also connected by piping between the headers.

また第一過熱器14でのチューブ段数は少なく設計する
ことが好ましい。
Further, it is preferable to design the first superheater 14 to have a small number of tube stages.

蒸発器5にて発生した蒸気は第三過熱器18、第二過熱
器16、第一過熱器14を通り高圧蒸気タービンに導び
かれる。また高圧蒸気タービンから排出された低温の蒸
気は第二再熱器17、第一再熱器15を通り再熱蒸気タ
ービンへ導びかれる。
Steam generated in the evaporator 5 passes through a third superheater 18, a second superheater 16, and a first superheater 14, and is led to a high-pressure steam turbine. Furthermore, low-temperature steam discharged from the high-pressure steam turbine is guided to the reheat steam turbine through the second reheater 17 and the first reheater 15.

第2図は第1図にて示した本発明における再熱サイクル
用排熱回収ボイラの熱収支曲線である。
FIG. 2 is a heat balance curve of the exhaust heat recovery boiler for reheat cycle according to the present invention shown in FIG. 1.

第一過熱器14での交換熱量を小さくすることができ、
第−再熱器入口排ガス温度20が高温となり、再熱主蒸
気温度22との差が大きくなり、また各熱交換器におけ
る入口排ガス温度と出口蒸気温度の差が十分数れるため
、必要伝熱面積は対数的に減少し安価な設備と、なる。
The amount of heat exchanged in the first superheater 14 can be reduced,
The exhaust gas temperature 20 at the inlet of the second reheater becomes high and the difference from the reheat main steam temperature 22 becomes large, and the difference between the inlet exhaust gas temperature and the outlet steam temperature in each heat exchanger is sufficient to count, so the required heat transfer The area is logarithmically reduced, resulting in cheaper equipment.

検討の結果の一例を下表に示す。An example of the results of the study is shown in the table below.

本発明により、排熱回収ボイラの過熱器及び再熱器での
総必要伝熱面積を約30%減少させることが可能となる
The present invention makes it possible to reduce the total required heat transfer area in the superheater and reheater of a waste heat recovery boiler by approximately 30%.

また過熱器を分割することにより第一過熱器での熱交換
量が小さくなる為第一過熱器入口排ガス温度19を第−
再熱器入口排ガス温度20の差が小さくなる。これは部
分負荷時においても同様であり、高圧主蒸気温度21と
再熱主蒸気温度22差が常に小さい値に押えることが可
能となる。
Also, by dividing the superheater, the amount of heat exchanged in the first superheater becomes smaller, so the exhaust gas temperature 19 at the inlet of the first superheater becomes -
The difference in exhaust gas temperature 20 at the inlet of the reheater becomes smaller. This is the same even during partial load, and the difference between the high-pressure main steam temperature 21 and the reheat main steam temperature 22 can be kept to a small value at all times.

〔発明の効果〕〔Effect of the invention〕

このように本発明によれば再熱サイクル用排熱回収ボイ
ラを小型化でき、また信頼性の高いコンバインドサイク
ル発電プラントを提供することが可能となる。
As described above, according to the present invention, it is possible to downsize the exhaust heat recovery boiler for reheat cycle, and to provide a highly reliable combined cycle power generation plant.

本発明の効果は過熱器または再熱器どちらが一方を分割
する場合でも十分得られる。また排熱回収ボイラは複圧
の場合でも同様の効果が得られる。
The effects of the present invention can be sufficiently obtained regardless of whether the superheater or the reheater is separated. Furthermore, the same effect can be obtained even when the exhaust heat recovery boiler is double-pressure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る排熱回収ボイラの一実施例の概略
構成図、第2図は第1図の排熱回収ボイラの熱収支曲線
図、第3図は従来のコンバインドサイクル発電プラント
の概略構成図、第4図は第3図の排熱回収ボイラの熱収
支曲線図である。 1・・・ガスタービン   2・・・排熱回収ボイラ3
・・・過熱器      4・・・再熱器5・・・蒸発
器      6・・・節炭器7・・・高圧蒸気タービ
ン 8・・・再熱蒸気タービン14・・・第一過熱器 
   15・・・第一再熱器16・・・第二過熱器  
  17・・・第二再熱器18・・・第三過熱器 代理人 弁理士 則 近 憲 佑 同  第子丸 健 !l!l勉
Figure 1 is a schematic configuration diagram of an embodiment of the exhaust heat recovery boiler according to the present invention, Figure 2 is a heat balance curve diagram of the exhaust heat recovery boiler of Figure 1, and Figure 3 is a diagram of a conventional combined cycle power plant. A schematic configuration diagram, FIG. 4 is a heat balance curve diagram of the exhaust heat recovery boiler shown in FIG. 3. 1... Gas turbine 2... Exhaust heat recovery boiler 3
... Superheater 4 ... Reheater 5 ... Evaporator 6 ... Energy saver 7 ... High pressure steam turbine 8 ... Reheat steam turbine 14 ... First superheater
15...First reheater 16...Second superheater
17...Second reheater 18...Third superheater agent Patent attorney Nori Chika Ken Yudo Ken Daishimaru! l! l study

Claims (1)

【特許請求の範囲】[Claims] コンバインドサイクル発電プラントのガスタービンの排
ガスから熱を回収する過熱器および再熱器を有し、再熱
蒸気タービンサイクルを構成する排熱回収ボイラにおい
て、上記過熱器および再熱器はそれぞれ複数の伝熱管群
よりなり、これら伝熱管群が排ガスの流れ方向に沿って
交互に配列されたことを特徴とする排熱回収ボイラ。
In an exhaust heat recovery boiler that has a superheater and a reheater that recover heat from the exhaust gas of a gas turbine of a combined cycle power plant and constitutes a reheat steam turbine cycle, the superheater and reheater each have a plurality of transmission An exhaust heat recovery boiler comprising a group of heat transfer tubes, the heat transfer tube groups being arranged alternately along the flow direction of exhaust gas.
JP63197103A 1988-08-09 1988-08-09 Exhaust heat recovery boiler Pending JPH0250002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63197103A JPH0250002A (en) 1988-08-09 1988-08-09 Exhaust heat recovery boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63197103A JPH0250002A (en) 1988-08-09 1988-08-09 Exhaust heat recovery boiler

Publications (1)

Publication Number Publication Date
JPH0250002A true JPH0250002A (en) 1990-02-20

Family

ID=16368780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63197103A Pending JPH0250002A (en) 1988-08-09 1988-08-09 Exhaust heat recovery boiler

Country Status (1)

Country Link
JP (1) JPH0250002A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015048796A (en) * 2013-09-03 2015-03-16 三菱重工業株式会社 Steam turbine plant, combined cycle plant including the same, and method of operating steam turbine plant
CN109519910A (en) * 2017-09-19 2019-03-26 焦武军 A kind of energy-saving fast semi-packaged boiler that subregion precisely conducts heat

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015048796A (en) * 2013-09-03 2015-03-16 三菱重工業株式会社 Steam turbine plant, combined cycle plant including the same, and method of operating steam turbine plant
CN109519910A (en) * 2017-09-19 2019-03-26 焦武军 A kind of energy-saving fast semi-packaged boiler that subregion precisely conducts heat

Similar Documents

Publication Publication Date Title
EP0290220A1 (en) Reheat type waste heat recovery boiler and power generation plant using the same
GB1592812A (en) Method and apparatus for thermal power generation
JPH04298604A (en) Combined cycle power plant and steam supply method
JPH0626606A (en) Method of operating steam generator and steam generator
JPH10506165A (en) Method of operating combined gas and steam turbine equipment and equipment operated by this method
EP2698507B1 (en) System and method for temperature control of reheated steam
TWI645104B (en) Fossil fuel power plant
JP2757290B2 (en) Gas / steam turbine combined facility with coal gasification facility
EP3077632B1 (en) Combined cycle system
CN202001068U (en) Dual-reheating turbo generator set system with superheated steam feed water heater
US3164958A (en) Combined gas-steam turbine cycle power plant
US7861527B2 (en) Reheater temperature control
US3304712A (en) Steam and gas turbine power plant
US6125634A (en) Power plant
US3032999A (en) Steam turbine power plants
CN102678194A (en) Secondary reheating steam turbine generator unit system provided with overheating steam feed water heater
JP4842007B2 (en) Waste heat recovery boiler
JPH0250002A (en) Exhaust heat recovery boiler
US3913330A (en) Vapor generator heat recovery system
JP2753169B2 (en) Double pressure type waste heat recovery boiler
US3048017A (en) Steam turbine power plant
CN219809886U (en) Main steam and reheat steam bypass system
US3144856A (en) Steam generating plant
CN116538487A (en) Main steam and reheat steam bypass system
JPS6475802A (en) Reheat type exhaust gas boiler