JPH024959A - Device for depositing metallic material - Google Patents

Device for depositing metallic material

Info

Publication number
JPH024959A
JPH024959A JP15348688A JP15348688A JPH024959A JP H024959 A JPH024959 A JP H024959A JP 15348688 A JP15348688 A JP 15348688A JP 15348688 A JP15348688 A JP 15348688A JP H024959 A JPH024959 A JP H024959A
Authority
JP
Japan
Prior art keywords
electrode
substrate
tip
metal
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15348688A
Other languages
Japanese (ja)
Other versions
JP2645085B2 (en
Inventor
Hiroshi Tokumoto
洋志 徳本
Shigeo Okayama
岡山 重夫
Masanori Komuro
昌徳 古室
赤間 善昭
和佳 杉原
明 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Toshiba Corp filed Critical Agency of Industrial Science and Technology
Priority to JP15348688A priority Critical patent/JP2645085B2/en
Publication of JPH024959A publication Critical patent/JPH024959A/en
Application granted granted Critical
Publication of JP2645085B2 publication Critical patent/JP2645085B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To keep the width of the deposited metallic material constant irrespective of the shape of the tip of an electrode by alternately carrying out the control of the distance between the surface of a substrate and the electrode tip and the emission of metal atom to accurately control the distance in the title device wherein the metal atom is emitted from the electrode tip. CONSTITUTION:DC power sources 25 and 26 are connected between an electrode 21 and a substrate 12 through a transfer switch 24, one of the power sources 25 and 26 is selected by the changeover of the switch 24, and a voltage is impressed between the electrode and substrate. The power source 25 is used to emit metal atom from the tip of the electrode 21, and the power source 26 is used to detect the tunnel current between the electrode 21 and the substrate 12. An amperemeter 27 is connected to the power source 26 in series to detect the tunnel current, and the detected tunnel current is supplied to a driving power source 23, a fine adjustment mechanism 22 is adjusted to keep the tunnel current constant, and the distance between the electrode tip and the substrate surface is kept constant.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は、電極先端部から金属原子を放出して基板表面
に金属材料を付着させる装置に係わり、特に電極先端部
と基板表面との距離制御手段を改良した金属材料の付着
装置に関する。
Detailed Description of the Invention [Purpose of the Invention (Industrial Application Field) The present invention relates to an apparatus for emitting metal atoms from an electrode tip to deposit a metal material on a substrate surface, and particularly relates to an apparatus for emitting metal atoms from an electrode tip and attaching a metal material to a substrate surface. The present invention relates to a metal material deposition apparatus with improved means for controlling the distance from the substrate surface.

(従来の技術) 近年、超LSI技術の発展に伴い、金属配線等のりソグ
ラフィパターンの微細化は著しく進歩している。従来、
このような微細パターンの形成には、基板上の全面に金
属膜を形成した後、この金属膜上に−様な厚さのレジス
トを塗布し、レジストを露光現像した後、レジストをマ
スクに金属膜を選択エツチングする方法が用いられてい
る。
(Prior Art) In recent years, with the development of VLSI technology, the miniaturization of lithography patterns such as metal wiring has made remarkable progress. Conventionally,
In order to form such a fine pattern, a metal film is formed on the entire surface of the substrate, a resist of a certain thickness is coated on the metal film, the resist is exposed and developed, and then a metal film is formed using the resist as a mask. A method of selectively etching the film is used.

しかし、レジストを用いるリソグラフィ技術は、レジス
トを塗布する際に、粘度1回転数、カップ内部の温度及
び溶媒濃度等の各種のパラメータを厳密に制御する必要
があり、さらに露光後の後処理にも制御が必要な重要な
因子が存在し、微細パターンを形成する上でプロセスの
増加は避けられない。
However, lithography technology using resist requires strict control of various parameters such as viscosity per revolution, temperature inside the cup, and solvent concentration when applying the resist, and also requires post-exposure processing. There are important factors that need to be controlled, and an increase in the number of processes is inevitable in forming fine patterns.

そこで最近、レジストを必要とせず、ナノメータ寸法の
金属材料を基板表面に直接付着させる方法が提案されて
いる(特開昭61−15324号)。第4図に、この方
法を実施するための金属材料の付着装置を示す。例えば
、タングステンからなる針状電極41は、その先端部4
2が基板43の表面から約5n11の一定の距離に支持
されるように、電極先端部と基板表面との間に流れるト
ンネル電流を利用して制御されている。電極41の温度
は、その表面に付着した自由金属原子44が先端部42
まで容易に移動できるように加熱コイル45により調整
される。これらの自由金属原子は例えば金であって、ト
ンネル・ギャップから離れた位置に蒸着又はスパッタリ
ングにより付着した後、先端部42に供給される。
Recently, a method has been proposed in which a nanometer-sized metal material is directly attached to the substrate surface without requiring a resist (Japanese Patent Laid-Open No. 15324/1983). FIG. 4 shows a metal material deposition apparatus for carrying out this method. For example, the needle electrode 41 made of tungsten has its tip 4
2 is supported at a constant distance of about 5n11 from the surface of the substrate 43 using a tunnel current flowing between the electrode tip and the substrate surface. The temperature of the electrode 41 is such that the free metal atoms 44 attached to its surface are at the tip 42.
It is adjusted by the heating coil 45 so that it can be easily moved up to. These free metal atoms, for example gold, are deposited by evaporation or sputtering at a distance from the tunnel gap and then supplied to the tip 42.

タングステンの先端部42は、金属原子44か移動可能
な温度であっても安定である。電極41と基板43との
間には所定の電圧が印加され、それによって電界が最大
の点において金属原子44が電界放出され、先端部42
と基板43との間のギャップを通って基板43の表面に
達する。金属原子44が基板43の表面に到着すると、
金属原子44はその上に付着され、先端部42が図中矢
印46に示すように基板43を横切って移動するときに
トレース47を形成する。電圧を所望の所で切れば不連
続な線を形成することもできる。このような方法でナノ
メータ程度の寸法の構造を基板上に形成することができ
る。
The tungsten tip 42 is stable even at temperatures at which metal atoms 44 are mobile. A predetermined voltage is applied between the electrode 41 and the substrate 43, whereby the metal atoms 44 are field-emitted at the point where the electric field is maximum, and the tip portion 42
and reaches the surface of the substrate 43 through the gap between the substrate 43 and the substrate 43. When the metal atoms 44 arrive at the surface of the substrate 43,
Metal atoms 44 are deposited thereon and form traces 47 as tip 42 moves across substrate 43 as shown by arrow 46 in the figure. A discontinuous line can also be formed by cutting off the voltage at a desired point. With this method, structures with dimensions on the order of nanometers can be formed on the substrate.

しかしながら、この種の装置にあっては、次の■〜■の
ような問題かある。
However, this type of device has the following problems (1) to (2).

■ 電極先端部と基板表面との相対距離を一定に保つた
めに検出するトンネル電流は、電界放出によって大きく
変調されるため、電極先端部と基板表面との距離の変化
のみに起因するトンネル電流変化を検出することは困難
である。
■ The tunnel current detected in order to maintain a constant relative distance between the electrode tip and the substrate surface is significantly modulated by field emission, so changes in tunnel current caused only by changes in the distance between the electrode tip and the substrate surface. is difficult to detect.

■ 電界放出される物質が先端部に補給されなげればな
らない速度は、少なくとも最大の電界放出速度に等しく
する必要がある ■ 自由金属原子を補給する先端部の位置は、トンネル
領域から離れたところに標準を合わせなげればならず、
更には3次元方向に微動する電極に対してその挙動を合
わせる必要がある また、電極先端部に生じてくる問題としては、■ 線パ
ターンの幅を決定する電界放出領域は、先端部の曲率半
径か微小なほど小さな領域となるため、パターン幅は先
端部の形状に大きく左右される。しかし現状では、常に
同一な形状を有する電極を製作することが困難であるた
め、電極の交換の度に描かれるパターンの線幅が変化す
る。
■ The velocity at which the field-ejected material must be replenished to the tip must be at least equal to the maximum field emission velocity ■ The position of the tip at which free metal atoms are replenished should be at a distance from the tunnel region. standards must be adjusted to
Furthermore, it is necessary to adjust its behavior to the electrode that moves slightly in three-dimensional directions.Furthermore, problems that arise at the tip of the electrode include: ■ The field emission region that determines the width of the line pattern is limited by the radius of curvature of the tip. The smaller the area, the smaller the area, so the pattern width is greatly influenced by the shape of the tip. However, at present, it is difficult to manufacture electrodes that always have the same shape, so the line width of the drawn pattern changes each time the electrodes are replaced.

■ 同様に、電極先端部の形状変化のため、自由金属原
子が先端部頂点に移動する経路も変化し、■で述べた電
界放出に影響を与える。
(2) Similarly, due to the change in the shape of the electrode tip, the path along which free metal atoms move to the apex of the tip also changes, which affects the field emission described in (2).

■ 短時間走査でパターンを形成させるためには、電極
を例えば円筒型圧電素子等を用いて速い周期で3次元微
動させる必要があるが、片持ち針と同様な構成を有する
電極部分は、特に基板表面に平行な方向の振幅に対して
は、横振動の影響を受は易い。
■ In order to form a pattern in a short time scan, it is necessary to micro-move the electrode in three dimensions at a fast cycle using, for example, a cylindrical piezoelectric element. The amplitude in the direction parallel to the substrate surface is easily affected by lateral vibration.

■ ■で述べたような理由から、電極の粗動に関しては
更に困難なものとなる。そこで、パターンの描画は電極
の微動のみに頼らざるを得ないため、基板上の微小な領
域に限定される。
(2) For the reasons mentioned in (2), coarse movement of the electrode becomes even more difficult. Therefore, drawing a pattern must rely only on minute movements of the electrodes, and is therefore limited to a minute area on the substrate.

(発明が解決しようとする課題) このように、従来の金属材料の付着装置では、電界放出
の影響でトンネル電流を正確に測定することはできず、
電極先端部と基板表面との距離を正確に制御することは
困難であった。また、電極先端部の形状により付着され
る金属材料のパターン幅が変化するため、特に微細な寸
法の線パターンを安定して形成することは困難であった
(Problems to be Solved by the Invention) As described above, with the conventional metal material deposition apparatus, tunneling current cannot be accurately measured due to the influence of field emission.
It has been difficult to accurately control the distance between the electrode tip and the substrate surface. Furthermore, since the pattern width of the deposited metal material changes depending on the shape of the electrode tip, it has been difficult to stably form particularly fine line patterns.

本発明は、上記事情を考慮してなされたもので、その目
的とするところは、電極先端部と基板表面との距離を正
確に制御することができ、且つ電極先端部の形状に関係
なく一定幅で金属材料を付着させることができ、ナノメ
ータ以下の微細幅の線パターンを安定に形成し得る金属
材料の付着装置を提供することにある。
The present invention has been made in consideration of the above circumstances, and its purpose is to be able to accurately control the distance between the electrode tip and the substrate surface, and to maintain a constant distance regardless of the shape of the electrode tip. It is an object of the present invention to provide a metal material deposition device that can deposit a metal material with a width and can stably form a line pattern with a fine width of nanometers or less.

[発明の構成] (発明が解決しようとする課題) 本発明の骨子は、基板表面に対する電極先端部の距離の
制御と、電極先端部からの金属原子の電界放出とを交互
に行うことにある。
[Structure of the Invention] (Problem to be Solved by the Invention) The gist of the present invention is to alternately control the distance of the electrode tip with respect to the substrate surface and emit field of metal atoms from the electrode tip. .

即ち本発明は、被処理基板の表面から所定距離能れた位
置に針状電極の先端部を保持し、電極を加熱すると共に
該電極の先端部に自由金属原子を供給し、且つ電極と基
板との間に電極先端部から金属原子が放出されるのに十
分なレベルの電圧を印加することによって、基板表面に
金属原子を含む材料を付着させる金属材料の付着装置に
おいて、前記電極と基板との間にトンネル電流検出のた
めの第1の電圧及び金属原子放出のための第2の電圧を
交互に印加する手段と、電極と基板との間に第1の電圧
が印加された時、これらの間に流れるトンネル電流を検
出し該電流が一定となるように電極先端部と基板表面と
の距離を制御する手段とを設けるようにしたものである
That is, the present invention holds the tip of a needle-shaped electrode at a predetermined distance from the surface of the substrate to be processed, heats the electrode, supplies free metal atoms to the tip of the electrode, and connects the electrode and the substrate. In a metal material deposition apparatus for depositing a material containing metal atoms onto a substrate surface by applying a voltage between the electrode and the substrate at a level sufficient to cause metal atoms to be emitted from the tip of the electrode, means for alternately applying a first voltage for detecting tunneling current and a second voltage for emitting metal atoms between the electrodes and the substrate when the first voltage is applied between the electrode and the substrate; A means is provided for detecting a tunnel current flowing between the electrodes and controlling the distance between the electrode tip and the substrate surface so that the current is constant.

また、本発明はこれに加え、電極の基端側に液体金属溜
めを設け、この金属溜めから電極先端部に液体金属が連
続的に供給する。さらに、第2の電圧を印加して位置制
御を行う時間を、電極先端部における金属原子放出時の
液体金属の形が表面張力により元の状態に戻ろうとする
のに要する時間よりも短く設定したものである。
In addition, in the present invention, a liquid metal reservoir is provided at the proximal end of the electrode, and liquid metal is continuously supplied from the metal reservoir to the tip of the electrode. Furthermore, the time for position control by applying the second voltage was set to be shorter than the time required for the shape of the liquid metal to return to its original state due to surface tension when metal atoms are released at the tip of the electrode. It is something.

(作 用) 金属針の表面を液体金属で濡らした電極と基板との間に
印加する電界強度を増加していき、電極先端部にある液
体金属の表面に加わる静電気力がその表面張力による収
縮力を上回るような値を越えると、電極先端部の液体金
属が突出して、所謂ティラーコーンと呼ばれる円錐形状
に液体が成長し、イオン放出を行う。また、電極先端部
と基板表面との相対距離をトンネル領域まで近付けると
、両者間に僅かな電圧を加えただけでトンネル電流が流
れる。これら2つの現象を利用して、電界放出及びトン
ネル電流検出を交互に行うことにより、イオンの基板へ
の付着を電極一基板間の距離を制御しながら行うことが
できる。
(Operation) The electric field strength applied between the electrode and the substrate, whose surface is wetted with liquid metal, is increased, and the electrostatic force applied to the surface of the liquid metal at the tip of the electrode causes contraction due to its surface tension. When a value exceeding the force is exceeded, the liquid metal at the tip of the electrode protrudes, the liquid grows into a conical shape called a tiller cone, and ions are emitted. Further, when the relative distance between the electrode tip and the substrate surface is brought close to the tunnel region, a tunnel current flows even when a slight voltage is applied between the two. By utilizing these two phenomena and alternately performing field emission and tunnel current detection, ions can be attached to the substrate while controlling the distance between the electrode and the substrate.

ここで、ティラーコーンの曲率半径は、電極先端部の形
状に依存せず、電極先端部の曲率半径よりも小さいもの
である。従って、テーラコーンを維持したままイオン放
出を行うことにより、電極先端部の形状に関係なく、基
板表面に微細幅のパターンを形成することができる。な
お、テーラコーンは電極一基板間に第2の電圧を印加し
たときに形成され、さらに電極先端部に金属原子を連続
的に供給すれば維持される。また、第1の電圧は第2の
電圧に比べて十分小さいものであり、トンネル電流検出
の際にイオン放出が起きることはなく、トンネル電流を
正確に検出することができる。
Here, the radius of curvature of the tiller cone does not depend on the shape of the tip of the electrode and is smaller than the radius of curvature of the tip of the electrode. Therefore, by ejecting ions while maintaining the Taylor cone, a fine width pattern can be formed on the substrate surface regardless of the shape of the electrode tip. Note that the Taylor cone is formed when a second voltage is applied between the electrode and the substrate, and is maintained if metal atoms are continuously supplied to the tip of the electrode. In addition, the first voltage is sufficiently smaller than the second voltage, so that ion emission does not occur during tunnel current detection, and the tunnel current can be detected accurately.

従って、電極先端部と基板表面との距離を正確に保持す
ることが可能となる。
Therefore, it is possible to accurately maintain the distance between the electrode tip and the substrate surface.

イオン放出面は、金属溜め等からの液体金属の供給とイ
オン放出で消費する量とのバランスを保っている。基板
の傾きや凹凸による電極一基板間の距離の変位は両者間
に流れるトンネル電流の変化で知ることができるが、こ
のトンネル電流の値を電極の上部に設けた微動素子(例
えば圧電素子)を上下動することで一定に保つ。また、
基板の2次元微動及び2次元粗動は、例えば圧電素子等
を組込んだ移動機構を用いて行い、広範囲な駆動を可能
とする。このような構成で厚さや線幅の−様なパターン
を基板上に形成することが可能となる。
The ion ejection surface maintains a balance between the supply of liquid metal from a metal reservoir or the like and the amount consumed by ion ejection. Displacement in the distance between the electrode and the substrate due to the inclination or unevenness of the substrate can be determined by the change in the tunnel current flowing between them. Keep it constant by moving up and down. Also,
Two-dimensional fine movement and two-dimensional coarse movement of the substrate are performed using, for example, a movement mechanism incorporating a piezoelectric element or the like, thereby enabling a wide range of driving. With such a configuration, it is possible to form a pattern with varying thickness and line width on the substrate.

(実施例) 以下、本発明の詳細を図示の実施例によって説明する。(Example) Hereinafter, details of the present invention will be explained with reference to illustrated embodiments.

第1図は本発明の一実施例に係わる金属材料の付着装置
を示す概略構成図である。図中11は被処理基板12を
載置する試料台であり、この試料台11は基台13上に
移動可能に支持されている。
FIG. 1 is a schematic diagram showing a metal material deposition apparatus according to an embodiment of the present invention. In the figure, reference numeral 11 denotes a sample stage on which a substrate to be processed 12 is placed, and this sample stage 11 is movably supported on a base 13.

試料台11と基台13の端部に突出した側壁との間には
圧電素子からなる移動機構14が設けられており、この
移動機構14により試料台11はX方向(紙面左右方向
)及びY方向(紙面表裏方向)に粗動及び微動するもの
となっている。
A moving mechanism 14 made of a piezoelectric element is provided between the sample stage 11 and a side wall protruding from the end of the base 13, and this moving mechanism 14 moves the sample stage 11 in the X direction (horizontal direction in the drawing) and the Y direction. It is designed to make coarse and fine movements in the direction (front and back of the page).

針状電極21はタングステン等の高融点金属からなるも
ので、上部を固定端に固定された円筒型圧電素子からな
る微動機構22の下部に固定されている。微動機構22
は駆動用電源23から電圧を印加されてX、Y方向及び
X方向(紙面上下方向)に伸縮するものであり、これに
より針状電極21もx、y、X方向に微小移動するもの
となっている。
The needle electrode 21 is made of a high melting point metal such as tungsten, and is fixed to the lower part of a fine movement mechanism 22 made of a cylindrical piezoelectric element whose upper part is fixed to a fixed end. Fine movement mechanism 22
The needle electrode 21 expands and contracts in the X, Y directions, and the X direction (up and down direction in the paper) when a voltage is applied from the drive power source 23, and as a result, the needle electrode 21 also moves minutely in the x, y, and X directions. ing.

また、電極21は第2図に示す如く、先端部31を基板
表面に対向させて配置され、基端側に液体金属溜め32
か設けられている。金属溜め32は基板12の表面に付
着すべき金属の液体を収容し電極の表面を伝って先端部
31に液体金属を供給するものである。電極21の内部
には加熱コイル34が設けられており、このコイル34
により金属が加熱されて液体となり、金属溜め32から
電極先端部に液体金属が連続的に供給されるものとなっ
ている。
Further, as shown in FIG. 2, the electrode 21 is arranged with its distal end 31 facing the substrate surface, and has a liquid metal reservoir 32 on its proximal end.
Or is provided. The metal reservoir 32 contains a liquid metal to be deposited on the surface of the substrate 12 and supplies the liquid metal to the tip 31 along the surface of the electrode. A heating coil 34 is provided inside the electrode 21, and this coil 34
The metal is heated and becomes a liquid, and the liquid metal is continuously supplied from the metal reservoir 32 to the tip of the electrode.

電極21と基板12との間には、切換えスイッチ24を
介して直流電源25.26が接続されており、スイッチ
24の切換えにより電源2526の一方が選択されて電
極一基板間に電圧が印加される。電源25の電圧(第2
の電圧)は例えば15Vであり、この電源25は電極2
1の先端部からの金属原子の電界放出に用いられる。電
源26の電圧(第1の電圧)は例えば0.02Vであり
、この電源26は電極21と基板12との間に流れるト
ンネル電流検出に用いられる。
DC power sources 25 and 26 are connected between the electrode 21 and the substrate 12 via a changeover switch 24, and by switching the switch 24, one of the power sources 2526 is selected and a voltage is applied between the electrode and the substrate. Ru. Voltage of power supply 25 (second
voltage) is, for example, 15V, and this power supply 25 is connected to the electrode 2
It is used for field emission of metal atoms from the tip of 1. The voltage (first voltage) of the power supply 26 is, for example, 0.02V, and this power supply 26 is used to detect the tunnel current flowing between the electrode 21 and the substrate 12.

また、電源26にはトンネル電流を検出するための電流
計27が直列接続されており、この電流計27により検
出されたトンネル電流は前記駆動用電源23に供給され
る。そして、トンネル電流が一定となるように微動機構
22が調整され、これにより電極先端部と基板表面との
距離が一定に制御されるものとなっている。
Further, an ammeter 27 for detecting tunnel current is connected in series with the power source 26, and the tunnel current detected by this ammeter 27 is supplied to the driving power source 23. The fine movement mechanism 22 is adjusted so that the tunnel current is constant, and thereby the distance between the electrode tip and the substrate surface is controlled to be constant.

次に、このように構成された本装置の作用について説明
する。
Next, the operation of this device configured as described above will be explained.

まず、電極材料としてタングステンを用いているので、
基板表面に付着する金属としてGaやIn等のタングス
テンと濡れ性の良いものを用いる。加熱コイル34によ
り電極21を加熱することにより上記金属を加熱して液
化し、液体金属が電極21の先端部31に供給されるよ
うにする。
First, since tungsten is used as the electrode material,
As the metal that adheres to the substrate surface, a material having good wettability with tungsten, such as Ga or In, is used. By heating the electrode 21 with the heating coil 34, the metal is heated and liquefied, and the liquid metal is supplied to the tip 31 of the electrode 21.

この状態で、電極21と基板12との間に電圧を印加し
、電界強度を増加していくと、ある臨界値で表面に加わ
る静電気力が液体金属33の表面張力による収縮を上回
り、第2図に示す如く電極先端部31にティラーコーン
と称される円錐形状の突出部35か成長し、GaやIn
のようなイオン(金属原子)36を放出する。このイオ
ン36は基板]2の表面に付着し、基板12をX、Y方
向に移動させることにより微小な幅の堆積物37を形成
する。
In this state, when a voltage is applied between the electrode 21 and the substrate 12 and the electric field strength is increased, the electrostatic force applied to the surface exceeds the contraction due to the surface tension of the liquid metal 33 at a certain critical value, and the second As shown in the figure, a conical protrusion 35 called a Tiller cone grows on the electrode tip 31, and Ga or In
The ion (metal atom) 36 is released. These ions 36 adhere to the surface of the substrate 2 and form a deposit 37 having a minute width by moving the substrate 12 in the X and Y directions.

イオン放出面は、液体金属溜め32からの液体金属33
の補給とイオン放出で消費量のバランスで成り立ってい
るが、これに加えて空間自由電荷電流制限の状態にある
ために、より安定なイオン放出が得られる。また、液体
金属33が液状を保ち、更に電極21の表面で移動が容
易なように液体金属溜め32の中や電極21は加熱コイ
ル34で温度を調節している。基板12上に堆積物37
の線幅は電極先端部31における液体金属の突出部35
の曲率半径やその突出部35と基板表面との相対距離の
相違で変化し、それらの値が小さいほど狭い。
The ion emitting surface is a liquid metal 33 from a liquid metal reservoir 32.
The amount of consumption is balanced between the replenishment of ions and ion release, but in addition to this, the state of space free charge current limitation provides more stable ion release. Further, the temperature inside the liquid metal reservoir 32 and the electrode 21 is adjusted by a heating coil 34 so that the liquid metal 33 remains in a liquid state and can be easily moved on the surface of the electrode 21. Deposits 37 on the substrate 12
The line width is the liquid metal protrusion 35 at the electrode tip 31.
It changes depending on the radius of curvature of and the relative distance between the protrusion 35 and the substrate surface, and the smaller these values are, the narrower it is.

ティラーコーンを成長させている電極先端部31におけ
る突出部35の曲率半径は、機械研磨や電解研磨で得ら
れる電極先端部31の曲率半径よりも遥かに小さく、そ
の頂点と基板との間の電界強度を一定に保てば、電極2
1の交換による電極先端形状の変化に対しても不変であ
る。
The radius of curvature of the protrusion 35 in the electrode tip 31 on which the Tiller cone is growing is much smaller than the radius of curvature of the electrode tip 31 obtained by mechanical polishing or electrolytic polishing, and the electric field between the apex and the substrate If the strength is kept constant, electrode 2
It remains unchanged even when the shape of the electrode tip changes due to replacement of the electrode.

電極先端部(厳密にはティラーコーンを形成している突
出部)と基板表面との距離を微小な間隔で一定に保つ技
術はトンネル電流を検出して、例えば圧電素子で電極を
上下動させながら制御する走査型トンネル顕微鏡(ST
M)で公知のように既に確立されている。このようにS
TMの技術で電極先端部と基板表面との距離を略10人
程度で一定に保つことにより、両者間の電界強度を一定
に保つことにもなる。
The technology to keep the distance between the electrode tip (strictly speaking, the protrusion forming the tiller cone) and the substrate surface constant at a minute interval is to detect tunnel current and, for example, use a piezoelectric element to move the electrode up and down. Controlled scanning tunneling microscope (ST)
M) has already been established as known. In this way S
By keeping the distance between the electrode tip and the substrate surface constant for approximately 10 people using TM technology, the electric field strength between the two can also be kept constant.

液体金属33が例えばGaの場合は、電極先端部−基板
表面間の距離が10人のとき15V以下の印加電圧でイ
オン放出が開始される。しかし、このイオン放出のため
にトンネル電流は大きく変調され、正確なトンネル電流
検出を行うことはできない。従って本実施例では、イオ
ン放出とトンネル電流の制御を交互に行う方法を用い、
さらにそれぞれで印加電圧を変えるようにしている。
When the liquid metal 33 is Ga, for example, ion emission is started at an applied voltage of 15 V or less when the distance between the electrode tip and the substrate surface is 10 people. However, the tunnel current is significantly modulated due to this ion emission, making it impossible to accurately detect the tunnel current. Therefore, in this example, a method of alternately controlling ion emission and tunneling current is used,
Furthermore, the applied voltage is changed for each.

第3図に印加電圧供給の一例を示す。印加電圧を例えば
15Vとすると電極先端部31からイオンが放出され、
基板12上に付着する。また、例えば0.02Vと印加
電圧が小さい場合には、イオン放出はなく電子によるト
ンネル電流のみが流れる。
FIG. 3 shows an example of applied voltage supply. When the applied voltage is, for example, 15V, ions are emitted from the electrode tip 31,
It is attached onto the substrate 12. Furthermore, when the applied voltage is small, for example 0.02 V, no ions are emitted and only a tunnel current due to electrons flows.

このときトンネル電流の値を設定値を保ちながら電極先
端部31と基板表面との距離を一定にする。
At this time, the distance between the electrode tip 31 and the substrate surface is kept constant while keeping the tunnel current at the set value.

イオン放出(印加電圧が15v)のときは、トンネル電
流値の制御の際、最終的に電極を動かす圧電素子に供給
した電圧を固定し、電極の挙動を停止させ、トンネル電
流は検出しない。
During ion emission (applied voltage is 15 V), when controlling the tunnel current value, the voltage supplied to the piezoelectric element that finally moves the electrode is fixed, the behavior of the electrode is stopped, and the tunnel current is not detected.

印加電圧が0.02Vと小さいときは、電極先端部31
と基板表面との間の電界強度が電極先端部におけるティ
ラーコーンの突出部35の表面張力よりも低くなるため
、その表面は収縮しようとするが、その収縮しようとす
る速度よりも速い周期で印加電圧を切換えることは容易
であり、ティラーコーンを保持することができる。また
、電極停止時の電極先端部−基板間の相対距離の変化や
トンネル電流制御時のイオン放出停止による線パタンの
欠如の可能性に関しても同様のことが言える。
When the applied voltage is as low as 0.02V, the electrode tip 31
Since the electric field strength between and the substrate surface becomes lower than the surface tension of the tiller cone protrusion 35 at the electrode tip, the surface tends to contract, but the application is applied at a faster rate than the contraction speed. It is easy to switch the voltage and can hold the tiller cone. Furthermore, the same can be said about the possibility of a lack of a line pattern due to a change in the relative distance between the electrode tip and the substrate when the electrode is stopped or when ion emission is stopped during tunnel current control.

また、トンネル電流制御時間を一時的に長くして、故意
に線パターンの欠如を作出すことも容易である。
Furthermore, it is easy to temporarily lengthen the tunnel current control time to intentionally create a lack of a line pattern.

基板12は例えば圧電素子等で構成された移動機構14
で2次元方向に粗・微動され、微動により線パターンが
形成され、粗動により基板12上の全面を電極21に近
接対向させることができる。
The substrate 12 has a moving mechanism 14 composed of, for example, a piezoelectric element or the like.
The fine movement forms a line pattern, and the coarse movement allows the entire surface of the substrate 12 to be closely opposed to the electrode 21.

この基板12の微動速度を変えることによって線パター
ンの厚みを変えることもできる。さらに、基板12の微
動の変わりに微動機構22により電極21をX、Y方向
に微動させてもよい。また、基板12の粗動を例えばレ
ーザ干渉計や静電容量型のマイクロセンサ等で位置検出
しながら連続的に行うことによって、広範囲に渡るパタ
ーンを描くことが可能となる。さらに、種々の液体金属
を用いて同じパターンを或いは様々なパターンを繰返し
描くことで多層パターンを形成できる。
By changing the fine movement speed of the substrate 12, the thickness of the line pattern can also be changed. Furthermore, instead of slightly moving the substrate 12, the electrode 21 may be slightly moved in the X and Y directions by the fine movement mechanism 22. Moreover, by continuously performing coarse movement of the substrate 12 while detecting the position using, for example, a laser interferometer or a capacitance type microsensor, it becomes possible to draw a pattern over a wide range. Furthermore, a multilayer pattern can be formed by repeatedly drawing the same pattern or various patterns using various liquid metals.

かくして本実施例によれば、電極先端部と基板表面との
距離を一定に保ちながら、電極先端部から金属原子を放
出させ基板上に金属材料の線パターンを形成することが
できる。そしてこの場合、トンネル電流検出の際には0
.02Vと低い電圧を印加しているので、電界放出の影
響はなくトンネル電流を正確に検出することができ、こ
れにより電極先端部と基板表面との距離を正確に制御す
ることができる。また、液体金属溜めから液体金属を連
続的に供給し、電極先端部にティラーコーンを形成して
いるので、電極先端部の形状に関係なく微細な線パター
ンを形成することができる。本発明者らの実験によれば
、ナノメータの線パターンをも良好に形成できることが
確認された。また、ティラーコーンを形成してイオン放
出を行うことから、電極を交換しても線パターンの幅が
変わる等の不都合はない。さらに、試料台をX、Y方向
に移動しているので、広範囲に渡ってパターン形成が可
能となり、LSI製造における有用性は絶大である。
Thus, according to this embodiment, a line pattern of metal material can be formed on the substrate by emitting metal atoms from the electrode tip while keeping the distance between the electrode tip and the substrate surface constant. In this case, when detecting tunnel current, 0
.. Since a low voltage of 0.02 V is applied, the tunnel current can be accurately detected without the influence of field emission, and thereby the distance between the electrode tip and the substrate surface can be accurately controlled. Further, since the liquid metal is continuously supplied from the liquid metal reservoir and a tiller cone is formed at the tip of the electrode, a fine line pattern can be formed regardless of the shape of the tip of the electrode. According to experiments conducted by the present inventors, it has been confirmed that even nanometer line patterns can be formed satisfactorily. Furthermore, since ions are emitted by forming a tiller cone, there is no problem such as changing the width of the line pattern even if the electrodes are replaced. Furthermore, since the sample stage is moved in the X and Y directions, it is possible to form patterns over a wide range, making it extremely useful in LSI manufacturing.

なお、本発明は上述した実施例に限定されるものではな
い。例えば、前記電極は金属針に限るものではなく、先
端部が針状のものであればよい。
Note that the present invention is not limited to the embodiments described above. For example, the electrode is not limited to a metal needle, but may have a needle-like tip.

被処理基板は、電界放出及びトンネル電流の検出を行う
ことから、少なくとも表面が導電性のものであればよい
。また、基板上に付着する金属材料はGaやInに限る
ものではなく、電極材料との濡れ性の良い導電体であれ
ばよい。また、第1の電圧はトンネル電流が検出可能で
、且つ電界放出が生じない電圧の範囲で選択すればよい
。その他、本発明の要旨を逸脱しない範囲で、種々変形
して実施することができる [発明の効果コ 以上詳述したように本発明によれば、基板表面に対する
電極先端部の距離の制御と、電極先端部からの金属原子
の電界放出とを交互に行うようにしているので、電極先
端部と基板表面との距離を正確に制御することができ、
且つ電極先端部の形状に関係なく一定幅で金属材料を付
着させることができ、ナノメータ以下の微細幅の線パタ
ーンを安定に形成することが可能となる。
The substrate to be processed needs only to have at least a conductive surface since field emission and tunnel current are detected. Further, the metal material deposited on the substrate is not limited to Ga or In, and any conductive material that has good wettability with the electrode material may be used. Further, the first voltage may be selected within a voltage range at which tunnel current can be detected and field emission does not occur. In addition, various modifications can be made without departing from the gist of the present invention. [Effects of the Invention] As detailed above, according to the present invention, the distance of the electrode tip with respect to the substrate surface can be controlled; Since the field emission of metal atoms from the electrode tip is performed alternately, the distance between the electrode tip and the substrate surface can be accurately controlled.
In addition, the metal material can be deposited with a constant width regardless of the shape of the tip of the electrode, making it possible to stably form a line pattern with a fine width of nanometers or less.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係わる金属材料の付着装置
を示す概略構成図、第2図は上記装置に用いた電極形状
及びイオン放出の原理を説明するだめの模式図、第3図
は電極一基板間に印加する電圧を示す信号波形図、第4
図は従来装置を示す概略構成図である。 11・・・試料台、12・・・被処理基板、13・・・
基台、14・・・移動機構、21・・・針状電極、22
・・・微動機構、23・・・駆動用電源、24・・・切
換えスイッチ、25.26・・・電源、27・・・電流
計、31・・・電極先端部、32・・・液体金属溜め、
33・・・液体金属、34・・・加熱コイル、35・・
・突出部、36・・・イオン、37・・・堆積物。
FIG. 1 is a schematic configuration diagram showing a metal material deposition device according to an embodiment of the present invention, FIG. 2 is a schematic diagram illustrating the shape of the electrodes used in the device and the principle of ion emission, and FIG. 3 is a signal waveform diagram showing the voltage applied between the electrode and the substrate;
The figure is a schematic configuration diagram showing a conventional device. 11... Sample stage, 12... Substrate to be processed, 13...
Base, 14... Moving mechanism, 21... Needle electrode, 22
... Fine movement mechanism, 23 ... Drive power supply, 24 ... Changeover switch, 25.26 ... Power supply, 27 ... Ammeter, 31 ... Electrode tip, 32 ... Liquid metal Reservoir,
33...Liquid metal, 34...Heating coil, 35...
- Projection, 36... Ion, 37... Deposit.

Claims (4)

【特許請求の範囲】[Claims] (1)被処理基板の表面から所定距離離れた位置に針状
電極の先端部を保持し、電極を加熱すると共に該電極の
先端部に自由金属原子を供給し、且つ電極と基板との間
に電極先端部から金属原子が放出されるのに十分なレベ
ルの電圧を印加することによって、基板表面に金属原子
を含む材料を付着させる金属材料の付着装置において、
前記電極と基板との間にトンネル電流検出のための第1
の電圧及び金属原子放出のための第2の電圧を交互に印
加する手段と、電極と基板との間に第1の電圧が印加さ
れた時、これらの間に流れるトンネル電流を検出し該電
流が一定となるように電極先端部と基板表面との距離を
制御する手段とを具備してなることを特徴とする金属材
料の付着装置。
(1) Hold the tip of a needle-shaped electrode at a predetermined distance from the surface of the substrate to be processed, heat the electrode, supply free metal atoms to the tip of the electrode, and place the tip between the electrode and the substrate. In a metal material deposition apparatus, a material containing metal atoms is deposited on a substrate surface by applying a voltage at a level sufficient to cause metal atoms to be released from the tip of an electrode.
a first for tunnel current detection between the electrode and the substrate;
and a means for alternately applying a voltage of 1 and a second voltage for emitting metal atoms; and a means for detecting a tunnel current flowing between the electrode and the substrate when the first voltage is applied between the electrode and the substrate; 1. An apparatus for depositing a metal material, comprising means for controlling the distance between an electrode tip and a substrate surface so that the distance between the electrode tip and the substrate surface is constant.
(2)前記電極の基端側には液体金属溜めが設けられて
おり、この金属溜めから電極先端部に液体金属が連続的
に供給されることを特徴とする請求項1記載の金属材料
の付着装置。
(2) The metal material according to claim 1, wherein a liquid metal reservoir is provided on the proximal end side of the electrode, and the liquid metal is continuously supplied from the metal reservoir to the tip end of the electrode. Adhesion device.
(3)前記第1の電圧を印加して位置制御を行う時間を
、電極先端部における金属原子放出時の液体金属の形が
表面張力により元の状態に戻ろうとするのに要する時間
よりも短く設定したことを特徴とする請求項1記載の金
属材料の付着装置。
(3) The time for applying the first voltage and controlling the position is shorter than the time required for the shape of the liquid metal to return to its original state due to surface tension when metal atoms are released at the tip of the electrode. 2. The metal material deposition apparatus according to claim 1, wherein:
(4)前記基板は基板表面に平行な面内で移動する試料
台上に載置されており、前記電極は基板表面に直交する
方向に伸縮する圧電素子に固定されていることを特徴と
する請求項1記載の金属材料の付着装置。
(4) The substrate is placed on a sample stage that moves in a plane parallel to the substrate surface, and the electrode is fixed to a piezoelectric element that expands and contracts in a direction perpendicular to the substrate surface. The metal material deposition apparatus according to claim 1.
JP15348688A 1988-06-23 1988-06-23 Metal material deposition equipment Expired - Lifetime JP2645085B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15348688A JP2645085B2 (en) 1988-06-23 1988-06-23 Metal material deposition equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15348688A JP2645085B2 (en) 1988-06-23 1988-06-23 Metal material deposition equipment

Publications (2)

Publication Number Publication Date
JPH024959A true JPH024959A (en) 1990-01-09
JP2645085B2 JP2645085B2 (en) 1997-08-25

Family

ID=15563624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15348688A Expired - Lifetime JP2645085B2 (en) 1988-06-23 1988-06-23 Metal material deposition equipment

Country Status (1)

Country Link
JP (1) JP2645085B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0869353A2 (en) * 1997-04-03 1998-10-07 Kühn, Hans-R., Dipl.-Ing. Sensor for measuring physical and/or chemical quantities, and method for manufacturing a sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0869353A2 (en) * 1997-04-03 1998-10-07 Kühn, Hans-R., Dipl.-Ing. Sensor for measuring physical and/or chemical quantities, and method for manufacturing a sensor
EP0869353A3 (en) * 1997-04-03 1999-04-07 Kühn, Hans-R., Dipl.-Ing. Sensor for measuring physical and/or chemical quantities, and method for manufacturing a sensor

Also Published As

Publication number Publication date
JP2645085B2 (en) 1997-08-25

Similar Documents

Publication Publication Date Title
US5038322A (en) Method of and device for sub-micron processing a surface
JP2692781B2 (en) Pattern writing method and device
JP2546928B2 (en) Method and apparatus for writing submicron structures on a surface
JP5257394B2 (en) Fine three-dimensional structure
TW200307577A (en) Ultra-fine fluid jet device
KR20070062981A (en) Thermal control of deposition in dip pen nanolithography
JPH0580816B2 (en)
US11047057B2 (en) Method for manufacturing a three-dimensional object and apparatus for conducting said method
Ullmann et al. Nanostructuring of Electrode Surfaces by Tip‐Induced Metal Deposition
JP3016129B2 (en) Fine processing method
JPH024959A (en) Device for depositing metallic material
US20220267919A1 (en) Real time, closed loop feedback jet-based localized electroforming method and system
JP2019519089A (en) Bottom-up method for forming a wiring structure on a substrate
US20080253020A1 (en) Read/Write Tip, Head and Device, and Use Thereof, and Method for Manufacturing Same
JPH06267940A (en) Fine processor
CA2299374A1 (en) Process for applying or removing materials
JP2005059199A (en) Manufacturing method of 3d structure and fine 3d structure
Abdul-Wahed et al. Direct writing of thin and thick metal films via micro glow plasma scanning
JP4869128B2 (en) Coating device
JP6244555B2 (en) Electrostatic coating method and electrostatic coating apparatus
US6670622B2 (en) Electron exposure device and method and electronic characteristics evaluation device using scanning probe
JP2789244B2 (en) Method of forming microprobe
JP2885499B2 (en) Information recording material
JP4478763B2 (en) Manufacturing method of three-dimensional structure and fine three-dimensional structure
JP2002283300A (en) Fine processing method and fine processing device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080502

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090502

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090502

Year of fee payment: 12