JPH024940A - Hard magnetic material and production thereof - Google Patents

Hard magnetic material and production thereof

Info

Publication number
JPH024940A
JPH024940A JP63308974A JP30897488A JPH024940A JP H024940 A JPH024940 A JP H024940A JP 63308974 A JP63308974 A JP 63308974A JP 30897488 A JP30897488 A JP 30897488A JP H024940 A JPH024940 A JP H024940A
Authority
JP
Japan
Prior art keywords
hard magnetic
magnetic material
iron
carbon
neodymium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63308974A
Other languages
Japanese (ja)
Inventor
Kurt Heinz Jurgen Buschow
クルト・ヘインズ・ユールゲン・ブスオー
Mooij Dirk Bastiaan De
デルク・バスティーアン・デ・モーエイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Philips Gloeilampenfabrieken NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from NL8702991A external-priority patent/NL8702991A/en
Application filed by Philips Gloeilampenfabrieken NV filed Critical Philips Gloeilampenfabrieken NV
Publication of JPH024940A publication Critical patent/JPH024940A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/058Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IVa elements, e.g. Gd2Fe14C

Abstract

PURPOSE: To produce a tetragonal hard magnetic material by using Nd and Fe or substituting Co for a part of Fe, and adding a specific amount of Co, melting them, casting the resultant molten metal in a mold, and then annealing the resultant casting at a specified temp.
CONSTITUTION: A molten metal, having a composition which does not deviate from ND2Fe14C as a stoichiometric composition of Nd, Fe, and C as raw materials or from Nd2Fe14-xCoxC (where x<1.02 is satisfied) as a stoichiometric composition in the case where Co is substituted for ≤6 atomic % of Fe, by ≥20% with respect to Nd and C and by ≥15% with respect to Fe and Co, is cast in a mold. The resultant casting is subjected to recrystallization annealing at 850-880°C in the case of the former and at about 850°C in the case of the latter. By this method, the hard magnetic material, having a single- phase and tetragonal structure and also having a lattice constant satisfying A=8.814Å and C=12.015, can be obtained.
COPYRIGHT: (C)1990,JPO

Description

【発明の詳細な説明】 本発明はネオジム、鉄および炭素からなる硬質磁性材料
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hard magnetic material consisting of neodymium, iron and carbon.

このタイプの既知材料としては正方晶系構造を有するN
dzFe+Jがある。この化合物において、BをCで置
換することによって異方性を高めることは知られている
(例えば、rJournal de Physique
Colloque C6」増販No、9(1985年9
月)、ページC6305/308 :題目[炭素ドープ
ドNdzFe+Jの磁気異方性」ボルゾニー、レカビュ
ー、パレティおよびサンチェズ氏による)。この文献の
第306ページには、化合物NdzFeI4Bにおいて
バリウムを炭素で完全に置換した場合に、正方晶系相を
得ることができないことが報告されている。また、この
事についてはrsolid 5tate Commun
icationsJVol、64゜No、5.639〜
644ページ(1987)に記載されている。
Known materials of this type include N, which has a tetragonal structure;
There is dzFe+J. In this compound, it is known to increase the anisotropy by replacing B with C (for example, in rJournal de Physique
Colloque C6” increased sales No. 9 (September 1985
), page C6305/308: Title [Magnetic anisotropy of carbon-doped NdzFe+J] by Bolzony, Recabu, Paletti and Sanchez). On page 306 of this document, it is reported that when carbon is completely substituted for barium in the compound NdzFeI4B, a tetragonal phase cannot be obtained. Also, regarding this matter, see rsolid 5tate Common
cationsJVol, 64°No, 5.639~
It is described on page 644 (1987).

この文献の640ページの題目「三元炭化物の合成およ
び磁性」には、他の材料R−ネオジムにおける正方晶系
構造が再結晶化アニールによっては確認されていないこ
とが報告されている。
On page 640 of this document, entitled "Synthesis and Magnetism of Ternary Carbides", it is reported that the tetragonal structure in other materials R-neodymium has not been confirmed by recrystallization annealing.

本発明の目的は、ホウ素の代りに炭素だけおよび比較的
高い含有量のネオジムからなる高い結晶異方性を有する
硬質磁性材料を提供することである。
The object of the invention is to provide a hard magnetic material with high crystalline anisotropy consisting only of carbon and a relatively high content of neodymium instead of boron.

本発明の硬質磁性材料は正方品系構造を有し、かつ化学
量論的組成NdzFe14Cから逸脱しないかまたはほ
とんど逸脱しない組成を有する再結晶化アニール注型材
料(recrystallization annea
ledcastmaterial)からなることを特徴
とする。この組成において、FeをCOで全組成に対し
て計算して最大で6原子%まで置換するこ七ができる。
The hard magnetic material of the present invention has a tetragonal structure and is a recrystallization annealed casting material having a composition that does not deviate or hardly deviate from the stoichiometric composition NdzFe14C.
It is characterized by being made of ledcast material). In this composition, it is possible to replace Fe with CO up to a maximum of 6 atomic % calculated based on the total composition.

6原子%以上のFeをCoで置換する場合には、アニー
ル処理において得ることのできる正方品系構造を有する
硬質磁性材料の量が有意に減少する。
When replacing 6 atomic % or more of Fe with Co, the amount of hard magnetic material with a tetragonal structure that can be obtained in the annealing process is significantly reduced.

本発明の硬質磁性材料は次のようにして作ることができ
る:出発材料ネオジム、鉄、(必要に応じて)コバルト
および炭素を実質的に化学量論的割合で、好ましくはア
ルゴンのような不活性ガス雰囲気下で融解する。融成物
を型に注入する。材料はNdzFe+w構造を有するが
、硬質磁性でなく、炭素が格子に溶解している。格子中
の炭素は1または2個以上の鉄原子を置換することがで
きる。
The hard magnetic material of the invention can be made as follows: starting materials neodymium, iron, (optionally) cobalt and carbon in substantially stoichiometric proportions, preferably with an impurity such as argon. Melts under active gas atmosphere. Pour the melt into a mold. Although the material has a NdzFe+w structure, it is not hard magnetic and carbon is dissolved in the lattice. Carbon in the lattice can replace one or more iron atoms.

構造は斜方晶系である。必要に応じて、得られた注型体
(Casting)を900℃またはこれより高い温度
で均質にアニールすることができる。材料がネオジム、
鉄および炭素のみからなる場合には、840〜890℃
の範囲の温度でアニールし、このために再結晶化が生ず
る。再結晶化はこの温度の範囲内で生じ、これによって
正方品系Nd2Fe14G相が形成する。驚くべきこと
に、出発材料を秤量する際に、相当するホウ素化合物の
場合に要求されるように、化学量論的組成から明らかに
逸脱することは望ましくないことを確めた。しかしなが
ら、化学量論的組成に関してネオジムおよび/または炭
素の量を20%以下に、および鉄の量を15%で僅かに
逸脱させることは許容できることを確めた。正方晶系相
は指示温度範囲(890℃以上)外では形成しなく、ま
たこの相が形成するとしても、主としてNdzFe+q
構造を有する第2相が正方晶系相(840℃以下)のほ
かに残留する。アニールを指示温度範囲で行う場合には
、正方晶系相が主として形成する。最適な磁性を有する
実質的単一相材料は、アニールを850〜880℃の範
囲の温度、好ましくば870℃で行う場合に得ることが
できる。また、材料がG。
The structure is orthorhombic. If desired, the resulting casting can be homogeneously annealed at a temperature of 900° C. or higher. The material is neodymium,
When consisting only of iron and carbon, 840-890°C
annealing at a temperature in the range of , which causes recrystallization. Recrystallization occurs within this temperature range, thereby forming a tetragonal Nd2Fe14G phase. Surprisingly, it was found that when weighing the starting materials, it was not desirable to deviate significantly from the stoichiometric composition, as required in the case of the corresponding boron compounds. However, it has been determined that slight deviations with respect to the stoichiometry in the amount of neodymium and/or carbon up to 20% and the amount of iron at 15% are acceptable. The tetragonal phase does not form outside the indicated temperature range (above 890°C), and even if this phase does form, it is mainly due to NdzFe+q
A second phase having a structure remains in addition to the tetragonal phase (840° C. or lower). When annealing is carried out in the indicated temperature range, the tetragonal phase is predominantly formed. Substantially single-phase materials with optimal magnetic properties can be obtained if the annealing is carried out at a temperature in the range of 850-880<0>C, preferably 870<0>C. Also, the material is G.

を含む場合には、再結晶化を生ずるアニール プロセス
は約850℃の温度で行うのが好ましい。コバルトは、
硬質磁性材料のキューリー温度を著しく高くするから、
ある用途には望ましいことを確めた。本発明によるCo
含有硬質磁性材料の製造において、個々の元素を秤量す
る際に、化学量論的組成からの僅かな逸脱は必要としな
いが、しかし僅か程度の逸脱は許容することができる。
, the annealing process that causes recrystallization is preferably carried out at a temperature of about 850°C. Cobalt is
Because it significantly increases the Curie temperature of hard magnetic materials,
It has been confirmed that it is desirable for certain uses. Co according to the present invention
When weighing the individual elements in the production of the hard magnetic material containing it, small deviations from the stoichiometric composition are not required, but small deviations can be tolerated.

ネオジムおよび/または炭素の量における20%の逸脱
および鉄および/またはコバルトの量における15%の
逸脱は許容される。また、本発明を実施する実験をネオ
ジムの代りにプラセオジムを用いて行った所、正方品系
構造を有する実質的単一相材籾を得ることかできないこ
とを確めた。
A deviation of 20% in the amount of neodymium and/or carbon and a deviation of 15% in the amount of iron and/or cobalt is allowed. Furthermore, when experiments were carried out to implement the present invention using praseodymium instead of neodymium, it was confirmed that it was only possible to obtain substantially single-phase rice having a tetragonal structure.

次に、本発明を実施例に基づいて説明する。Next, the present invention will be explained based on examples.

実11」1 上述するように、全組成Nd2Fe、4Cを有する注型
体を作った。注型後、材料はNd2Pe+v構造(斜方
晶系)を有していた。前均質化アニールをしないで、得
られた注型体を870℃で500時間にわたって直接に
再結晶化アニールを行った。材料は単一相であり、正方
晶系構造を有していた。次いで、格子定数を測定した。
Example 11''1 As described above, a cast body having the total composition of Nd2Fe and 4C was made. After casting, the material had a Nd2Pe+v structure (orthorhombic). The obtained cast body was directly subjected to recrystallization annealing at 870° C. for 500 hours without pre-homogenization annealing. The material was single phase and had a tetragonal structure. Then, the lattice constant was measured.

A=8.814人およびC=12.015人であること
を確めた。本発明の材料は535にのキューリー温度を
有していた。20“Cでの飽和磁化はC= 1301E
MU/gであった。正方品系構造を有する単一相材料は
、全組成Nd+z、 +Pee+、 8cbおよびNd
++、aFe[l+、 IC7,1を有する材料を用い
、同様にして得た。
It was confirmed that A=8.814 people and C=12.015 people. The material of the invention had a Curie temperature of 535. The saturation magnetization at 20"C is C = 1301E
It was MU/g. A single phase material with a tetragonal structure has a total composition of Nd+z, +Pee+, 8cb and Nd
++, aFe[l+, IC7,1 was used and obtained in the same manner.

磁石は、材料を所望の形状に直接注型して作った。注型
および再結晶化アニール後、材料を粉砕し、次いで磁界
において所望の形状に焼結し、または合成樹脂と混合し
、所望形状に加圧した。
The magnets were made by directly casting the material into the desired shape. After casting and recrystallization annealing, the material was ground and then sintered in a magnetic field to the desired shape or mixed with synthetic resin and pressed into the desired shape.

この材料において、鉄の1部を他の3d金属および/ま
たはアルミニウム、ガリウム、シリコンなどで置換する
ことができる。ネオジムの1部を1または2種以上の希
土類金属で置換することができる。
In this material, part of the iron can be replaced by other 3D metals and/or aluminum, gallium, silicon, etc. A portion of the neodymium can be replaced with one or more rare earth metals.

実謝l朋り 組成が式NdzFe+ 3CoCに相当する注型体を作
った。
A cast body having a composition corresponding to the formula NdzFe+3CoC was prepared.

次いで、この注型体を、予め均質化アニールすることな
く850℃で150時間にわたって再結晶化アニール 
プロセスを直接に行った。かようにして得られた材料は
実質的に単一相であり、正方品系構造を有していた。材
料は620 Kのキューリー温度を有していた。
Next, this cast body was subjected to recrystallization annealing at 850° C. for 150 hours without homogenization annealing in advance.
I went through the process directly. The material thus obtained was substantially single-phase and had a tetragonal structure. The material had a Curie temperature of 620 K.

特許出願人  エヌ・ベー・フィリップス・フルーイラ
ンペンファブリケン 代理人弁理士  杉  村  暁  査問
Patent applicant N.B.Philips Fluiranpenfabriken Patent attorney Akira Sugimura Interviewer

Claims (9)

【特許請求の範囲】[Claims] 1.正方晶系構造を有し、かつ化学量論的組成Nd_2
Fe_1_4Cから逸脱しないか、またはほとんど逸脱
しない組成を有する再結晶化アニール注型材料からなる
ことを特徴とする希土類金属、鉄および炭素からなる硬
質磁性材料。
1. Has a tetragonal structure and has a stoichiometric composition Nd_2
Hard magnetic material consisting of rare earth metals, iron and carbon, characterized in that it consists of a recrystallized annealed casting material with a composition that does not deviate or hardly deviates from Fe_1_4C.
2.全組成物に対して計算して、硬質磁性材料に存在す
るFeの最大で6原子%をCoで置換した請求項1記載
の硬質磁性材料。
2. 2. A hard magnetic material according to claim 1, wherein at most 6 at.% of the Fe present in the hard magnetic material is replaced by Co, calculated on the total composition.
3.ネオジムおよび炭素に対して、化学量論的組成から
の組成逸脱を20%を超えないようにし、および鉄に対
しての逸脱を15%を超えないようにした請求項1記載
の硬質磁性材料。
3. 2. A hard magnetic material according to claim 1, having a compositional deviation of not more than 20% from the stoichiometric composition for neodymium and carbon and not more than 15% for iron.
4.NdおよびCに対して、化学量論的組成からの組成
逸脱を20%を超えないようにし、および鉄およびコバ
ルトに対して、逸脱を15%を超えないようにした請求
項3記載の硬質磁性材料。
4. Hard magnetic material according to claim 3, characterized in that for Nd and C the compositional deviation from the stoichiometric composition does not exceed 20% and for iron and cobalt the deviation does not exceed 15%. material.
5.格子定数をA=8.814ÅおよびC=12.01
5Åにした請求項3記載の硬質磁性材料。
5. The lattice constants are A=8.814 Å and C=12.01
The hard magnetic material according to claim 3, having a thickness of 5 Å.
6.出発材料ネオジム、鉄および炭素を共に、化学量論
的割合Nd_2Fe_1_4Cから僅かに逸脱する量で
融解し、型に注入し、しかる後に注型体を840〜89
0℃の範囲の温度で再結晶化アニールすることを特徴と
するネオジム、鉄および炭素からなる硬質磁性材料の製
造方法。
6. The starting materials neodymium, iron and carbon are melted together in amounts slightly deviating from the stoichiometric proportion Nd_2Fe_1_4C and poured into a mold, after which the cast body is 840-89
A method for producing a hard magnetic material consisting of neodymium, iron and carbon, characterized by recrystallization annealing at a temperature in the range of 0°C.
7.材料を850〜880℃の範囲の温度でアニールす
る請求項6記載の方法。
7. 7. The method of claim 6, wherein the material is annealed at a temperature in the range of 850-880<0>C.
8.出発材料ネオジム、鉄、コバルトおよび炭素を共に
、化学量論的割合Nd_2Fe_1_4_−_xCo_
xC(ここにx<1.02)から僅かに逸脱する量で融
解し、型に注入し、しかる後に注型体を約850℃の範
囲の温度で再結晶化アニールすることを特徴とするネオ
ジム、鉄、コバルトおよび炭素からなる硬質磁性材料の
製造方法。
8. Starting materials neodymium, iron, cobalt and carbon together in stoichiometric proportions Nd_2Fe_1_4_−_xCo_
Neodymium, characterized in that it is melted in an amount slightly deviating from xC (where x<1.02), poured into a mold, and the cast body is then recrystallized annealed at a temperature in the range of about 850°C. , a method for producing a hard magnetic material consisting of iron, cobalt and carbon.
9.請求項1〜5のいずれか一つの項に記載する硬質磁
性材料および/または請求項6〜8のいずれか一つの項
に記載する方法で得た磁性注型体からなる磁性注型体。
9. A magnetic cast body made of a hard magnetic material according to any one of claims 1 to 5 and/or a magnetic cast body obtained by the method according to any one of claims 6 to 8.
JP63308974A 1987-12-11 1988-12-08 Hard magnetic material and production thereof Pending JPH024940A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
NL8702991 1987-12-11
NL8702991A NL8702991A (en) 1987-12-11 1987-12-11 Boron-free hard magnetic material comprising a tetragonal phase - by annealing castings of an alloy contg. neodymium, iron and carbon and having a specific stoichiometric compsns.
NL8800740 1988-03-24
NL8800740A NL8800740A (en) 1987-12-11 1988-03-24 HARD-MAGNETIC MATERIAL FROM A RARE NATURAL METAL, IRON AND CARBON.

Publications (1)

Publication Number Publication Date
JPH024940A true JPH024940A (en) 1990-01-09

Family

ID=26646321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63308974A Pending JPH024940A (en) 1987-12-11 1988-12-08 Hard magnetic material and production thereof

Country Status (5)

Country Link
EP (1) EP0320064A1 (en)
JP (1) JPH024940A (en)
KR (1) KR890010944A (en)
CN (1) CN1033494A (en)
NL (1) NL8800740A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8901168A (en) * 1989-05-10 1990-12-03 Philips Nv HARD-MAGNETIC MATERIAL AND MAGNET MADE FROM THIS HARD-MAGNETIC MATERIAL.
DE3928389A1 (en) * 1989-08-28 1991-03-14 Schramberg Magnetfab PERMANENT MAGNET
US5300156A (en) * 1990-07-24 1994-04-05 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Bonded rare earth magnet and a process for manufacturing the same
CA2047592C (en) * 1990-07-24 1996-10-15 Fumihito Mohri Bonded rare earth magnet and a process for manufacturing the same
US5240627A (en) * 1990-07-24 1993-08-31 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Bonded rare earth magnet and a process for manufacturing the same
US5478411A (en) * 1990-12-21 1995-12-26 Provost, Fellows And Scholars Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth Near Dublin Magnetic materials and processes for their production
DE4242839A1 (en) * 1992-12-17 1994-06-23 Siemens Ag Mfr. of magnetic anisotropic power of rare earth based compound
DE4243048A1 (en) * 1992-12-18 1994-06-23 Siemens Ag Manufacturing hard magnetic materials using Sm Fe C system
CN105603296A (en) * 2015-12-23 2016-05-25 桂林电子科技大学 Rare earth Fe-based electromagnetic shielding material and preparation method thereof

Also Published As

Publication number Publication date
KR890010944A (en) 1989-08-11
EP0320064A1 (en) 1989-06-14
NL8800740A (en) 1989-07-03
CN1033494A (en) 1989-06-21

Similar Documents

Publication Publication Date Title
JPH0521218A (en) Production of rare-earth permanent magnet
US3947295A (en) Hard magnetic material
JPWO2002103719A1 (en) Rare earth permanent magnet material
EP0506412B1 (en) Magnetic material
JPH024940A (en) Hard magnetic material and production thereof
JP2006183151A (en) Method for producing magnetic material powder and method for producing bond magnet
JPH01219143A (en) Sintered permanent magnet material and its production
WO2003003386A1 (en) R-t-b-c based rare earth magnetic powder and bonded magnet
JP2948223B2 (en) High performance permanent magnet with excellent corrosion resistance and method of manufacturing the same
JP2002531701A (en) High performance rare earth transition metal magnetostrictive materials with increased impurities
JPH06235051A (en) Magnetic material
JP3135665B2 (en) Magnetic materials and bonded magnets
GB2095699A (en) Magnetic metallic glass alloy
JP3151087B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet and alloy powder for adjusting raw material powder
JP3312908B2 (en) Iron-rare earth-nitrogen permanent magnet material
JPH11340020A (en) Magnet material, its manufacture, and bonded magnet using the same
JPS6052556A (en) Permanent magnet and its production
JPH05267027A (en) Manufacture of raw material powder for r-fe-b group permanent magnet and alloy powder for adjusting raw material powder
JPS6052555A (en) Permanent magnet material and its production
JPH0526858B2 (en)
JP2643329B2 (en) Rare earth-cobalt sintered magnet with excellent magnetic properties and mechanical strength
JPH05500134A (en) permanent magnet
JPH06204016A (en) Manufacture of rare earth intermetallic compound magnetic material composed of rare earth compound
JPH07226310A (en) Magnetic material
JP3009804B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet