JPH024937A - Zr alloy for reactor fuel assembled body - Google Patents

Zr alloy for reactor fuel assembled body

Info

Publication number
JPH024937A
JPH024937A JP1010448A JP1044889A JPH024937A JP H024937 A JPH024937 A JP H024937A JP 1010448 A JP1010448 A JP 1010448A JP 1044889 A JP1044889 A JP 1044889A JP H024937 A JPH024937 A JP H024937A
Authority
JP
Japan
Prior art keywords
alloy
reactor fuel
strength
corrosion resistance
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1010448A
Other languages
Japanese (ja)
Other versions
JP2687538B2 (en
Inventor
Yutaka Matsuo
裕 松尾
Takeshi Isobe
毅 磯部
Kazuyoshi Adachi
足立 数義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to FR898900713A priority Critical patent/FR2626291B1/en
Publication of JPH024937A publication Critical patent/JPH024937A/en
Priority to US07/558,797 priority patent/US5017336A/en
Application granted granted Critical
Publication of JP2687538B2 publication Critical patent/JP2687538B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain the title Zr alloy having excellent corrosion resistance, strength and relaxation resistance by incorporating specific amounts of V, Mo, etc., as well as Nb, Ta, etc., into a Zr alloy contg. small amounts of Sn, Fe and Cr. CONSTITUTION:As the starting material for a reactor fuel assembled body such as a reactor fuel cladding tube and its supporting grid, a Zr alloy having the compsn. contg., by weight, 0.2 to 1.7% Sn, 0.18 to 0.6% Fe, 0.07 to 0.4% Cr and one or two kinds of 0.05 to 1% Nb and 0.01 to 0.2% Ta, furthermore contg. one or two kinds of 0.05 to 1% V and 0.05 to 1% Mo and the balance Zr is used. The Zr alloy having more excellent strength, corrosion resistance and relaxation resistance (creep characteristics) than those of a zircaloy-4 which has been conventionally used can be obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、特に高温高圧水や高温高圧水蒸気にさらさ
れる原子炉燃料被覆管や上記原子炉燃料被覆管を多数本
一定間隔をおいて支持する支持格子(以下、原子炉燃料
被覆管および上記原子炉燃料被覆管を支持する支持格子
を総称して原子炉燃料集合体という)に用いた場合に、
すぐれた耐食性、強度および耐緩和性を示すZr合金に
関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention particularly relates to reactor fuel cladding tubes that are exposed to high-temperature, high-pressure water or high-temperature, high-pressure steam, and to support a large number of the above-mentioned nuclear fuel cladding tubes at regular intervals. When used in a support grid (hereinafter, a reactor fuel cladding tube and a support grid that supports the above-mentioned reactor fuel cladding tube are collectively referred to as a reactor fuel assembly),
This invention relates to a Zr alloy that exhibits excellent corrosion resistance, strength, and relaxation resistance.

〔従来の技術〕[Conventional technology]

従来、一般に、原子力発電プラントの原子炉に加圧水型
(PWR)のものがあり、この原子炉の原子炉燃料集合
体の製造にはZr合金が用いられ、このZr合金の代表
的なものとして、重量%で(以F%は重量%を示す)、 Sn : 1.2−1.7%。
Conventionally, there are pressurized water type (PWR) reactors in nuclear power plants, and Zr alloys are used to manufacture reactor fuel assemblies for these reactors, and typical examples of these Zr alloys include: In weight% (hereinafter F% indicates weight%), Sn: 1.2-1.7%.

Fe : 0.18〜0.24%。Fe: 0.18-0.24%.

Cr : 0.07”0.l1%。Cr: 0.07" 0.1%.

を含有し、残りがZrと不可避不純物からなる組成を有
するジルカロイ−4が使用されていることは良く知られ
るところである。
It is well known that Zircaloy-4 is used, which has a composition of Zr and unavoidable impurities.

つ 〔発明が解決しようとする課題〕 一方、近年、原子力発電プラントの経済性向上のための
燃料の高燃焼度化に伴って、原子炉燃料集合体の炉内滞
在時間が長期化する傾向にあるが、上記従来のZr合金
で作られた原子炉燃料集合体では、耐食性、強度および
耐緩和性(クリープ特性)が十分てないことに原因して
、これに対応することかできないのが現状であった。
[Problem to be solved by the invention] On the other hand, in recent years, as fuel burn-up has been increased to improve the economic efficiency of nuclear power plants, there has been a tendency for nuclear reactor fuel assemblies to stay in the reactor for a longer time. However, the current state of the art is that nuclear reactor fuel assemblies made from the conventional Zr alloys described above do not have sufficient corrosion resistance, strength, and relaxation resistance (creep properties), and are unable to cope with this problem. Met.

〔課題を解決するための手段〕[Means to solve the problem]

そこで、本発明者等は、上述のような観点から、原子燃
料集合体として用いた場合に、−層すくれた耐食性、強
度および耐緩和性(クリープ特性)を示すZr合金を開
発すべく研究を行なった結果、 上記従来のZ「合金において、Sn含有量を相対的に低
くした状態で、NbおよびTaを含有させると、−段と
耐食性が向上するようになり、さらにVおよびMoを含
有させると、強度および耐緩和性(クリープ特性)の改
善がみられるようになり、原子炉燃料集合体として用い
た場合に長期に亘る使用が可能になるという知見を得た
のである。
Therefore, from the above-mentioned viewpoint, the present inventors conducted research to develop a Zr alloy that exhibits excellent corrosion resistance, strength, and relaxation resistance (creep properties) when used as a nuclear fuel assembly. As a result, we found that when Nb and Ta were added to the conventional Z alloy with a relatively low Sn content, the corrosion resistance was significantly improved, and when V and Mo were added, By doing so, they found that the strength and relaxation resistance (creep properties) were improved, and that when used as a nuclear reactor fuel assembly, it could be used for a long period of time.

したがって、この発明は、上記知見にもとづいてなされ
たものであって、 Sn  : 0.2〜1.7 %、   Fe  : 
0.18−0.B %。
Therefore, this invention was made based on the above findings, and includes Sn: 0.2 to 1.7%, Fe:
0.18-0. B%.

Cr  : 0.0’7”0.4 %。Cr: 0.0’7”0.4%.

を含有し、 Nb:0.05〜1%、    Ta : 0.01〜
0.2%。
Nb: 0.05~1%, Ta: 0.01~
0.2%.

のうちの1種または、2種を含有し、さらに、V:0.
05〜1%、   Mo : 0.05〜1%。
Contains one or two of the following, and further contains V: 0.
05-1%, Mo: 0.05-1%.

のうちの1種または2種を含有し、残りがZrと不可避
不純物からなる組成を有する耐食性、強度および耐緩和
性(クリープ特性)のすぐれた原子炉燃料集合体用Zr
合金に特徴を有するものである。
Zr for nuclear reactor fuel assemblies with excellent corrosion resistance, strength and relaxation resistance (creep properties), containing one or two of the following, with the remainder consisting of Zr and unavoidable impurities.
The alloy has characteristics.

つぎに、この発明のZr合金において、成分組成範囲を
上記の通りに限定した理由を説明する。
Next, the reason why the composition range of the Zr alloy of the present invention is limited as described above will be explained.

(a)  5n Sn成分には、合金の強度を向上させる作用があるが、
その含有量が0.2%未満では所定の強度および耐緩和
性(クリープ特性)を確保することかできず、一方その
含有量が1.7%を越えると、耐食性の著しい低下をき
たすようになることから、その含有量を0.2〜1.7
%と定めた。
(a) The 5n Sn component has the effect of improving the strength of the alloy, but
If the content is less than 0.2%, it will not be possible to secure the desired strength and relaxation resistance (creep properties), while if the content exceeds 1.7%, the corrosion resistance will be significantly reduced. Therefore, the content should be 0.2 to 1.7
%.

(b)’FcおよびCr これらの成分には、共存した状態で合金の耐食性と強度
を向上させる作用があるが、その含有量がそれぞれF 
c:0.18%未満およびCr:O,O’7%未満では
前記作用に所望の効果が得られず、一方その含有量がF
 e:0.6%およθCr:0.4%を越えると、耐食
性が著しく低下するようになることから、その含有量を
それぞれF e:o、18〜0.8%、Cr:0.07
〜0.4%と定めた。
(b)'Fc and Cr These components have the effect of improving the corrosion resistance and strength of the alloy when they coexist, but their content is Fc and Cr.
c: less than 0.18% and Cr:O,O'7%, the desired effect cannot be obtained;
If e: 0.6% and θCr: 0.4% are exceeded, the corrosion resistance will be significantly reduced, so the contents should be adjusted to Fe: o, 18 to 0.8%, Cr: 0. 07
It was set at ~0.4%.

(c)NbおよびTa これらの成分には、合金の耐食性を一段と向上させる作
用があるが、その含有量がそれぞれNb:005%未満
およびTa:0.01%未満では所望の耐食性向上効果
か得られず、一方Nbの含有量が1%を越えると耐食性
が低下するようになり、またTa含有量が0.2%を越
えても耐食性向上があまりなく、中性子吸収が増大する
ことから、それらの含有量をそれぞれNb:0.05〜
1%、 Ta:0.01〜0.2%と定めた。
(c) Nb and Ta These components have the effect of further improving the corrosion resistance of the alloy, but if their content is less than 0.05% Nb and less than 0.01% Ta, the desired corrosion resistance improvement effect cannot be obtained. On the other hand, when the Nb content exceeds 1%, the corrosion resistance decreases, and even when the Ta content exceeds 0.2%, there is little improvement in corrosion resistance and neutron absorption increases. The content of Nb: 0.05~
1%, and Ta: 0.01 to 0.2%.

(d)  VおよびMO これらの成分には、合金の強度および耐緩和性(クリー
プ特性)を向上させる作用があるが、その含有量がそれ
ぞれV : 0.05%未満およびMO:0.05%未
満では所望の強度および耐緩和性(クリープ特性)向上
効果が得られず、一方その含有量がそれぞれv:1%お
よびMo:1%を越えると耐食性が低下するようになる
ことから、その含有量をV:0.05−1%、 Mo:
0.05〜1%と定めた。
(d) V and MO These components have the effect of improving the strength and relaxation resistance (creep properties) of the alloy, but their contents are V: less than 0.05% and MO: 0.05%, respectively. If the content is less than 1%, the desired effect of improving strength and relaxation resistance (creep properties) cannot be obtained, while if the content exceeds v: 1% and Mo: 1%, corrosion resistance will decrease. The amount is V: 0.05-1%, Mo:
It was set at 0.05-1%.

〔実 施 例〕〔Example〕

つぎに、この発明のZr合金を実施例により具体的に説
明する。
Next, the Zr alloy of the present invention will be specifically explained using examples.

溶解原料として、99.8%以上の各種の純度を有する
Zrスポンジ、いずれも99.9%以上の純度を有する
Sn粉末、Fe粉末、Cr粉末、Nb粉末、Ta粉末、
■粉末、およびMo粉末を用意し、これら原料を所定の
配合組成に配合し、混合した後、アーク炉にて溶解して
ボタン材とし、ついてこのホタン材に、温度: 101
0℃に15分間保持した後、熱間鍛造を施し、再び10
10℃に加熱後、水焼入れを行ない、さらに機械加工に
より酸化スケールを除去した後、温度=600℃、圧延
率=50%の条件で熱間圧延を行ない、引続いて酸洗し
て酸化スケールを除去した後、50%の圧延率で冷間圧
延を行ない、ついで温度:550〜750℃に2時間保
持の条件で再結晶焼鈍を行ない、再び50%の圧延率て
冷間圧延を行なうことによって、それぞれ第1表に示さ
れる組成を有し、かつ厚さがいずれも0.5mmの本発
明Zr合金板材1〜20、比較Zr合金板材1〜15お
よび従来Zr合金(ジルカロイ−4)板材をそれぞれ製
造した。
As melting raw materials, Zr sponge with various purity of 99.8% or more, Sn powder, Fe powder, Cr powder, Nb powder, Ta powder, all of which have purity of 99.9% or more,
■Prepare powder and Mo powder, blend these raw materials into a predetermined composition, mix, melt in an arc furnace to make a button material, and then add to this hotane material at a temperature of 101
After being held at 0°C for 15 minutes, hot forging was performed and the temperature was heated again at 10°C.
After heating to 10°C, water quenching was performed, and oxidized scale was removed by mechanical processing, followed by hot rolling at a temperature of 600°C and a rolling ratio of 50%, followed by pickling to remove oxidized scale. After removing, cold rolling is performed at a rolling ratio of 50%, followed by recrystallization annealing at a temperature of 550 to 750°C for 2 hours, and cold rolling is performed again at a rolling ratio of 50%. Zr alloy plates 1 to 20 of the present invention, comparative Zr alloy plates 1 to 15, and conventional Zr alloy (Zircaloy-4) plates each having the composition shown in Table 1 and having a thickness of 0.5 mm. were manufactured respectively.

なお、比較Zr合金板材1〜15は、いずれも構成成分
のうちのいずれかの成分含有量(第1表に※印を付す)
かこの発明の範囲から外れた組成をもつものである。
In addition, comparative Zr alloy sheets 1 to 15 all have the content of one of the constituent components (marked with * in Table 1).
However, it has a composition outside the scope of this invention.

ついで、この結果得られた各種の板材から、20+nm
X25mmの=J’法を有し、かつ長手方向片側から5
mmのところに直径:3mmの小孔を有する試験片を切
り出し、通常の静置式オートクレーブ装置を用い、温度
:400℃、圧カニ105kg/cシの高温高圧水蒸気
中の原子炉燃料集合体がさらされる条件で炉外腐食試験
を行ない、120日経過後の腐食増量を測定した。
Next, from the various plate materials obtained as a result, 20+nm
X25mm = J' method, and 5 from one side in the longitudinal direction
A test piece with a small hole of 3 mm in diameter was cut out, and the reactor fuel assembly was exposed to high-temperature, high-pressure steam at a temperature of 400°C and a pressure of 105 kg/c using a normal stationary autoclave. An outside-furnace corrosion test was conducted under the following conditions, and the increase in corrosion weight after 120 days was measured.

また、上記の各種の板材から、平行部長さ=32mm、
平行部幅: 6.25±0.05關、長さ:100++
+mの寸法をもった試験片を切り出し、インストロン型
引張試験装置を用いて、常温引張強さを測定した。
Also, from the above various plate materials, the parallel length = 32 mm,
Parallel width: 6.25±0.05, length: 100++
A test piece having a dimension of +m was cut out, and its room temperature tensile strength was measured using an Instron type tensile testing device.

さらに、上記各種の板材から、幅:5±0.01mm、
長さ=100±0.2mmの寸法をもった試験片を、上
記幅が圧延方法に平行にかつ上記長さが圧延方向に垂直
になるように切り出し、上記切り出した試験片に曲げの
初期応力σ。: 24.[fkg/−を付与しながら温
度=400℃、240時間保持の応力緩和試験したのち
、再び試験片の曲げ応力σを測定し、応力緩和試験後の
曲げ応カニσに対する初期曲げ応カニσ0の比; =非応力緩和比 σ0 をもって耐緩和性を評価した。この非応力緩和比が1.
0に近いほど耐緩和性がすぐれていることになり、原子
炉燃料集合体の材料としてすぐれていることを示す。
Furthermore, from the above various plate materials, width: 5 ± 0.01 mm,
A test piece with length = 100 ± 0.2 mm was cut out so that the above width was parallel to the rolling method and the above length was perpendicular to the rolling direction, and the cut out test piece was given an initial bending stress. σ. : 24. After conducting a stress relaxation test at a temperature of 400°C and holding for 240 hours while applying fkg/-, the bending stress σ of the test piece was measured again, and the initial bending stress σ0 was compared to the bending stress σ after the stress relaxation test. The relaxation resistance was evaluated using the ratio: = non-stress relaxation ratio σ0. This non-stress relaxation ratio is 1.
The closer it is to 0, the better the relaxation resistance is, indicating that it is an excellent material for nuclear reactor fuel assemblies.

上記腐食増量、常温引張強さおよび非応力緩和比の測定
結果を第1表に示した。
Table 1 shows the measurement results of the corrosion weight gain, room temperature tensile strength, and non-stress relaxation ratio.

〔発明の効果〕〔Effect of the invention〕

第1表に示される結果から、本発明Zr合金板tiA’
 1〜20は、いずれも従来Zr合金(ジルカロイ−4
)板材よりもすぐれた耐食性、強度および耐緩和性を示
し、さらに、比較Zr合金板材1〜15にみられるよう
に、構成成分のうちのいずれかの成分含有足でもこの発
明の範囲から外れると、耐食性、強度および耐緩和性の
うちの少なくともいずれかが低下するようになることが
明らかである。
From the results shown in Table 1, it can be seen that the present invention Zr alloy plate tiA'
Nos. 1 to 20 are all conventional Zr alloys (Zircaloy-4
) exhibits better corrosion resistance, strength and relaxation resistance than sheet materials, and furthermore, as seen in Comparative Zr alloy sheet materials 1 to 15, even the presence of any of the constituent components is outside the scope of the present invention. It is clear that at least one of corrosion resistance, strength, and relaxation resistance is reduced.

上述のように、この発明のZr合金は、原子炉燃料集合
体がさらされる条件下ですぐれた耐食性、強度および耐
緩和性を示すので、これを実用に供した場合には著しく
長期に亘っての使用が可能となるなど工業上有用な特性
を有するものである。
As mentioned above, the Zr alloy of the present invention exhibits excellent corrosion resistance, strength, and relaxation resistance under the conditions to which nuclear reactor fuel assemblies are exposed, so that when it is put into practical use, it will last for an extremely long period of time. It has industrially useful properties such as being able to be used for.

Claims (1)

【特許請求の範囲】[Claims] (1)Sn:0.2〜1.7%、Fe:0.18〜0.
6%、Cr:0.07〜0.4%、 を含有し、 Nb:0.05〜1%、Ta:0.01〜0.2%、の
うちの1種または2種を含有し、さらに、V:0.05
〜1%、Mo:0.05〜1%、のうちの1種または2
種を含有し、残りがZrと不可避不純物からなる組成(
以上重量%)を有することを特徴とする原子炉燃料集合
体用Zr合金。
(1) Sn: 0.2-1.7%, Fe: 0.18-0.
6%, Cr: 0.07-0.4%, Contains one or two of Nb: 0.05-1%, Ta: 0.01-0.2%, Furthermore, V: 0.05
~1%, Mo: 0.05~1%, one or two of them
A composition containing seeds and the remainder consisting of Zr and unavoidable impurities (
% by weight) for use in nuclear reactor fuel assemblies.
JP1010448A 1988-01-22 1989-01-19 Zr alloy for nuclear reactor fuel assemblies Expired - Lifetime JP2687538B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
FR898900713A FR2626291B1 (en) 1988-01-22 1989-01-20 ZIRCONIUM-BASED ALLOY FOR USE AS A FUEL ASSEMBLY IN A NUCLEAR REACTOR
US07/558,797 US5017336A (en) 1988-01-22 1990-07-26 Zironium alloy for use in pressurized nuclear reactor fuel components

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1232488 1988-01-22
JP63-12324 1988-01-22

Publications (2)

Publication Number Publication Date
JPH024937A true JPH024937A (en) 1990-01-09
JP2687538B2 JP2687538B2 (en) 1997-12-08

Family

ID=11802133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1010448A Expired - Lifetime JP2687538B2 (en) 1988-01-22 1989-01-19 Zr alloy for nuclear reactor fuel assemblies

Country Status (1)

Country Link
JP (1) JP2687538B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100261666B1 (en) * 1998-02-04 2000-07-15 장인순 Composition of zirconium alloy having low corrosion rate and high strength
JP2006028553A (en) * 2004-07-13 2006-02-02 Toshiba Corp Zirconium alloy and channel box utilizing the same
JP2010145326A (en) * 2008-12-22 2010-07-01 Global Nuclear Fuel-Japan Co Ltd Zirconium base alloy, fuel assembly for water-cooled nuclear power reactor using the same, and channel box
WO2010147814A2 (en) 2009-06-15 2010-12-23 The Dial Corporation Combinations of herb extracts having synergistic antioxidant effect, and methods relating thereto
CN105543560A (en) * 2016-01-06 2016-05-04 中国核动力研究设计院 Zirconium alloy for nuclear reactor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61170552A (en) * 1985-01-22 1986-08-01 ウエスチングハウス エレクトリック コ−ポレ−ション Production of article comprising zirconium-niobium alloy containing tin and third alloy element
JPS61174347A (en) * 1985-01-30 1986-08-06 Hitachi Ltd Nodular corrosion resisting zirconium-base alloy
JPS6233734A (en) * 1985-08-05 1987-02-13 Hitachi Ltd Zirconium alloy having high corrosion resistance
JPH01149932A (en) * 1987-10-28 1989-06-13 Westinghouse Electric Corp <We> Production of zirconium alloy for liner of fuel element
JPH01301830A (en) * 1988-05-30 1989-12-06 Sumitomo Metal Ind Ltd High corrosion-resistant zirconium alloy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61170552A (en) * 1985-01-22 1986-08-01 ウエスチングハウス エレクトリック コ−ポレ−ション Production of article comprising zirconium-niobium alloy containing tin and third alloy element
JPS61174347A (en) * 1985-01-30 1986-08-06 Hitachi Ltd Nodular corrosion resisting zirconium-base alloy
JPS6233734A (en) * 1985-08-05 1987-02-13 Hitachi Ltd Zirconium alloy having high corrosion resistance
JPH01149932A (en) * 1987-10-28 1989-06-13 Westinghouse Electric Corp <We> Production of zirconium alloy for liner of fuel element
JPH01301830A (en) * 1988-05-30 1989-12-06 Sumitomo Metal Ind Ltd High corrosion-resistant zirconium alloy

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100261666B1 (en) * 1998-02-04 2000-07-15 장인순 Composition of zirconium alloy having low corrosion rate and high strength
JP2006028553A (en) * 2004-07-13 2006-02-02 Toshiba Corp Zirconium alloy and channel box utilizing the same
JP2010145326A (en) * 2008-12-22 2010-07-01 Global Nuclear Fuel-Japan Co Ltd Zirconium base alloy, fuel assembly for water-cooled nuclear power reactor using the same, and channel box
WO2010147814A2 (en) 2009-06-15 2010-12-23 The Dial Corporation Combinations of herb extracts having synergistic antioxidant effect, and methods relating thereto
CN105543560A (en) * 2016-01-06 2016-05-04 中国核动力研究设计院 Zirconium alloy for nuclear reactor

Also Published As

Publication number Publication date
JP2687538B2 (en) 1997-12-08

Similar Documents

Publication Publication Date Title
US5832050A (en) Zirconium-based alloy, manufacturing process, and use in a nuclear reactor
US20100128834A1 (en) Zirconium alloys with improved corrosion resistance and method for fabricating zirconium alloys with improved corrosion resistance
KR101604105B1 (en) Zirconium alloy having excellent corrosion resistance and creep resistance and method of manufacturing for it
EP3284837B1 (en) Superbly anti-corrosive zirconium alloy for nuclear fuel cladding and method for producing the zirconium alloy
WO2022213545A1 (en) Zirconium alloy and preparation method therefor, cladding tube, and fuel assembly
US3567522A (en) Method of producing zirconium base alloys
US5972288A (en) Composition of zirconium alloy having high corrosion resistance and high strength
JPS6325062B2 (en)
JP2687538B2 (en) Zr alloy for nuclear reactor fuel assemblies
JPH01119650A (en) Manufacture of channel box for nuclear reactor fuel assembly
US10221475B2 (en) Zirconium alloys with improved corrosion/creep resistance
JPS6335750A (en) Zr alloy for nuclear reactor fuel clad pipe excellent in corrosion resistance
US2924518A (en) Zirconium alloys
JPH01188643A (en) Zr alloy for covering tube of atomic reactor fuel having excellent corrosion resistance
WO2022213543A1 (en) Zirconium alloy and manufacturing method therefor, cladding tube, and fuel assembly
US5122334A (en) Zirconium-gallium alloy and structural components made thereof for use in nuclear reactors
US3431104A (en) Zirconium base alloy
JP3336561B2 (en) High corrosion resistant zirconium alloy
JPS6335749A (en) Zr alloy for nuclear reactor fuel clad pipe excellent in corrosion resistance
JPS62182258A (en) Manufacture of high-ductility and highly corrosion-resistant zirconium-base alloy member and the member
JPS6335751A (en) Zr alloy for nuclear reactor fuel clad pipe excellent in corrosion resistance
JPH04224648A (en) High corrosion resistant and high strength zirconium alloy
CA1079093A (en) Zirconium-base alloy nuclear fuel container and method
JPS63140057A (en) Ni-base alloy excellent in stress corrosion cracking resistance and its production
Curtis et al. Effect of Thermomechanical Processing and Heat Treatment on the Properties of Zr-3Nb-1Sn Strip and Tubing