JPH0249211A - Production of thin film magnetic head - Google Patents

Production of thin film magnetic head

Info

Publication number
JPH0249211A
JPH0249211A JP19788188A JP19788188A JPH0249211A JP H0249211 A JPH0249211 A JP H0249211A JP 19788188 A JP19788188 A JP 19788188A JP 19788188 A JP19788188 A JP 19788188A JP H0249211 A JPH0249211 A JP H0249211A
Authority
JP
Japan
Prior art keywords
electrode
substrate
protective layer
magnetic head
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19788188A
Other languages
Japanese (ja)
Inventor
Osamu Shimizu
治 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP19788188A priority Critical patent/JPH0249211A/en
Publication of JPH0249211A publication Critical patent/JPH0249211A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3163Fabrication methods or processes specially adapted for a particular head structure, e.g. using base layers for electroplating, using functional layers for masking, using energy or particle beams for shaping the structure or modifying the properties of the basic layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To efficiently provide a protective layer having a large thickness by providing the protective layer by maintaining an electrode holding a substrate at a negative potential and depositing a material to be nitrided or oxidized by evaporation on the substrate under the glow discharge generated in an atmosphere contg. oxygen or nitrogen. CONSTITUTION:A pair of the counter electrodes 101, 102 are disposed to the upper part in a reaction vessel 100 and the substrate 10 is disposed on the electrode in the position further from a material 106 for vapor deposition. The electrode 101 is connected via a capacitor C to a high-frequency power source 103. The electrode 102 is grounded via the vessel 100 and the material 106 is disposed in a crucible 105 near the bottom on the lower side of the earth electrode 102 and is evaporated by heating of a filament 107. A glow discharge is generated between the electrodes and the negative bias potential lower than the potential of the electrode 102 is induced in the electrode 101 when a high-frequency bias is impressed to the substrate side electrode 101. The nitrogen ions N<+> nitride the substrate surface in this way and the Al of the material for vapor deposition evaporates. The Al atoms are deposited on the substrate surface by passing the hole 104 of the electrode 102. The Al nitride film is thus formed on the magnetic film of the substrate 10.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は薄膜磁気ヘッドの製造方法に関し、特に、保護
層の成膜が好適に行われる薄膜磁気ヘッドの製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a thin film magnetic head, and more particularly to a method for manufacturing a thin film magnetic head in which a protective layer is suitably formed.

〔従来技術] 薄膜磁気ヘッドは、フェライト或いはサファイア等の耐
摩耗性材料によって設けられる基板上に、センダスト、
アモルファス等により形成した複数の磁性層1、導電性
金属から成るコイル導体層及び絶縁層等を順次成膜及び
エツチングを繰返して所定の形状にパターニングし、最
後に記録媒体の走行による摩耗等から前記磁性層を保護
する目的で保護層を形成して設けられている。
[Prior Art] A thin-film magnetic head is a thin-film magnetic head that uses sendust,
A plurality of magnetic layers 1 made of amorphous or the like, a coil conductor layer made of conductive metal, an insulating layer, etc. are sequentially formed and etched repeatedly to pattern them into a predetermined shape. A protective layer is formed to protect the magnetic layer.

前記保護層は窒化物或いは酸化物等により成膜され、下
層に形成される段差上に積層されると共に、テープ摺動
性、耐偏摩耗の点から所定厚、例えば20〜40μm程
度の厚みを有して設けられている。
The protective layer is formed of nitride or oxide, and is laminated on the step formed in the lower layer, and has a predetermined thickness, for example, about 20 to 40 μm, from the viewpoint of tape sliding properties and uneven wear resistance. It is provided with

処で、従来、この保護層は電子ビーム蒸着法或いはスパ
ッタ法等の方法により膜が堆積されている。
Conventionally, this protective layer has been deposited by a method such as electron beam evaporation or sputtering.

(発明が解決しようとする課題) しかしながら、上記の成膜方法において、電子ビーム蒸
着法では段差部の良好なステップカバレージが得に(く
、しかも、膜組成(窒素或いは酸素含有率)が安定しな
いと云う欠点を有している。
(Problem to be Solved by the Invention) However, in the above film forming method, electron beam evaporation method does not provide good step coverage of the stepped portion, and furthermore, the film composition (nitrogen or oxygen content) is not stable. It has the disadvantage of.

また、スパッタ法はステップカバレージは良いものの、
成膜速度が遅く薄膜磁気ヘッドの製造効率が悪いと云う
欠点を有している。
In addition, although the sputtering method has good step coverage,
The drawback is that the film formation rate is slow and the production efficiency of thin film magnetic heads is poor.

本発明の目的は、上記欠点を解消して、大きな段差部上
にステップカバレージの良い厚膜の保護層を効率良く形
成できる薄膜磁気ヘッドの製造方法を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a thin-film magnetic head that eliminates the above-mentioned drawbacks and can efficiently form a thick protective layer with good step coverage on a large step portion.

[課ユを解消するための手段] すなわち、本発明の上記目的は、基板上に磁性層、コイ
ル導体層及び絶縁層を順次形成して所定形状にパターニ
ングし、保護層が前記磁性層上に積層される薄膜磁気ヘ
ッドの製造方法において、前記保護層は基板を保持した
電極を負電位として少なくとも酸素又は窒素を含む雰囲
気中で発生されるグロー放電下で被窒化物又は被酸化物
が蒸着されて設けられることを特徴とする薄膜磁気ヘッ
トの製造方法により達成される。
[Means for Eliminating Problems] That is, the above object of the present invention is to form a magnetic layer, a coil conductor layer, and an insulating layer in sequence on a substrate and pattern them into a predetermined shape, and to form a protective layer on the magnetic layer. In the method for manufacturing a laminated thin film magnetic head, the protective layer is formed by depositing a nitride or oxidizer under glow discharge generated in an atmosphere containing at least oxygen or nitrogen with an electrode holding the substrate at a negative potential. This is achieved by a method of manufacturing a thin film magnetic head, characterized in that it is provided with a thin film magnetic head.

〔実施例〕〔Example〕

以下、図面を参照して本発明の詳細な説明する。 Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は、本発明に基づいて製作された薄膜磁気ヘッド
゛の構造を示す断面図であり、製造プロセスに従って説
明する。
FIG. 1 is a sectional view showing the structure of a thin film magnetic head manufactured based on the present invention, and will be explained according to the manufacturing process.

図において、フェライト基板10上に下部磁性層11、
非磁性絶縁層12.コイル導体層13.ギャップ層14
.上部磁性層15を公知の方法により形成する。
In the figure, a lower magnetic layer 11 is provided on a ferrite substrate 10,
Nonmagnetic insulating layer 12. Coil conductor layer 13. Gap layer 14
.. Upper magnetic layer 15 is formed by a known method.

次に、本発明の要部である保護層16を上部磁性層15
上に形成する。
Next, the protective layer 16, which is the main part of the present invention, is applied to the upper magnetic layer 15.
Form on top.

第2図は、前記保護層16を形成するための装置の1実
施例である。
FIG. 2 shows one embodiment of an apparatus for forming the protective layer 16.

反応容器100内の上方には、一対の対向電極101、
102が配置されている。後述する蒸着材料106から
遠い位置の電極上には保護層を形成する直前の基板10
が配置されると共に、この電極101はコンデンサCを
介して高周波電源103と接続されている。他方の電極
102は容器100を介して接地され、アース電位に設
けられると共に、板面に貫通した孔104を有している
。前記アース電極102の下方側で容器の底部近くには
るつぼ105に収容された蒸着材料106が配置されて
おり、該蒸着材料106は通電によって加熱するフイラ
メンl−107により蒸発される。
Above the reaction vessel 100, a pair of opposing electrodes 101,
102 are arranged. A substrate 10 immediately before a protective layer is formed on an electrode located far from a vapor deposition material 106 to be described later.
is arranged, and this electrode 101 is connected to a high frequency power source 103 via a capacitor C. The other electrode 102 is grounded through the container 100, is provided at ground potential, and has a hole 104 penetrating the plate surface. A vapor deposition material 106 contained in a crucible 105 is disposed below the ground electrode 102 and near the bottom of the container, and the vapor deposition material 106 is evaporated by a filament l-107 heated by electricity.

なお、本発明における前記蒸着方法は、蒸着材料に電子
ビームを当て局所的に加熱を行う電子ビーム蒸着法又は
誘導加熱蒸着法であっても良い。
Note that the vapor deposition method in the present invention may be an electron beam vapor deposition method or an induction heating vapor deposition method in which the vapor deposition material is locally heated by applying an electron beam to it.

前記容器100は放電ガスが導入されるガス供給孔10
8と、容器内を真空に排気するための排気孔109を設
けている。
The container 100 has a gas supply hole 10 into which discharge gas is introduced.
8 and an exhaust hole 109 for evacuating the inside of the container to a vacuum.

次に、この装置を用い、放電ガスとして、不活性なへ!
ガスに活性な窒素を混ぜた混合ガスが導入され、かつ蒸
着材料としてAfが適用されて被窒化物の保護層が形成
される場合について説明する。
Then, using this device, discharge gas as an inert gas!
A case will be described in which a mixed gas containing active nitrogen is introduced, and Af is applied as a vapor deposition material to form a protective layer of the object to be nitrided.

前述のように構成された装置の基板側電極101に高周
波バイアスが印加されると、電極間にグロー放電が発生
し、かつ基板側電極101にアース電極102よりも低
い負のバイアス電位が誘起される。
When a high frequency bias is applied to the substrate-side electrode 101 of the device configured as described above, a glow discharge occurs between the electrodes, and a negative bias potential lower than that of the ground electrode 102 is induced in the substrate-side electrode 101. Ru.

これによって窒素イオンN+が基板側に加速されて基板
表面を窒化する。同時に蒸着材料のAl1は加熱されて
蒸発し、アルミ原子がアース電極102の孔104を通
過して基板面に堆積される。これにより基板の磁性膜上
に窒化アルミ膜が成膜される。
As a result, nitrogen ions N+ are accelerated toward the substrate and nitridize the substrate surface. At the same time, the evaporation material Al1 is heated and evaporated, and aluminum atoms pass through the holes 104 of the ground electrode 102 and are deposited on the substrate surface. As a result, an aluminum nitride film is formed on the magnetic film of the substrate.

なお、改質をよくするために、従来と同様に反応前の容
器内は高真空に排気される。
Note that, in order to improve reforming, the inside of the container is evacuated to a high vacuum before the reaction, as in the conventional case.

基板側電極101に負のバイアス電位を加え、アース電
極102よりも低く設定することで、基板に堆積した膜
が一部スバッタエツチングされなから成膜が進行する。
By applying a negative bias potential to the substrate-side electrode 101 and setting it lower than that of the ground electrode 102, film formation progresses without sputter etching a portion of the film deposited on the substrate.

これによりステップカバレージが良くなる。This improves step coverage.

本方法によって形成された窒化アルミニウムは堆積速度
がスパッタ法と比べて100倍程度(3μm/分)得ら
れ、またステップカバレージは電子ビーム蒸着と比べて
著しい改善が得られた。
The deposition rate of aluminum nitride formed by this method was about 100 times that of sputtering (3 μm/min), and the step coverage was significantly improved compared to electron beam evaporation.

第3図は前記保護層を形成する装置の他の実施例である
FIG. 3 shows another embodiment of the apparatus for forming the protective layer.

この装置は、複数枚の基板が載置できる構造から成って
いる。
This device has a structure on which a plurality of substrates can be placed.

蒸着を行う部分については、先の第2図の装置と同一構
成であり、従って、この部分については同一符号を付し
て説明を省略する。
The part that performs vapor deposition has the same configuration as the apparatus shown in FIG. 2, and therefore, the same reference numerals are given to this part and the explanation thereof will be omitted.

第3図において、基板側電極101は、基板面に堆積さ
れる膜が均質に設けられるために回転されている。
In FIG. 3, the substrate side electrode 101 is rotated so that the film deposited on the substrate surface is uniformly provided.

A2に酸素を混ぜた混合ガスを供給すると共に、蒸着材
料106としてるつぼ105内に収容されたSiOは電
子銃201により電子ビームが照射されて蒸発される。
A mixed gas containing oxygen is supplied to A2, and the SiO contained in the crucible 105 as the evaporation material 106 is irradiated with an electron beam by the electron gun 201 and evaporated.

このようなマグネトロンスパッタ法を併用することによ
り、速い堆積速度で成膜でき、かつ残留不純物の影響の
少ない高品質の膜が得られる。
By using such a magnetron sputtering method in combination, it is possible to form a film at a high deposition rate and obtain a high-quality film that is less affected by residual impurities.

本方法によって、スパッタ法の50倍以上の堆積速度(
1μm/分)でスパッタ法と同等のステップカバレージ
をもったSiO□膜が得られた。
This method achieves a deposition rate that is more than 50 times faster than sputtering (
An SiO□ film with a step coverage equivalent to that of the sputtering method was obtained at a speed of 1 μm/min).

〔発明の効果〕〔Effect of the invention〕

以上記載したとおり、本発明の薄膜磁気ヘッドの製造方
法によれば、均質でかつステップカバレージの良い厚膜
の保護層が効率良く設けられる。
As described above, according to the method of manufacturing a thin film magnetic head of the present invention, a thick protective layer that is homogeneous and has good step coverage can be efficiently provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に基づいて製作された薄膜磁気ヘッド
の断面構造図、第2図はその保護層を形成するための1
実施例による装置構成図、第3図は他の実施例により保
護層を形成するための装置構成図である。 10:基板、11:下部磁性層。 12.14:非磁性絶縁層。 15:上部磁性層、16:保護層。 1007反応容器、   101:基板側電極。 102:アース電極、103:高周波電源。 105:るつぼ、    106:蒸着材料。 107:フイラメンl−,201:電子銃筒  1 図 第  3 図 第  2 図
FIG. 1 is a cross-sectional structural diagram of a thin film magnetic head manufactured based on the present invention, and FIG.
FIG. 3 is a diagram showing the configuration of an apparatus for forming a protective layer according to another embodiment. 10: Substrate, 11: Lower magnetic layer. 12.14: Nonmagnetic insulating layer. 15: Upper magnetic layer, 16: Protective layer. 1007 reaction container, 101: substrate side electrode. 102: Earth electrode, 103: High frequency power supply. 105: Crucible, 106: Vapor deposition material. 107: Filament l-, 201: Electron gun tube 1 Figure 3 Figure 2

Claims (1)

【特許請求の範囲】 1)基板上に磁性層、コイル導体層及び絶縁層を順次形
成して所定形状にパターニングし、保護層が前記磁性層
上に積層される薄膜磁気ヘッドの製造方法において、前
記保護層は基板を保持した電極を負電位として少なくと
も酸素又は窒素を含む雰囲気中で発生されるグロー放電
下で被窒化物又は被酸化物が蒸着されて設けられること
を特徴とする薄膜磁気ヘッドの製造方法。 2)基板側電極が高周波電源と接続され、他方電極が接
地されている第1項記載の製造方法。 3)蒸着材料が抵抗加熱法又は電子ビーム加熱によって
蒸発される第1項記載の製造方法。
[Claims] 1) A method for manufacturing a thin-film magnetic head in which a magnetic layer, a coil conductor layer, and an insulating layer are sequentially formed on a substrate and patterned into a predetermined shape, and a protective layer is laminated on the magnetic layer, A thin film magnetic head characterized in that the protective layer is provided by depositing a nitride or oxidizer under glow discharge generated in an atmosphere containing at least oxygen or nitrogen with an electrode holding the substrate at a negative potential. manufacturing method. 2) The manufacturing method according to item 1, wherein the substrate side electrode is connected to a high frequency power source and the other electrode is grounded. 3) The manufacturing method according to item 1, wherein the evaporation material is evaporated by resistance heating or electron beam heating.
JP19788188A 1988-08-10 1988-08-10 Production of thin film magnetic head Pending JPH0249211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19788188A JPH0249211A (en) 1988-08-10 1988-08-10 Production of thin film magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19788188A JPH0249211A (en) 1988-08-10 1988-08-10 Production of thin film magnetic head

Publications (1)

Publication Number Publication Date
JPH0249211A true JPH0249211A (en) 1990-02-19

Family

ID=16381859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19788188A Pending JPH0249211A (en) 1988-08-10 1988-08-10 Production of thin film magnetic head

Country Status (1)

Country Link
JP (1) JPH0249211A (en)

Similar Documents

Publication Publication Date Title
US4585537A (en) Process for producing continuous insulated metallic substrate
US4999096A (en) Method of and apparatus for sputtering
KR19980080768A (en) Smooth Titanium Nitride Thin Films with Low Resistance
JPH0697660B2 (en) Thin film formation method
GB1514664A (en) Method of forming an electrically insulative coating
JP4167833B2 (en) Film forming apparatus, oxide thin film forming substrate and manufacturing method thereof
EP0691419A1 (en) A process and apparatus for forming multi-layer optical films
JPH07109562A (en) Formation of pzt thin film
JPH0249211A (en) Production of thin film magnetic head
JPH0644893A (en) Cathode structure
JP3478561B2 (en) Sputter deposition method
JPS63307272A (en) Ion beam sputtering device
JP3727693B2 (en) TiN film manufacturing method
JPS63203760A (en) Method and device for forming inorganic film to glass substrate surface
JPH08199355A (en) Sputtering device and sputtering
JPH03197306A (en) Equipment for producing oxide superconducting thin film and method therefor
JP2000016839A (en) Formation of transparent conductive oxide thin film and device therefor
JPH06275617A (en) Oxidation resistant copper thin film, its manufacture, and semiconductor device using the same
JPH02133568A (en) Thin film forming device
JPS6179767A (en) Formation of film
JPH01189013A (en) Thin film magnetic head
JPH07243035A (en) Formation of compound thin film and device therefor
JPS61170561A (en) Formation of high melting point metal film
JPH05190309A (en) Pr0duction of resistance film
JPH0860343A (en) Vacuum deposition device