JPH0249090A - Fluorescent substance consisting of bn(c,h) - Google Patents

Fluorescent substance consisting of bn(c,h)

Info

Publication number
JPH0249090A
JPH0249090A JP20099688A JP20099688A JPH0249090A JP H0249090 A JPH0249090 A JP H0249090A JP 20099688 A JP20099688 A JP 20099688A JP 20099688 A JP20099688 A JP 20099688A JP H0249090 A JPH0249090 A JP H0249090A
Authority
JP
Japan
Prior art keywords
gas
phosphor
carbon
film
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20099688A
Other languages
Japanese (ja)
Inventor
Masayuki Kawaguchi
雅之 川口
Koji Nozaki
野崎 浩二
Yasushi Kida
喜田 康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP20099688A priority Critical patent/JPH0249090A/en
Publication of JPH0249090A publication Critical patent/JPH0249090A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a fluorescent substance, consisting of BN(C,H) having the fluorescent peaks at specific positions with specified exciting light and usable especially even at high temperatures with high efficiency and rapid attenuation. CONSTITUTION:A fluorescent substance consisting of BN(C,H) having the respective fluorescent peaks at positions of 340 and 355nm by exciting light at 270nm, 408nm and 433nm with exciting light at 313nm. The above-mentioned fluorescent substance is synthesized as a homogeneous substance in the presence of a carrier gas, such as preferably H2 gas or Ar, by a chemical vapor deposition method using a gas, such as boron trichloride, ammonia or acetylene.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はホウ素、炭素、窒素および水素からなる螢光体
、特に高温においても使用でき、高効率でかつ減衰の速
い螢光体に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a phosphor made of boron, carbon, nitrogen and hydrogen, and particularly to a phosphor that can be used even at high temperatures, has high efficiency, and has fast decay. be.

[従来技術] 光を吸収して可視部付近の別の波長の光を発する螢光体
は古くから知られており、用途に応じて種々の螢光体が
使用されている。螢光体には硫化物や酸化物等の各種母
体結晶に付活剤を添加したものと、遷移金属イオンを含
んだ絶縁体やアントラセン、ターフェニル等の共役した
π電子を有する有機化合物のような物質自体で螢光を発
するもの等がある。しかしこれらはいずれも螢光体それ
自体が耐熱性に乏しいか、あるいは高温では螢光を発し
ないものがほとんどであり、高温で使用できる螢光体と
して優れたものがないのが現状である。一方、耐熱性に
優れた材料である窒化ホウ素−(h−BN)に物理的に
カーボンをドープしたものが螢光を発し、高温でも発光
することが報告[江良皓:窒化はう素に関する研究 第
7章、無機材質研究所研究報告書27号(1981)]
されている、このものはカーボン発熱体の炉内でh−B
Nを焼成して得るものであるが、炭素のh−BN結晶格
子間への混入の程度をコントロールすることが困難であ
る。また、h−BNとカーボンを混合して焼成して炭素
量を制御したものを得ることも可能であるが、この場合
にはトータル炭素の制御は可能であるものの、h−BN
結晶格子間に混入した炭素の量の制御はできないもので
あり、螢光体としての物性を自由にコントロールするこ
とは困難である。また、フリーの炭素の存在は光を吸収
するため螢光体としての光利用効率が低下する等の問題
点がある。
[Prior Art] Fluorescent materials that absorb light and emit light of different wavelengths near the visible region have been known for a long time, and various fluorescent materials are used depending on the purpose. Fluorescent materials include those made by adding activators to various host crystals such as sulfides and oxides, as well as insulators containing transition metal ions and organic compounds with conjugated π electrons such as anthracene and terphenyl. There are some substances that emit fluorescence by themselves. However, most of these phosphors either have poor heat resistance or do not emit fluorescence at high temperatures, and currently there is no excellent phosphor that can be used at high temperatures. On the other hand, it has been reported that boron nitride (h-BN), a material with excellent heat resistance, physically doped with carbon emits fluorescence and emits light even at high temperatures [Hiro Era: Research on boron nitride Chapter 7, Inorganic Materials Research Institute Research Report No. 27 (1981)]
This one is h-B in the furnace of carbon heating element.
Although it is obtained by firing N, it is difficult to control the degree of carbon incorporation into the h-BN crystal lattice. It is also possible to mix and sinter h-BN and carbon to obtain a product with a controlled amount of carbon, but in this case, although it is possible to control the total carbon, h-BN
It is not possible to control the amount of carbon intermixed between the crystal lattices, and it is difficult to freely control the physical properties of the phosphor. Furthermore, the presence of free carbon causes problems such as a decrease in light utilization efficiency as a phosphor because it absorbs light.

E問題点を解決するための具体的手段]本発明者らはか
かる問題点に鑑み鋭意検討の結果、三塩化ホウ素、アン
モニア、アセチレン等のガスを用いて化学気相析出法(
以下CVD法という)によりホウ素、炭素、窒素および
水素からなる均一な物質[以下BN (C,H)と記す
]が特異な螢光特性を有することを見いだし本発明に到
達したものである。すなわち本発明は270 nmの励
起光により340nm、355nmの位置に、また31
3nmの励起光により408nm、433nmの位置に
それぞれ螢光ピークを有することを特徴とするBN (
C,H)からなる螢光体である。
Specific Means for Solving Problem E] In view of these problems, the present inventors have conducted intensive studies and have developed a chemical vapor deposition method (
The present invention was achieved by discovering that a homogeneous substance consisting of boron, carbon, nitrogen, and hydrogen (hereinafter referred to as BN (C, H)) has unique fluorescent properties using the CVD method (hereinafter referred to as CVD method). That is, in the present invention, excitation light of 270 nm can be used to generate light at 340 nm, 355 nm, and 31 nm.
BN (
C, H).

本発明の螢光体は励起光が興なる(主として270nm
、313nmの2点)発光群が存在するものである。こ
の理由はBN (C,H)の電子構造にいくつかの不純
物準位が存在するためと考えられる。
The phosphor of the present invention emits excitation light (mainly 270 nm).
, 313 nm 2 points) Emission group exists. The reason for this is thought to be that several impurity levels exist in the electronic structure of BN (C, H).

本発明の螢光体と組成的には類似の螢光体であるh−B
Nに物理的にカーボンをドープしたもの(先に示した江
良晧:窒化はう素に関する研究)は300nmの励起光
による320.337.355.372nmに螢光ピー
クを有し、本発明の螢光体とは異なった螢光特性であり
、両者は明確に区別できるものである。
h-B, a phosphor compositionally similar to the phosphor of the present invention;
The material in which N is physically doped with carbon (research on boron nitride by Akira Era mentioned earlier) has a fluorescence peak at 320.337.355.372 nm when excited by 300 nm, and the fluorescence of the present invention It has different fluorescent characteristics from that of a photon, and the two can be clearly distinguished.

本発明の螢光体は励起光と放射光の波長差が大であり、
可視光領域にも螢光が得られるため幅広い用途に使用で
きるとともに効率のよい螢光体となるものである。さら
に本発明の螢光体はそれ自体耐熱性に優れるものである
が、高温(700℃近辺)においても優れた螢光特性を
有している。
The phosphor of the present invention has a large wavelength difference between excitation light and emission light,
Since it can produce fluorescence even in the visible light range, it can be used in a wide range of applications and is an efficient phosphor. Furthermore, the phosphor of the present invention itself has excellent heat resistance, and has excellent fluorescent properties even at high temperatures (around 700° C.).

螢光とはその発光時間が約0.1秒までのものを言い、
これ以上発光が持続するものをリン光と言うが、本発明
の螢光体は螢光のほかリン光も発するものである0例え
ば、Ci 0.6%、H: 1.5%を含むBN (C
,H)は260〜310 n m (特に270 nm
)の励起光で380〜420 n m (特に395〜
400nm)のリン光(この波長のリン光は青紫)を減
衰時間24秒で発する。また、270〜340nm(特
に313nm)の励起光で500〜550(特に510
〜530nm)のリン光(この波長のリン光は緑〜黄緑
)を減衰時間24秒で発するものであり、これら全体と
してのリン光は緑色である。
Fluorescence refers to something whose luminescence time is up to about 0.1 seconds.
Anything that continues to emit light longer than this is called phosphorescence, and the phosphor of the present invention emits phosphorescence as well as fluorescence.For example, BN containing 0.6% Ci and 1.5% H. (C
, H) is 260 to 310 nm (especially 270 nm
) with excitation light of 380-420 nm (especially 395-420 nm)
400 nm) (phosphorescence at this wavelength is blue-violet) with a decay time of 24 seconds. In addition, 500 to 550 (especially 510 nm) excitation light of 270 to 340 nm (especially 313 nm)
~530 nm) (phosphorescence of this wavelength is green to yellow-green) with a decay time of 24 seconds, and the phosphorescence as a whole is green.

本発明の螢光体は、本質的にホウ素、炭素、窒素および
水素からなり、CuKα線によるX線回折測定による2
θが20〜30@の範囲に回折ピークを有することを特
徴とする。また、その製造法は、ホウ素源ガス、炭素源
ガス、窒素源ガスおよびキャリヤーガスからなる混合ガ
スをCVD法により反応させる方法である。
The phosphor of the present invention essentially consists of boron, carbon, nitrogen and hydrogen, and has a
It is characterized by having a diffraction peak in the range of θ of 20 to 30@. Moreover, the manufacturing method is a method in which a mixed gas consisting of a boron source gas, a carbon source gas, a nitrogen source gas, and a carrier gas is reacted by a CVD method.

この方法による場合ホウ素、窒素の比は原子比でほぼ1
:1であり、残部が炭素と水素である。
In this method, the ratio of boron and nitrogen is approximately 1 in terms of atomic ratio.
:1, with the remainder being carbon and hydrogen.

水素は原料の組成に関係なく0〜3重量%の範囲となる
。炭素は原料ガスの炭素量に依存し、広い範囲にわたり
存在し得るが、本発明が目的とする螢光体としては、0
.01〜5重量%、より好ましくは0.3〜lli量%
の範囲である。炭素がこれ以下では螢光を全く発しない
か、または極めて弱く、これより多い場合にも螢光が非
常に弱(なる。
Hydrogen is in the range of 0 to 3% by weight regardless of the composition of the raw material. Carbon depends on the amount of carbon in the raw material gas and can exist over a wide range, but as a phosphor for the purpose of the present invention, carbon can be present in a wide range.
.. 01-5% by weight, more preferably 0.3-lli%
is within the range of If the amount of carbon is less than this, the fluorescence will not emit at all or it will be very weak, and if it is more than this, the fluorescence will be very weak.

本発明の螢光体を製造するためのCVD法ガス原料とし
ては、特に限定されないが、ホウ素源としては、BCl
3等のハロゲン化ホウ素、窒素源としてはNH3等の反
応性の高いガスが好ましく、炭素源としては、炭化水素
、特に不飽和結合を有するガスが好ましく、反応性等か
らアセチレンが最も好ましい、また、均質な螢光体を再
現性よく得るためには、これら原料ガスに加えてキャリ
ヤーガスの使用が好ましく、水素ガス、アルゴン等を用
いることができる。
The CVD method gas raw material for producing the phosphor of the present invention is not particularly limited, but the boron source is BCl
As the nitrogen source, a highly reactive gas such as NH3 is preferable, and as the carbon source, a hydrocarbon, especially a gas having an unsaturated bond, is preferable, and acetylene is most preferable from the viewpoint of reactivity. In order to obtain a homogeneous phosphor with good reproducibility, it is preferable to use a carrier gas in addition to these raw material gases, and hydrogen gas, argon, etc. can be used.

これら原料ガスの量的関係については特に制限されない
が、ホウ素源ガスと窒素源ガスは少なくとも原子比で、
1:2以上が好ましい、これ以下ではホウ素源ガスとし
てBCl3を用いた場合、生成物中にCIが残る等の不
都合がある。
There is no particular restriction on the quantitative relationship between these raw material gases, but the boron source gas and nitrogen source gas have at least an atomic ratio of
A ratio of 1:2 or more is preferred; if it is less than this, when BCl3 is used as the boron source gas, there are disadvantages such as CI remaining in the product.

このようにして得られる螢光体は、反応条件により基板
に被着した形の膜、これが厚み方向に成長した塊状体、
あるいは粉体等積々の形態があるが、これらいずれの形
態においても螢光特性を有するものである。
The phosphor obtained in this way consists of a film adhered to the substrate depending on the reaction conditions, a lump formed by growing the film in the thickness direction,
Alternatively, it may be in the form of a pile, such as a powder, but any of these forms has fluorescent properties.

反応温度は特に限定的ではないが、600 ”C以上が
好ましい、これ以下では反応速度が極端に小さくなる1
反応速度の面からは反応温度は高い方が好ましいが、当
然基体の耐熱温度に依存する。
Although the reaction temperature is not particularly limited, it is preferably 600"C or higher; below this temperature, the reaction rate becomes extremely low.
From the viewpoint of reaction rate, a higher reaction temperature is preferable, but it naturally depends on the heat resistance temperature of the substrate.

また、反応温度が高いほど生成物の水素量は少なくなる
Furthermore, the higher the reaction temperature, the lower the amount of hydrogen in the product.

本発明のBN (C,H)が螢光を発する理由は必ずし
も定かではないが、5.2eVの広いバンドギャップを
有するh−BNの格子点がCあるいはHにより置換され
、不純物準位を形成し、その準位間の遷移が光の吸収、
発光を生じるためと推定される。
The reason why the BN (C, H) of the present invention emits fluorescence is not necessarily clear, but the lattice points of h-BN, which has a wide band gap of 5.2 eV, are substituted with C or H, forming an impurity level. The transition between the levels causes light absorption,
It is presumed that this is because it generates light emission.

本発明の螢光体は種々の用途に供することができ、例え
ば放射線シンチレータ、高速応答ブラウン管等が挙げら
れる。
The phosphor of the present invention can be used in various applications, such as radiation scintillators, high-speed response cathode ray tubes, and the like.

以下、実施例により本発明をより具体的に説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1 内径40露園長さ1000m鳳の石英管からなる熱CV
D1itの中央に500m5+ X 20mmX 3 
amのニッケル基板を設置し、BC13、C2Hzおよ
びN H3を原料とし、H2をキャリヤーガスとして、
反応管中央を800℃に加熱した炉内に導入した。それ
ぞれのガス流量は次のとおりである。
Example 1 Thermal CV consisting of a quartz tube with an inner diameter of 40 mm and a length of 1000 m
500m5+ x 20mm x 3 in the center of D1it
A nickel substrate of am is installed, BC13, C2Hz and NH3 are used as raw materials, H2 is used as a carrier gas,
The center of the reaction tube was introduced into a furnace heated to 800°C. The respective gas flow rates are as follows.

B CI 3  15cc/win N H330cc/5in C2H28cc/ −1n H2144cc/ sin 炉内圧力は大気圧でおこなった。B CI 3 15cc/win N H330cc/5in C2H28cc/-1n H2144cc/sin The pressure inside the furnace was atmospheric pressure.

以上の条件で6時間反応をおこなったのち、ガス導入と
基板加熱をやめ、炉内を真空排気、冷却した。基板上に
は、全幅(20mm)にわたり、ガス導入側より約50
mm、の範囲で膜が形成された。
After the reaction was carried out for 6 hours under the above conditions, gas introduction and substrate heating were stopped, and the inside of the furnace was evacuated and cooled. Approximately 50 mm is placed on the substrate from the gas introduction side over the entire width (20 mm).
A film was formed in the range of mm.

冷却により基板上の膜は簡単に剥離し、得られた膜は茶
色半透明であり、厚さ約120.crmの膜であり、自
由に取り扱える程度の強度を有していた。
Upon cooling, the film on the substrate was easily peeled off, and the resulting film was brown and translucent, and had a thickness of approximately 120 mm. It was a crm film and had enough strength to be handled freely.

このWA(生成膜)を窒素ガス中1600℃で1時間熱
処理して白色不透明の膜(焼成膜)とした、このものの
元素分析をおこなったところ炭素0.6重量%、水素1
.5 jI量%であった。
This WA (produced film) was heat-treated for 1 hour at 1600°C in nitrogen gas to form a white opaque film (fired film). Elemental analysis of this film revealed that carbon was 0.6% by weight and hydrogen was 1% by weight.
.. It was 5 jI amount%.

生成膜と焼成膜とをCuKα線によるX線回折測定をお
こない、この回折パターンを第1図(生成膜)、第2図
(焼成膜)に示した。第1図において、2θが20〜3
0℃においてブロードなピークを有し、無定形BNと無
定形Cの002の回折ピークが重なりあったものである
。この生成膜は、結晶化度が低く、ブロードなパターン
となることが特徴であり、窒化ホウ素、炭素の粉末由来
のものと明確に区別できる。生成膜を焼成して得た膜は
第2図に示したとおり、2θが26°においてBNとC
の002の回折ピークが重なりあったピークとなるが、
これはh−B N、 h−Cの002の回折ピーク(2
θが26.5@’)よりも低角度であることが特徴であ
り、焼成によっても回折ピークが顕著には鋭くならない
ものである。
The produced film and the fired film were subjected to X-ray diffraction measurements using CuKα rays, and the diffraction patterns are shown in FIG. 1 (produced film) and FIG. 2 (fired film). In Figure 1, 2θ is 20 to 3
It has a broad peak at 0°C, and the 002 diffraction peaks of amorphous BN and amorphous C overlap. This produced film is characterized by a low crystallinity and a broad pattern, and can be clearly distinguished from those derived from boron nitride and carbon powders. As shown in Figure 2, the film obtained by firing the produced film has BN and C at 2θ of 26°.
The diffraction peaks of 002 and 002 are overlapping peaks, but
This is the 002 diffraction peak (2
It is characterized in that the angle θ is lower than 26.5@'), and the diffraction peak does not sharpen significantly even after firing.

焼成膜を■日立製作新製650−10型分光螢光光度計
によりその螢光スペクトルを測定し、第3図および第4
図に示した* 340 n mおよび355nmの螢光
(放射光)は270nmの励起光により効率よく励起さ
れ、非常に鋭いピークを示した(第3図)、一方、40
8nmおよび433nmの螢光は313nmの励起光に
よって効率よく励起された(第、4図)、各々の代表的
な放射光を一定にして励起光を操作させたときのスペク
トルを第5図((&)、(b))に示した。
The fluorescence spectrum of the fired film was measured using a new model 650-10 spectrofluorophotometer manufactured by Hitachi.
*The fluorescent light (emission light) at 340 nm and 355 nm shown in the figure was efficiently excited by the 270 nm excitation light and showed a very sharp peak (Figure 3);
Fluorescence at 8 nm and 433 nm was efficiently excited by excitation light at 313 nm (Figure 4). Figure 5 shows the spectrum when the excitation light was manipulated while keeping the typical emitted light constant. &), (b)).

また、同一装置により励起光を300nmとする以外は
同一条件で測定した焼成前の化11i膜の螢光スペクト
ルを第6図に示した。この膜は茶色半透明であり、35
0nmに螢光を発したが、焼成膜に比べてブロードであ
り、また励起光も明確に決めることができない、この膜
のX@回折図(第1図参照)にはブロードな回折線が観
察され、結晶状態がアモルファスに近いことがわかる。
Further, FIG. 6 shows the fluorescence spectrum of the compound 11i film before firing, which was measured using the same apparatus under the same conditions except that the excitation light was 300 nm. This film is brown and translucent, and 35
Fluorescence was emitted at 0 nm, but it was broader than that of the fired film, and the excitation light could not be determined clearly. Broad diffraction lines were observed in the X@ diffraction diagram of this film (see Figure 1). It can be seen that the crystalline state is close to amorphous.

螢光のピークがブロードであるのはこの結晶状態の低さ
に起因するものと考えられる。
The reason why the fluorescence peak is broad is considered to be due to this low crystalline state.

実施例2〜7 実施例1と同じ装置を用いてガス組成、反応条件を種々
変えて反応をおこない、生成物はすべて窒素気流中16
00℃で1時間熱処理をおこなった。
Examples 2 to 7 Reactions were carried out using the same equipment as in Example 1 with various gas compositions and reaction conditions, and all products were produced in a nitrogen stream at 16
Heat treatment was performed at 00°C for 1 hour.

反応条件および焼成物の組成、螢光特性を実施例1の結
果とともに第1表に示した。
The reaction conditions, composition of the fired product, and fluorescent properties are shown in Table 1 along with the results of Example 1.

比較例1 市販のBN粉(電気化学工業■製)を黒鉛加熱炉に入れ
窒素気流中2000°Cで熱処理をおこなった。
Comparative Example 1 Commercially available BN powder (manufactured by Denki Kagaku Kogyo ■) was placed in a graphite heating furnace and heat-treated at 2000°C in a nitrogen stream.

この粉の炭素および水素含有量は0.7重量%および0
.8重量%であった。この粉の螢光スペクトル(励起光
を300nmとする以外は実施例1と同一の条件で測定
)を第7図に示す、ここに観察された全螢光(320,
337,355,372)はすべて300nmの光によ
って効率よく励起された(第8図(al)、なお、参考
のため412nmの弱い放射光に対する励起スペクトル
を測定したところ363nmにピークを有していた(第
8図山))、これらの螢光特性は実施例1〜7のCVD
法によるBN (C,H)と全く異なっている。
The carbon and hydrogen content of this powder is 0.7% by weight and 0.
.. It was 8% by weight. The fluorescence spectrum of this powder (measured under the same conditions as Example 1 except that the excitation light was 300 nm) is shown in Figure 7, and the total fluorescence observed here (320 nm,
337, 355, 372) were all efficiently excited by 300 nm light (Figure 8 (al); for reference, the excitation spectrum for weak 412 nm radiation was measured and found to have a peak at 363 nm. (Fig. 8 mountain)), these fluorescent properties were determined by the CVD of Examples 1 to 7.
This is completely different from BN (C, H) according to the law.

[発明の効果] 本発明の螢光体は、耐熱性、化学的安定性、耐熱衝撃性
等に優れた螢光体であり、高温においても良好な螢光特
性を有するとともに励起光と放射光の波長差が大であり
、可視光領域にも螢光が得られ、幅広い用途に適用でき
る効率のよい螢光体である。また、本発明の螢光体はC
VD法により容易にかつ再現性よく得られるものである
[Effects of the Invention] The phosphor of the present invention is a phosphor with excellent heat resistance, chemical stability, thermal shock resistance, etc., and has good fluorescent properties even at high temperatures and is compatible with excitation light and emitted light. It has a large wavelength difference and can emit fluorescence even in the visible light range, making it an efficient phosphor that can be used in a wide range of applications. Further, the phosphor of the present invention is C
It can be obtained easily and with good reproducibility by the VD method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1の生成膜のX線回折パターン、第2図
は実施例1の焼成膜のX線回折パターンを示す、第3図
および第4図は実施例1の焼成膜の螢光スペクトル、第
5図((at、(b))は実施例1の焼成膜の励起スペ
クトルを示す、第6図は実施例1の生成膜の螢光スペク
トルを示す、第7図は比較例1の螢光スペクトルを示す
、第8図((h)、伽))は比較例1の励起スペクトル
を示す。 第5図 (α) R’H光;  34Chtm (b、) 放飼光; 40871罹 波 長/xm 放射%;320請 )皮 長 lTL机 図 (b) 波 長 / 孔′m、
FIG. 1 shows the X-ray diffraction pattern of the produced film of Example 1, FIG. 2 shows the X-ray diffraction pattern of the fired film of Example 1, and FIGS. 3 and 4 show the X-ray diffraction pattern of the fired film of Example 1. Optical spectra, FIG. 5 ((at, (b)) shows the excitation spectrum of the fired film of Example 1, FIG. 6 shows the fluorescence spectrum of the produced film of Example 1, and FIG. 7 shows the comparative example. FIG. 8 ((h), 弽)), which shows the fluorescence spectrum of Comparative Example 1, shows the excitation spectrum of Comparative Example 1. Figure 5 (α) R'H light; 34Chtm (b,) Release light; 40871 affected wavelength/xm Radiation %;

Claims (1)

【特許請求の範囲】[Claims]  270nmの励起光により340nm,355nmの
位置に、また313nmの励起光により408nm、4
33nmの位置にそれぞれ螢光ピークを有することを特
徴とするBN(C,H)からなる螢光体。
270 nm excitation light at 340 nm and 355 nm positions, and 313 nm excitation light at 408 nm and 4
A phosphor made of BN (C, H), characterized in that each has a fluorescence peak at a position of 33 nm.
JP20099688A 1988-08-11 1988-08-11 Fluorescent substance consisting of bn(c,h) Pending JPH0249090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20099688A JPH0249090A (en) 1988-08-11 1988-08-11 Fluorescent substance consisting of bn(c,h)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20099688A JPH0249090A (en) 1988-08-11 1988-08-11 Fluorescent substance consisting of bn(c,h)

Publications (1)

Publication Number Publication Date
JPH0249090A true JPH0249090A (en) 1990-02-19

Family

ID=16433773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20099688A Pending JPH0249090A (en) 1988-08-11 1988-08-11 Fluorescent substance consisting of bn(c,h)

Country Status (1)

Country Link
JP (1) JPH0249090A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0411688A (en) * 1990-04-27 1992-01-16 Natl Inst For Res In Inorg Mater Bn(c, h) phosphor for corpuscular ray
JP2005097022A (en) * 2003-09-22 2005-04-14 Japan Science & Technology Agency Synthetic method for group iiib nitride
WO2006001194A1 (en) * 2004-06-24 2006-01-05 Sumitomo Electric Industries, Ltd. Fluorescent substance and process for producing the same, and particle dispersion-type el device using the same
JP2006312672A (en) * 2005-05-09 2006-11-16 National Institute For Materials Science Boron nitride crystal having fluorescence emission properties added with activator such as rare earth element, its manufacturing method and boron nitride phosphor
JP2018087278A (en) * 2016-11-28 2018-06-07 国立研究開発法人物質・材料研究機構 Phosphor, method for producing the same, luminescent device thereof, and ultraviolet use device thereof
JP2018086108A (en) * 2016-11-28 2018-06-07 国立研究開発法人物質・材料研究機構 Phototherapy device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0411688A (en) * 1990-04-27 1992-01-16 Natl Inst For Res In Inorg Mater Bn(c, h) phosphor for corpuscular ray
JP2005097022A (en) * 2003-09-22 2005-04-14 Japan Science & Technology Agency Synthetic method for group iiib nitride
WO2006001194A1 (en) * 2004-06-24 2006-01-05 Sumitomo Electric Industries, Ltd. Fluorescent substance and process for producing the same, and particle dispersion-type el device using the same
JP2006312672A (en) * 2005-05-09 2006-11-16 National Institute For Materials Science Boron nitride crystal having fluorescence emission properties added with activator such as rare earth element, its manufacturing method and boron nitride phosphor
JP2018087278A (en) * 2016-11-28 2018-06-07 国立研究開発法人物質・材料研究機構 Phosphor, method for producing the same, luminescent device thereof, and ultraviolet use device thereof
JP2018086108A (en) * 2016-11-28 2018-06-07 国立研究開発法人物質・材料研究機構 Phototherapy device

Similar Documents

Publication Publication Date Title
Singh et al. Color tuning in thermally stable Sm 3+-activated CaWO 4 nanophosphors
US6117574A (en) Triboluminescent inorganic material and a method for preparation thereof
JP6475257B2 (en) Supertetrahedron phosphor for solid-state lighting
CN102159665A (en) Production of nitride-based phosphors
US7521034B2 (en) 3C-SiC nanowhisker
JP4963077B2 (en) Stress-stimulated luminescent material that emits ultraviolet light, method for producing the same, and use thereof
WO2019153760A1 (en) Nitride luminescent material and luminescent device containing same
EP2009077A1 (en) Manganese-doped metal-silicon-nitrides phosphors
JPH0249090A (en) Fluorescent substance consisting of bn(c,h)
JPH0625356B2 (en) Light emitting screen and low pressure mercury vapor discharge lamp provided with the same
Abdelrehman et al. Photoluminescence, thermoluminescence, and cathodoluminescence of optimized cubic Gd2O3: Bi phosphor powder
Getz et al. Intense NIR emission in YVO 4: Yb 3+ thin films by atomic layer deposition
Singh et al. Synthesis of Tb 3+ ion doped ZnWO 4 phosphors and investigation of their photoluminescence properties: concentration effect
JP4788875B2 (en) Boron nitride crystal having fluorescent emission characteristics to which an activator such as rare earth is added, its production method, and boron nitride phosphor
JPH03153791A (en) Phosphor comprising bn(c, h) and its manufacture
JPH03281594A (en) Luminescent material and display device
JPH0411688A (en) Bn(c, h) phosphor for corpuscular ray
Itoh et al. Optical properties and electronic structure of yttrium oxysulfide
US4913887A (en) Production of boron nitride
JP2004284876A (en) Impurity-containing gallium nitride powder and method of manufacturing the same
JP4025873B2 (en) Boron nitride nanowire and manufacturing method thereof
Khamaganova Synthesis and Thermoluminescence Properties of Crystalline Cadmium Tetraborate-Based Phosphors
WO2007004366A1 (en) Phosphorescent material, process for producing the same, and phosphorescent display element
JP2006199876A (en) Aluminum nitride-based fluorescent substance
US3813569A (en) Luminescent screen and mercury vapor discharge lamp containing same