JPH0247566A - Apparatus for determining point of fault in power transmission system - Google Patents

Apparatus for determining point of fault in power transmission system

Info

Publication number
JPH0247566A
JPH0247566A JP19778288A JP19778288A JPH0247566A JP H0247566 A JPH0247566 A JP H0247566A JP 19778288 A JP19778288 A JP 19778288A JP 19778288 A JP19778288 A JP 19778288A JP H0247566 A JPH0247566 A JP H0247566A
Authority
JP
Japan
Prior art keywords
fault
line
phase
accident
circuits
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19778288A
Other languages
Japanese (ja)
Other versions
JP2692163B2 (en
Inventor
Toshihisa Funahashi
俊久 舟橋
Yutaka Yamada
裕 山田
Hitomi Otoguro
乙黒 ひとみ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP19778288A priority Critical patent/JP2692163B2/en
Publication of JPH0247566A publication Critical patent/JPH0247566A/en
Application granted granted Critical
Publication of JP2692163B2 publication Critical patent/JP2692163B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

PURPOSE:To determine the point of fault accurately by judging the phases of the faults for respective circuits based on the voltage values of a bus line or the current values of the respective circuits, dividing the cases into the case for the same circuit and the case covering the two circuits, and evaluating and computing the faults. CONSTITUTION:Current transformers are provided for circuits 1L and 2L. Current values Ia, Ib and Ic and Ia', Ib' and Ic' of lines are outputted into fault detecting parts 1 and 2. The fault detecting parts 1 and 2 detect the faults in the respective circuits based on the voltage values Va, Vb and Vc of a bus line which are detected in the bus line and output starting signals into a fault- phase judging part 3. The fault-phase judging part 3 judges the fault phases for both circuits 1L and 2L. An evaluating and computing part 4 receives the results, divides the cases into the case wherein the fault phases are in the same circuit and the case wherein the faults are in the two circuits and evaluates the faults. In this way, the points of the faults can be determined accurately even if the short-circuit faults are located in the same circuit or covering the circuits.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は、2回線送電線における相間短絡を含む事故の
故障点標定を同一回線内の短絡事故でも2回線にまたが
る短絡事故でも同様に正確に行うための故障点標定装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION A. Industrial Application Field The present invention is capable of accurately locating the fault point of an accident involving a phase-to-phase short circuit in a two-line power transmission line, whether it is a short-circuit within the same line or a short-circuit that spans two lines. The present invention relates to a failure point locating device for locating fault points.

B1発明の概要 本発明は、2回線送電線における相間短絡を含む事故の
故障点標定装置において、 相間短絡事故の検出を行い、事故が検出されると、母線
電圧値と両回線の電流値の大きさから両回線を含めて事
故相を判別し、事故相が同一回線か両回線にまたがるか
により、場合分けをしてその事故相により故障点の標定
演算を行うことにより、 同一回線内の短絡事故でも2回線にまたがる短絡事故で
も正確に故障点標定を行えるようにしたものである。
B1 Summary of the Invention The present invention detects a phase-to-phase short circuit accident in a failure point locating device for an accident involving a phase-to-phase short circuit in a two-line power transmission line, and when a fault is detected, the bus voltage value and the current value of both circuits are By determining the fault phase including both lines based on the size, dividing the cases depending on whether the fault phase is on the same line or spanning both lines, and calculating the location of the fault point based on the fault phase, This makes it possible to accurately locate the fault point even in a short-circuit accident or a short-circuit accident that spans two lines.

C0従来の技術 従来より、2回線送電線の相間の短絡事故の故障点(短
絡事故点)までの距離を求める故障点標定装置が知られ
ている。2回線送電線の故障点標定とは、第5図の従来
例の故障点標定装置の説明図に示すような2回線IL、
2Lの送電系統において、変電所母線の電圧値と送電線
の電流値とを入力とし、演算により短絡事故点Fまでの
距離X。
BACKGROUND OF THE INVENTION Conventionally, a failure point locating device has been known that determines the distance to a failure point (short-circuit accident point) of a short-circuit accident between phases of a two-line power transmission line. Fault point locating for a two-circuit power transmission line is a two-circuit IL as shown in the explanatory diagram of a conventional fault point locating device in FIG.
In a 2L power transmission system, the voltage value of the substation busbar and the current value of the transmission line are input, and the distance X to the short circuit fault point F is calculated.

を求めることを言う。101は故障点標定装置であり、
この故障点標定装置101には、母線に設置された計器
用変圧a3PT(あるいは計器用分圧1PD)を介して
母線電圧値v、、Vb、Vcが入力され、回線ILの線
路に設置された変流器CTを介して一つの回線ILの線
路電流T a+ I +、、 I 。
Say what you want. 101 is a failure point locating device;
Bus voltage values v, , Vb, and Vc are input to this failure point locating device 101 via the instrument transformer a3PT (or instrument voltage divider 1PD) installed on the bus, and The line current T a+ I +,, I of one line IL through the current transformer CT.

が入力され、回線2しの線路に設置された変流器C’I
’ tを介して他の回線2Lの線路電流111b’  
 1.′が入力される。故障点標定装置101は、これ
らの人力から故障点(事故点)Fまでの距離(真値X。
is input, and the current transformer C'I installed on the line 2 line
' Line current 111b of other line 2L via t'
1. ' is input. The failure point locating device 101 determines the distance (true value X) from these manual forces to the failure point (accident point) F.

)を演算によって求め、表示装置や伝送装置へ出力する
) is calculated and output to a display device or transmission device.

第6図は上記従来例の故障点標定装置のブロック図であ
る。従来の故障点標定装置は、回線IL用の標定部10
1と回線2L用の標定部10ビとに分かれ、それぞれ別
個に標定を行っていた。
FIG. 6 is a block diagram of the conventional failure point locating device described above. A conventional failure point locating device has a locating section 10 for line IL.
1 and a 10-bi positioning section for line 2L, each of which carried out positioning separately.

例えハードウェア的には一体化していても、内部のソフ
トウェア処理では、回線ILと回線2Lの標定を別々に
行っている。そこで以下では、一方の回線ILの標定部
101についての構成と作用について述べる。
Even if they are integrated in terms of hardware, internal software processing performs the orientation of the line IL and line 2L separately. Therefore, the configuration and operation of the orientation section 101 of one line IL will be described below.

標定部101において、102は回線ILの事故検出部
であり、回線ILの短絡事故検出を例えば距離リレーな
どにより検出する。なお、ここでは事故検出部+02を
故障点標定装置の中においているが、外部において事故
検出を行ない、事故検出による起動信号を入力する構成
のものもある。
In the orientation section 101, 102 is a line IL accident detection section, which detects a short circuit accident on the line IL using, for example, a distance relay. Although the accident detection unit +02 is placed inside the failure point locating device here, there is also a configuration in which the accident is detected externally and a start signal is inputted based on the accident detection.

+03は事故相判別部であり、事故検出部102からの
事故検出による起動信号で事故相の判別を開始する。こ
の判別は、故障点の標定をどの相で行うかを決めるもの
で、例えば母線電圧V−,Vb。
+03 is an accident phase discriminating section, which starts determining the accident phase in response to a start signal from the accident detection section 102 upon detection of an accident. This determination determines in which phase the failure point is to be located, for example, bus voltages V- and Vb.

VCから△電圧V l111+ V ban V aa
を求め、その△電圧の最小値で判別する。即ち、 Vabが最小ならab相で標定 ■工が最小ならbc相で標定 ■。、が最小ならaa相で標定すべきことを判別するわ
けである。標定演算部104は、上記の判別結果を受け
て、以下のような演算を行う。ab相で標定する場合、 ここで、Zlは単位長あたりの正相インピーダンスであ
り、線路の不平衡を無視すれば、2、=2.−2゜ Z、:単位長あたりの自己インピーダンスZ、二単位長
あたりの相互インピーダンスである。実際の標定装置で
は線路の不平衡を考慮したり、他の相(ここではC相)
の影響を考慮したり、電流として事故前後の変化分を用
いたりするが、この発明のポイントには関係しないので
上記の原理式のみで説明している。bC相、aa相の場
合も同様に、 で演算して標定する。以下、(1)〜(3)式の根拠を
示すため、変電所からの距離x0地点での回線ILのb
c相短絡事故を考える。°つまり(2)式を証明する。
△voltage from VC V l111+ V ban V aa
is determined, and the determination is made based on the minimum value of the △voltage. That is, if Vab is the minimum, orient in the ab phase; (2) If the work is the minimum, orient in the bc phase. , it is determined that orientation should be performed in the aa phase. The orientation calculation unit 104 receives the above determination result and performs the following calculation. When locating in the ab phase, Zl is the positive sequence impedance per unit length, and if line unbalance is ignored, 2, = 2. -2°Z: Self impedance Z per unit length, mutual impedance per two unit lengths. In actual positioning equipment, track unbalance is taken into consideration, and other phases (here, C phase) are
However, since this is not related to the point of this invention, only the above principle formula is used for explanation. In the case of the bC phase and the aa phase, the calculation is similarly performed and the orientation is performed. Below, in order to show the basis of equations (1) to (3), b of the line IL at the distance x0 point from the substation
Consider a c-phase short circuit accident. °In other words, we prove equation (2).

この時の等価回路は第2図のようになる。The equivalent circuit at this time is as shown in FIG.

ここで、Z、:事故点までの線路の自己インピーダンス Z、:事故点までの線路の回線内相互 インピーダンス ■F=事故電流 である。この時、故障点標定装置への入力電流は、I 
L : Ttl=IF、  I。”  IF2L:Ib
’ =Q、IC=0 であり、回路方程式から VbV−=Z−1b”Z−1−”Z−(IC)”Z−(
Ib)・(Z、−Z、)(I、、−1,) =(Z−Z−)IP 故に標定結果は、 となり、正確に真値X0を標定することができる。
Here, Z: self-impedance of the line up to the fault point Z,: intra-line mutual impedance of the line up to the fault point ■F=fault current. At this time, the input current to the failure point locating device is I
L: Ttl=IF, I. ”IF2L:Ib
'=Q, IC=0, and from the circuit equation, VbV-=Z-1b"Z-1-"Z-(IC)"Z-(
Ib)・(Z, −Z,)(I,, −1,) = (Z−Z−)IP Therefore, the orientation result is as follows, and it is possible to accurately locate the true value X0.

以上は2線短絡を扱ったが、中性点に流れる電流を無視
すれば、2線地絡でも同様である。また、以上のことは
他の回線2Lの標定部10ビでも同様である。
Although we have dealt with a two-wire short circuit above, the same applies to a two-wire ground fault if we ignore the current flowing to the neutral point. Further, the above is also the same for the locating section 10B of the other line 2L.

以上のように従来例の故障点標定装置では、つの回線内
での単純な相間短絡事故を正確に標定することが可能で
あった。
As described above, with the conventional failure point locating device, it was possible to accurately locate a simple phase-to-phase short circuit accident within one line.

D1発明が解決しようとする課題 しかしながら、上記従来の技術における2回線送電線の
故障点標定装置では、同一回線内に短絡事故を含む場合
には正確に標定するが、そうでない場合で2回線にまた
がった短絡事故の場合には標定結果に大きな誤差を生ず
る問題点があり、そのような場合でも正確に標定できる
ようにすることが解決すべき課題となっていた。
D1 Problem to be Solved by the Invention However, in the conventional technology described above, the failure point locating device for a two-line power transmission line accurately locates when a short circuit occurs in the same line, but when it does not, it locates the fault point in the two lines. In the case of a straddling short-circuit accident, there is a problem in that large errors occur in the orientation results, and it has been an issue to be solved to enable accurate orientation even in such cases.

即ち、第3図の2回線にわたる短絡事故例の等価回路に
おいて、故障点標定装置への入力電流は、l L : 
Tb= IF、  I C=02L : Ib=O,I
C=  IP であり、Zm’を事故点までの線路の回線間相互インピ
ーダンスとすると、回路方程式からVb  VC=Z@
IF  ZIII’lF+ZIIIF  ZllI’I
F=2 (Z、−Z、′)IF 故に標定結果は、 となる。ここで、真値x0と比較すると、回線IL。
That is, in the equivalent circuit of the example of a short-circuit accident over two circuits shown in FIG. 3, the input current to the failure point locating device is l L :
Tb=IF, IC=02L: Ib=O,I
If C= IP and Zm' is the inter-line mutual impedance of the line up to the fault point, then from the circuit equation, Vb VC=Z@
IF ZIII'lF+ZIIIF ZllI'I
F=2 (Z, -Z,')IF Therefore, the orientation result is as follows. Here, when compared with the true value x0, the line IL.

2Lとも、 であり、z、=:z、’  とするならば、となり、は
ぼ真値x0の2倍の標定結果となってしまうことがわか
る。
For both 2L, if z,=:z,', then it becomes clear that the orientation result is approximately twice the true value x0.

本発明は、上記課題を解決するために創案されたしので
、2回線送電線における相間短絡を含む事故の故障点標
定において、その短絡事故が同一回線内の場合でも2回
線にまたがる場合でも、正確に標定を行えるようにした
故障点標定装置を提に回線料に事故相を判別せず、2回
線を含めて、供することを目的とする。
The present invention has been devised to solve the above-mentioned problems. Therefore, in locating the fault point of an accident involving a phase-to-phase short circuit in a two-line power transmission line, whether the short-circuit accident occurs within the same line or across two lines, The purpose is to provide a failure point locating device that can accurately locate the fault point, including two circuits, without distinguishing the fault phase from the line charge.

83課題を解決するための手段 上記の目的を達成するための本発明の送電系の故障点標
定装置の構成は、 2回線送電線の事故を検出する手段と、上記事故が検出
されたとき母線電圧値またはそれぞれの回線の電流値の
大きさからそれぞれの回線を含めて事故相を判別する手
段と、 上記事故相が同一回線内の場合とそれぞれの回線にまた
がる場合とに分けて上記事故相により故障点の標定演算
を行う手段とを備えることを特徴とする。
83 Means for Solving the Problems To achieve the above object, the power transmission system failure point locating device of the present invention has the following features: a means for detecting an accident on a two-circuit power transmission line; There is a method for determining the fault phase including each line from the voltage value or the magnitude of the current value of each line, and a method for determining the fault phase by dividing the fault phase into cases where the above fault phases are within the same line and cases where the fault phases are spread over each line. The present invention is characterized by comprising means for locating a fault point using the following method.

29作用 本発明は、事故相を判別する手段が従来の、よう即ち事
故相が同一回線内である場合も2回線にまたかる場合ら
含めて事故相を判別し、その判別結果を受けて標定演算
を行う手段が上記それぞれの場合に分けて演算を行うこ
とにより、標定の正確化を図る。
29 Effects The present invention uses conventional means for determining the accident phase, that is, it determines the accident phase whether the accident phase is within the same circuit or across two circuits, and based on the determination result, the direction is determined. The means for performing calculations performs calculations separately for each of the above cases, thereby achieving more accurate orientation.

G、実施例 以下、本発明の実施例を図面に基づいて詳細に説明する
G. EXAMPLES Hereinafter, examples of the present invention will be described in detail based on the drawings.

第1図は本発明の一実施例を示す故障点標定装置のブロ
ック図である。lは回線ILの事故検出部、2は回線2
Lの事故検出部、3は事故相判別部、4は標定演算部で
ある。事故検出部1.2は従来と同様に構成されるもの
であり、事故検出部1では、回線ILに設置された変流
器(CT)等から入力される回線ILの線路電流値■・
・ Ib・■。と母線に設置された計器用変圧器(PT
)等から入力される母線電圧値V、、V、V。とにより
、回線ILにおける事故検出を行い、事故相判別部3に
対し起動信号を送出する。同様に事故検出部2では、回
線2Lに設置された変流器(CT)等から人力される回
線2Lの線路電流値111、’、rc’ と前述の母線
電圧値V−,Vb、V。
FIG. 1 is a block diagram of a failure point locating device showing one embodiment of the present invention. l is the fault detection part of line IL, 2 is line 2
L is an accident detection section, 3 is an accident phase discrimination section, and 4 is a location calculation section. The fault detection unit 1.2 has the same configuration as the conventional one, and the fault detection unit 1 detects the line current value of the line IL, which is input from a current transformer (CT) etc. installed in the line IL.
・Ib・■. and a potential transformer (PT) installed on the busbar.
), etc. bus voltage values V, , V, V. As a result, an accident is detected in the line IL, and a start signal is sent to the accident phase discrimination section 3. Similarly, in the fault detection unit 2, the line current value 111,',rc' of the line 2L, which is manually input from a current transformer (CT) etc. installed on the line 2L, and the above-mentioned bus voltage values V-, Vb, V.

とにより、回線2Lにおける事故検出を行い、事故相判
別部3に対し起動信号を送出する。事故相判別部3では
、この起動信号を受けると、両回線IL、2Lを含めて
事故相を判別する。即ち、前述の線路電流値1−、I−
、rc、I−、IbIc′ と母線電圧値V、、Vゎ、
Veを入力して、このうち電流値の中から1番、値の大
きいものを2つ選択し、これを標定に用いる事故相とす
る。このとき同程度のものが3つ以上あった場合は、母
線電圧から求めた△電圧が最小となるものを事故相と判
別する。標定演算部4では上記事故相判別部3の判別結
果を受けて、事故相が同一回線内であるか2回線にまた
がるかにより、場合分けして標定を行う。標定式の例を
原理式で示せば、同一回線内の事故の場合には、 ZI=単位長あたりのbc相インピーダンスで標定し、
両回線にまたがる事故の場合には、Z1′二単位長あた
りのbe’相イフィンピーダンス定する。
As a result, an accident is detected on the line 2L, and a start signal is sent to the accident phase discrimination section 3. Upon receiving this activation signal, the fault phase discriminating section 3 discriminates the fault phase including both lines IL and 2L. That is, the line current values 1-, I-
, rc, I-, IbIc' and the bus voltage value V, , Vゎ,
Ve is input, and the two with the largest current values are selected, and these are selected as fault phases to be used for location. At this time, if there are three or more similar phases, the phase with the smallest Δ voltage calculated from the bus voltage is determined to be the fault phase. The orientation calculation section 4 receives the determination result from the accident phase discriminating section 3 and performs location on a case-by-case basis depending on whether the accident phase is within the same circuit or across two circuits. To show an example of the location method using the principle formula, in the case of an accident within the same line, location is performed using ZI = bc phase impedance per unit length,
In the case of an accident that spans both lines, the be' phase ifimpedance per two unit lengths of Z1' is determined.

以上のように構成した実施例の作用を説明する。The operation of the embodiment configured as above will be explained.

第2図、第3図、第4図はその説明のための相間短絡事
故例の等価回路を示している。各図において、Z、、Z
、、Z、’ 、Z、、IPは従来例と同じ定義のもので
ある。
FIG. 2, FIG. 3, and FIG. 4 show equivalent circuits of an example of an inter-phase short circuit accident for the purpose of explanation. In each figure, Z,,Z
,,Z,' ,Z,,IP has the same definition as in the conventional example.

第2図に示すbc相短絡の場合、線路電流1b。In the case of the bc phase short circuit shown in FIG. 2, the line current is 1b.

■。が同程度であり、bc相が事故相判別部3によって
選択される。この時の標定演算部4の標定結果Xは、真
値をX。とじて従来例と同様になり、正確に標定する。
■. are almost the same, and the bc phase is selected by the accident phase determination section 3. The orientation result X of the orientation calculation unit 4 at this time is the true value. The result is the same as in the conventional example, and accurate orientation is achieved.

次に第3図に示す2回線にまたがるbe’相短絡の場合
、tb、Ic′が同程度であり、bc’相が事故相判別
部3によって選択される。この時の標定結果Xは、従来
例とは異なり、 となる。ここで、 Z、’  =2 (1−1’ )/x。
Next, in the case of a short-circuit in the be' phase spanning two lines as shown in FIG. The orientation result X at this time, unlike the conventional example, is as follows. Here, Z,' = 2 (1-1')/x.

であるから、X =X oとなって正確に標定すること
ができる。即ち、従来例では、2倍程度に標定していた
のに比べて標定精度が格段に向上する。
Therefore, X = X o, and accurate orientation is possible. In other words, the orientation accuracy is significantly improved compared to the conventional example where the orientation is approximately twice as accurate.

さらに、第4図に示ずab−c’相短絡の場合のように
、複雑な事故の場合、 IL: Ia=Ip、1b=alF、Ia=02L :
 Ia’ =O,Ib’ =O,Ic’ =a”Irた
だしa−−1/2+jr丁/2 a”=−1/2− jr丁/2 V −= Z −1−+ Z −1b + Z −1’
  E。
Furthermore, in the case of a complicated accident such as the ab-c' phase short circuit shown in Fig. 4, IL: Ia=Ip, 1b=alF, Ia=02L:
Ia' = O, Ib' = O, Ic' = a"Ir, however, a--1/2+jr/2 a"=-1/2- jr/2 V -= Z -1-+ Z -1b + Z-1'
E.

Vb=Z−1−+Z−1b+Z−’  ICvc=z、
’  t、+z、’  Ib+ZsrcV、−Vb:(
Z、−Z−)(l−−1b)v b−V 、=(z、−
z、’) r 、+(z、−z、’)(+ b−!e’
)V C−V 、=(Z 、−Z、’)(I 、t−r
 、)−(Z、−Z、”)  Ibただし V−b=V
、  V b V bc” V b   V c Ve、=V、−V。
Vb=Z-1-+Z-1b+Z-' ICvc=z,
' t, +z, ' Ib+ZsrcV, -Vb: (
Z, -Z-) (l--1b) v b-V , = (z, -
z,') r,+(z,-z,')(+b-!e'
)V C-V ,=(Z ,-Z,')(I , t-r
,)-(Z,-Z,") Ib where V-b=V
, V b V bc” V b V c Ve,=V, −V.

であり、ここで線路電流1.、Ib、IC’ はほぼ同
じ値となるが、z、>z、’ であることがら△電圧が
最小となるのはab相であり、事故相判別部3によりa
b相が選ばれる。この時標定結果Xは、となり、正確に
標定することができる。第4図の場合を従来例で標定す
ると、回線ILでの標定結果は本実施例と同様で正確だ
が、回線2Lでの標定結果は、 となり、極端に誤差の大きな標定となってしまう。
, where the line current 1. , Ib, and IC' have almost the same value, but since z, >z,', the △ voltage is the minimum in the ab phase, and the fault phase discriminator 3 determines that the a
Phase b is selected. At this time, the orientation result X is as follows, and accurate orientation is possible. If the case of FIG. 4 is oriented using the conventional example, the locating result on the line IL is similar to the present embodiment and is accurate, but the locating result on the line 2L is as follows, resulting in an extremely large error in the locating result.

このように従来例では、2回線にまたがる3相以上の短
絡事故の場合、回線内に短絡回路が形成されている回線
は正確に標定するものの、そうでない回線は誤差が大き
いという問題点を有していたが、本実施例では正確に標
定できることがわかる。
As described above, in the case of a short-circuit accident involving three or more phases that spans two lines, the conventional method has the problem that although lines with short circuits formed within the lines can be accurately located, lines without such short circuits have large errors. However, it can be seen that accurate orientation can be achieved in this example.

なお、本実施例における標定式は原理式であり、実際に
は線路の不平衡や事故相以外の他の相の影響等を考慮し
たりして、標定演算を行っても良いことは当然である。
Note that the orientation formula in this example is a principle formula, and it goes without saying that the orientation calculation may actually be performed by taking into account the unbalance of the track, the influence of other phases other than the accident phase, etc. be.

このように、本発明はその主旨に沿って種々に応用され
、種々の実施態様を取り得るものである。
As described above, the present invention can be applied in various ways and can take various embodiments in accordance with its gist.

1(6発明の効果 以上の説明で明らかなように、本発明の送電系の故障点
標定装置によれば、同一回線内の短絡事故であっても、
2回線にまたがる短絡事故であっても、さらに2回線に
またがる3相以上の短絡事故の場合にも、正確に故障点
標定を行うことができる。
1 (6 Effects of the Invention) As is clear from the above explanation, according to the power transmission system failure point locating device of the present invention, even if a short circuit occurs within the same line,
Even in the case of a short-circuit accident that spans two lines, and even in the case of a short-circuit accident that spans three or more phases that spans two lines, it is possible to accurately locate the fault point.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す故障点標定装置のブロ
ック図、第2図、第3図、第4図は相間短絡事故例の等
価回路図、第5図は従来例の故障点標定装置の説明図、
第6図は従来例の故障点標定装置のブロック図である。 1.2・・・事故検出部、3・・・事故相判別部、4・
・・標定演算部。 第3図 第4図
Fig. 1 is a block diagram of a failure point locating device showing an embodiment of the present invention, Figs. 2, 3, and 4 are equivalent circuit diagrams of an example of an interphase short circuit accident, and Fig. 5 is a failure point of a conventional example. An explanatory diagram of the orientation device,
FIG. 6 is a block diagram of a conventional failure point locating device. 1.2... Accident detection section, 3... Accident phase discrimination section, 4.
... Orientation calculation section. Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] (1)2回線送電線の事故を検出する手段と、上記事故
が検出されたとき母線電圧値またはそれぞれの回線の電
流値の大きさからそれぞれの回線を含めて事故相を判別
する手段と、 上記事故相が同一回線内の場合とそれぞれの回線にまた
がる場合とに分けて上記事故相により故障点の標定演算
を行う手段とを備えることを特徴とする送電系の故障点
標定装置。
(1) means for detecting a fault in a two-circuit power transmission line, and means for determining the fault phase including each line from the bus voltage value or the magnitude of the current value of each line when the above fault is detected; A fault point locating device for a power transmission system, comprising means for locating a fault point based on the fault phases separately when the fault phases are within the same circuit and when the fault phases are across different circuits.
JP19778288A 1988-08-08 1988-08-08 Fault locator for power transmission system Expired - Fee Related JP2692163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19778288A JP2692163B2 (en) 1988-08-08 1988-08-08 Fault locator for power transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19778288A JP2692163B2 (en) 1988-08-08 1988-08-08 Fault locator for power transmission system

Publications (2)

Publication Number Publication Date
JPH0247566A true JPH0247566A (en) 1990-02-16
JP2692163B2 JP2692163B2 (en) 1997-12-17

Family

ID=16380262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19778288A Expired - Fee Related JP2692163B2 (en) 1988-08-08 1988-08-08 Fault locator for power transmission system

Country Status (1)

Country Link
JP (1) JP2692163B2 (en)

Also Published As

Publication number Publication date
JP2692163B2 (en) 1997-12-17

Similar Documents

Publication Publication Date Title
KR20170018459A (en) Leakage current calculation device and leakage current calculation method
JPS646608B2 (en)
US6034592A (en) Process for producing signals identifying faulty loops in a polyphase electrical power supply network
US5764064A (en) Method and device for identifying single ground faults
EP3961836A1 (en) Determining of a power line fault
CA2104195C (en) Computationally-efficient distance relay for power transmission lines
JP3109633B2 (en) Insulation degradation detector
JPH0247566A (en) Apparatus for determining point of fault in power transmission system
JP2010060329A (en) Apparatus and method for measuring leakage current of electrical path and electric instrument
JPH11142465A (en) Ground-fault point detecting method
JPH0758308B2 (en) Fault location method for 3-terminal transmission system
JP2002098729A (en) Leak current probing device
JP2714099B2 (en) AC machine current controller
JPH07322476A (en) Multiple failure detection method and failure phase discrimination method
JPH0552469B2 (en)
JP2008145155A (en) Apparatus for detecting resistance component current of zero-phase current and leakage monitoring apparats
JP2633637B2 (en) Symmetrical protection relay
JP2715090B2 (en) Fault location device
JPH09304468A (en) Method for locating fault-point of parallel two line system
JP3483621B2 (en) AC electricity change detection method
JPS6176014A (en) Disconnection detector
JPH03107776A (en) Method and device for locating fault point
JPH04208868A (en) Uninterruptible insulation diagnostic apparatus
JP2565958B2 (en) Directional relay
JPH01286727A (en) Digital bus protective apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees