JPH0246567B2 - 33KURORUPUROPENNOSEIHO - Google Patents

33KURORUPUROPENNOSEIHO

Info

Publication number
JPH0246567B2
JPH0246567B2 JP6821686A JP6821686A JPH0246567B2 JP H0246567 B2 JPH0246567 B2 JP H0246567B2 JP 6821686 A JP6821686 A JP 6821686A JP 6821686 A JP6821686 A JP 6821686A JP H0246567 B2 JPH0246567 B2 JP H0246567B2
Authority
JP
Japan
Prior art keywords
reaction
chloride
raw material
chloropropene
dichloropropane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6821686A
Other languages
Japanese (ja)
Other versions
JPS62223135A (en
Inventor
Tooru Kitamura
Masaaki Kadoma
Hiroyuki Kanezaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Daiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiso Co Ltd filed Critical Daiso Co Ltd
Priority to JP6821686A priority Critical patent/JPH0246567B2/en
Publication of JPS62223135A publication Critical patent/JPS62223135A/en
Publication of JPH0246567B2 publication Critical patent/JPH0246567B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(発明の技術分野) 本発明は1,2―ジクロルプロパンを熱分解し
て3―クロルプロペンを製造する方法に関する。 (従来技術及び問題点) 3―クロルプロペンは塩化アリルとも称され、
エピクロルヒドリンの原料となる化合物である。
本発明の原料となる1,2―ジクロルプロパンは
プロピレンの塩素付加によつて生成されるが、プ
ロピレンの高温塩素化による塩化アリルの製造時
及びプロピレンのクロルヒドリン化による酸化プ
ロピレン製造時の副産物としても生産されてい
る。1,2―ジクロルプロパンは主に溶剤として
使用されているが、上記副産物である1,2―ジ
クロルプロパンの他の工業的用途が見出されるこ
とはこれらの分野において重要な課題である。 従来、1,2―ジクロルプロパンが熱分解反応
により脱塩化水素して1―クロルプロペン,2―
クロルプロペンと共に3―クロルプロペンを生成
することは既に知られている。ところがこの熱分
解反応では原料1,2―ジクロルプロパンの過分
解及び生成した3―クロルプロペンや1―クロル
プロペン,2―クロルプロペンの二次分解等の副
反応によりベンゼンやタール状物質,炭化物等が
反応器内や配管等に付着する、いわゆるコーキン
グ現象が生じるという問題があつた。このコーキ
ング現象を低減させる方法として熱分解反応系に
水蒸気を混合する方法(特公昭39―24871号公報)
や酸素を添加する方法(特開昭54―135712号公
報)が提案された。しかし、1,2―ジクロルプ
ロパンを熱分解させて3―クロルプロペンを製造
する方法は本来吸熱反応であり、そのため反応系
内の温度は一般に不均一になり勝ちであり、上記
水蒸気や酸素を用いる方法においても反応系にお
ける局部的な過加熱部分は避けられず、コーキン
グ現象は低減しても反応によつて生成した3―ク
ロルプロペンの再熱分解等の副反応を抑制するこ
とは難しく目的物の収率の低下は避けられないも
のであつた。 本発明者らは、先に熱分解反応を均一反応系で
行なう方法として溶融塩を用いる方法を出願した
(特願昭60―89774号)が、この方法においてもコ
ーキング現象を完全に抑制することはできず、長
時間の連続運転は実際上困難なことであつた。 (発明の目的) 本発明は上記問題点を改善した1,2―ジクロ
ルプロパンから3―クロルプロペンを高収率に製
造する方法を提供するものである。 (発明の構成) 本発明は、1,2―ジクロルプロパンを原料と
して3―クロルプロペンを製造するに際し、塩化
アルカリ金属塩及び塩化アルカリ土類金属塩から
選ばれた1種又は2種以上の金属塩化物中に電極
を挿入し、通電による極間抵抗の発熱を利用して
400〜750℃に加熱した溶融塩中で原料を脱塩化水
素反応させることを特徴とする3―クロルプロペ
ンの製法である。 本発明において溶融塩を形成する物質としては
塩化アルカリ金属塩もしくは塩化アルカリ土類金
属塩あるいはこれらの混合物が挙げられる。金属
の塩化物の内、塩化アルミニウムや塩化亜鉛等の
ルイス酸としての性質を有するものは、原料の反
応率を増加させるが3―クロルプロペンの選択率
を低下させ本発明の目的のために好ましくないこ
とが判つた。 上記アルカリ金属もしくはアルカリ土類金属の
塩化物は原料1,2―ジクロルプロパンの熱分解
条件下で溶融しているものを用いる必要があり、
通常は上記塩化物の中から共晶点温度を低下させ
る目的で異種の塩化物を混合して用いるのが好ま
しい。また2種以上の混合物の一部が固体として
析出しているものも使用できる。本発明における
代表的な塩化物の例としては、塩化リチウム,塩
化ナトリウム,塩化カリウム,塩化マグネシウ
ム,塩化カルシウム,塩化バリウム等が挙げられ
る。 本発明に用いられる電極としては、単体金属又
はこれらの合金あるいはカーボンなどが挙げられ
る。特に本発明によつて生ずる塩化水素ガスに対
する安定性あるいは溶融塩に対する耐腐食性など
からカーボンを用いることが望ましい。 本発明の脱塩化水素反応は、上記塩化アルカリ
金属塩又は塩化アルカリ土類金属塩又はこれらの
混合物中に電極を挿入して交流電気を通じ、該塩
化物の電気抵抗による発熱によつて温度400〜750
℃、好ましくは500〜700℃の溶融塩を形成させ、
この溶融塩の中に原料1,2―ジクロルプロパン
を吹込むことによつて達成される。溶融塩の温度
が400℃より低いと原料の反応率が低すぎて好ま
しくない。また750℃をこえると反応率は上がる
が、生成した3―クロルプロペンが再分解してベ
ンゼン等を生成するなど副反応が多くなつて目的
物の収率が低下する。原料は反応系に供給する前
に沸点以上反応温度以下に予熱して吹き込んでも
よい。また反応か不活性気体、例えば窒素ガス,
ヘリウムガス,アルゴンガス気流下で行うことが
できる。加熱は、所定温度になるまで、あるいは
反応熱源の補助としてヒーター等の外部熱源によ
る加熱を行つてもよく、電極は反応容器自体を対
極として用いてもよい。 (発明の効果) 本発明は、熱分解反応に必要な多量の熱を通電
による溶融塩の電気抵抗の発熱を利用して内部発
生的に供給しているため、外部熱源からの伝熱面
のみによる局所的な加熱方法と較べて溶融塩の温
度制御が容易になり、均一な温度分布を維持しな
がら反応系に速やかに多量に熱を供給できるので
生成した目的物の再分解によるベンゼン等の副生
が抑制され、3―クロルプロペンの選択率が著し
く向上すると共に、反応に伴うコーキング現象が
抑制されて反応装置の長期運転が可能となるなど
工業的製法として非常に優れている。 (実施例) 実施例 1 第1図に示されるような、内径27cm、高さ74cm
の耐酸セメント内張鉄製反応器1に、塩化カリウ
ム24.4Kgと塩化マグネシウム15.6Kgを充填し、カ
ーボン電極3を挿入して電流225A、電圧50Vの
交流電気を通じ、溶融塩2の電気抵抗により発熱
させて熱電対温度計5の指示温度600℃まで上昇
させ、この温度を維持させながら溶融塩中に原料
吹込管4より150℃に予熱した原料1,2―ジク
ロルプロパンを10Kg/時間の割合で47時間吹込み
熱分解させた。反応ガス排出管6より排出された
分解生成物は供液冷却法によつて急冷させ、副生
した塩化水素ガスを水に吸収させた後、ドライア
イス―アセトン冷却トラツプを通して生成物を捕
集した。 得られた生成物をガスクロマトグラフにより分
析しその結果を表1に示した。 実施例 2 底部を有する、内径10cm、高さ60cmのステンレ
ス製反応管に、塩化カリウム3.3Kgと塩化マグネ
シウム2.0Kgを充填し、予め外部ヒーターにより
上記塩化物を600℃に加熱して溶融せしめた後、
これにステンレス製の電極を挿入し、反応管を対
極として電流110A、電圧53Vの交流電気を通じ、
上記600℃の温度を維持させながら溶融塩中に100
℃に予熱した原料1,2―ジクロルプロパンを10
Kg/時間の割合で40時間吹込み熱分解させた。分
解生成物は水冷ジヤケツト式冷却管によつて急冷
させ、副生した塩化水素ガスを水に吸収させた
後、ドライアイス―アセトン冷却トラツプを通し
て生成物を捕集した。 得られた生成物をガスクロマトグラフにより分
析しその結果を表1に示した。 比較例 1 実施例2において、電極を用いる通電による内
部加熱を行わず、外部ヒーターのみによつて反応
温度をを600℃に維持させた以外は同様にして熱
分解を行つたところ、原料吹込み開始後20時間経
過後に反応管の反応ガス排出口が炭化物で閉塞さ
れ運転が不可能となつた。表1の結果は閉塞され
るまでの生成物の分析値である。 なお、表1における反応率,選択率及びベンゼ
ン生成率は下記式により算出した。 反応率(%)=[1―(未反応原料(モル)/供給原料
(モル))]×100 選択率(%)=[3―クロルプロペン(モル)/(供給
原料(モル)―未反応原料(モル))]×100 ベンゼン生成率(%)=[2×ベンゼン(モル)/(供
給原料(モル)―未反応原料(モル))]×100 また表1の反応温度は溶融塩の温度で示した。
(Technical Field of the Invention) The present invention relates to a method for producing 3-chloropropene by thermally decomposing 1,2-dichloropropane. (Prior art and problems) 3-Chlorpropene is also called allyl chloride,
It is a compound that is the raw material for epichlorohydrin.
1,2-dichloropropane, which is the raw material of the present invention, is produced by chlorination of propylene, and is a byproduct during the production of allyl chloride by high-temperature chlorination of propylene and the production of propylene oxide by chlorohydrination of propylene. is also produced. Although 1,2-dichloropropane is mainly used as a solvent, finding other industrial uses for the by-product 1,2-dichloropropane is an important issue in these fields. Conventionally, 1,2-dichloropropane was dehydrochlorinated by a thermal decomposition reaction to produce 1-chloropropene, 2-
It is already known that 3-chloropropene is produced together with chlorpropene. However, in this thermal decomposition reaction, benzene, tar-like substances, and carbides are produced due to side reactions such as overdecomposition of the raw material 1,2-dichloropropane and secondary decomposition of the generated 3-chloropropene, 1-chloropropene, and 2-chloropropene. There was a problem that the so-called coking phenomenon occurred, in which the substances adhered to the inside of the reactor, piping, etc. A method to reduce this coking phenomenon is to mix steam into the thermal decomposition reaction system (Japanese Patent Publication No. 39-24871)
A method of adding oxygen or oxygen was proposed (Japanese Patent Application Laid-Open No. 135712/1983). However, the method of producing 3-chloropropene by thermally decomposing 1,2-dichloropropane is essentially an endothermic reaction, and as a result, the temperature within the reaction system generally tends to be uneven, and the water vapor and oxygen described above are Regardless of the method used, local overheating in the reaction system cannot be avoided, and even if the coking phenomenon is reduced, it is difficult to suppress side reactions such as re-thermal decomposition of 3-chloropropene produced by the reaction. A decrease in product yield was inevitable. The present inventors previously applied for a method using molten salt as a method for performing a thermal decomposition reaction in a homogeneous reaction system (Japanese Patent Application No. 1989-89774), but this method also does not completely suppress the coking phenomenon. However, continuous operation for long periods of time was practically difficult. (Objective of the Invention) The present invention provides a method for producing 3-chloropropene from 1,2-dichloropropane in high yield, which improves the above-mentioned problems. (Structure of the Invention) The present invention provides for the production of 3-chloropropene using 1,2-dichloropropane as a raw material, using one or more selected from alkali metal chlorides and alkaline earth metal chlorides. By inserting an electrode into a metal chloride and utilizing the heat generated by the resistance between the electrodes when energized
This method for producing 3-chloropropene is characterized by dehydrochlorinating raw materials in a molten salt heated to 400 to 750°C. In the present invention, the substance forming the molten salt includes an alkali metal chloride, an alkaline earth metal chloride, or a mixture thereof. Among metal chlorides, those having properties as Lewis acids, such as aluminum chloride and zinc chloride, increase the reaction rate of raw materials but decrease the selectivity of 3-chloropropene, and are preferred for the purpose of the present invention. It turns out there isn't. The above alkali metal or alkaline earth metal chloride must be molten under the thermal decomposition conditions of the raw material 1,2-dichloropropane,
Usually, it is preferable to use a mixture of different types of chlorides among the above chlorides for the purpose of lowering the eutectic point temperature. Furthermore, a mixture of two or more types in which a part of the mixture is precipitated as a solid can also be used. Typical examples of chlorides in the present invention include lithium chloride, sodium chloride, potassium chloride, magnesium chloride, calcium chloride, barium chloride, and the like. Examples of the electrode used in the present invention include single metals, alloys thereof, and carbon. In particular, it is desirable to use carbon because of its stability against hydrogen chloride gas produced by the present invention or its corrosion resistance against molten salt. In the dehydrochlorination reaction of the present invention, an electrode is inserted into the alkali metal chloride or alkaline earth metal chloride, or a mixture thereof, and alternating current electricity is passed through the chloride to generate heat due to the electrical resistance of the chloride, thereby raising the temperature to 400-400°C. 750
℃, preferably 500-700℃ to form a molten salt,
This is achieved by blowing the raw material 1,2-dichloropropane into this molten salt. If the temperature of the molten salt is lower than 400°C, the reaction rate of the raw materials will be too low, which is not preferable. Furthermore, when the temperature exceeds 750°C, the reaction rate increases, but the yield of the target product decreases due to the increase in side reactions such as the re-decomposition of the generated 3-chloropropene to produce benzene, etc. The raw material may be preheated to a temperature above the boiling point and below the reaction temperature before being blown into the reaction system. It is also possible to react with an inert gas, such as nitrogen gas,
It can be performed under a helium gas or argon gas flow. Heating may be performed until a predetermined temperature is reached, or heating may be performed by an external heat source such as a heater as an auxiliary heat source for the reaction, and the reaction vessel itself may be used as a counter electrode. (Effects of the Invention) The present invention internally supplies a large amount of heat necessary for the pyrolysis reaction by utilizing the heat generated by the electrical resistance of the molten salt when electricity is applied, so only the heat transfer surface from the external heat source is supplied. Compared to local heating methods, it is easier to control the temperature of the molten salt, and it is possible to quickly supply a large amount of heat to the reaction system while maintaining a uniform temperature distribution. By-products are suppressed, the selectivity of 3-chloropropene is significantly improved, and the coking phenomenon accompanying the reaction is suppressed, making it possible to operate the reactor for a long period of time, making it an excellent industrial production method. (Example) Example 1 As shown in Figure 1, the inner diameter is 27 cm and the height is 74 cm.
An acid-resistant cement-lined iron reactor 1 was filled with 24.4 kg of potassium chloride and 15.6 kg of magnesium chloride, a carbon electrode 3 was inserted, and AC electricity with a current of 225 A and a voltage of 50 V was applied to generate heat due to the electrical resistance of the molten salt 2. The temperature indicated by the thermocouple thermometer 5 was raised to 600℃, and while maintaining this temperature, raw material 1,2-dichloropropane preheated to 150℃ was added to the molten salt from the raw material blowing pipe 4 at a rate of 10 kg/hour. Blow pyrolysis was carried out for 47 hours. The decomposition products discharged from the reaction gas discharge pipe 6 were rapidly cooled by a liquid cooling method, and after the by-produced hydrogen chloride gas was absorbed into water, the products were collected through a dry ice-acetone cooling trap. . The obtained product was analyzed by gas chromatography and the results are shown in Table 1. Example 2 A stainless steel reaction tube with a bottom having an inner diameter of 10 cm and a height of 60 cm was filled with 3.3 kg of potassium chloride and 2.0 kg of magnesium chloride, and the chlorides were previously heated to 600°C using an external heater to melt them. rear,
A stainless steel electrode was inserted into this, and AC electricity with a current of 110A and a voltage of 53V was passed using the reaction tube as the counter electrode.
100 in the molten salt while maintaining the temperature above 600℃.
The raw material 1,2-dichloropropane preheated to 10°C
Blow pyrolysis was carried out for 40 hours at a rate of Kg/hour. The decomposition products were rapidly cooled using a water-cooled jacket condenser, and after the by-produced hydrogen chloride gas was absorbed into water, the products were collected through a dry ice-acetone cooling trap. The obtained product was analyzed by gas chromatography and the results are shown in Table 1. Comparative Example 1 Pyrolysis was carried out in the same manner as in Example 2, except that the internal heating by energization using electrodes was not performed and the reaction temperature was maintained at 600°C only by an external heater. Twenty hours after the start, the reaction gas outlet of the reaction tube became clogged with carbide, making operation impossible. The results in Table 1 are the analytical values of the product up to occlusion. Note that the reaction rate, selectivity, and benzene production rate in Table 1 were calculated using the following formula. Reaction rate (%) = [1 - (unreacted raw material (mol) / feedstock (mol))] × 100 Selectivity (%) = [3-chlorpropene (mol) / (feedstock (mol) - unreacted Raw material (mol))] × 100 Benzene production rate (%) = [2 × benzene (mol) / (feed material (mol) - unreacted raw material (mol))] × 100 The reaction temperature in Table 1 is Shown in temperature.

【表】 表1によつて明らかなように、本発明法は外部
熱源のみを使用する比較例1に較べて目的物の選
択率が高く、ベンゼンの副生量も著しく小さい。
また反応に伴うコーキング現象が著しく抑制され
ており、反応装置の長期運転が可能である。
[Table] As is clear from Table 1, the method of the present invention has a higher selectivity for the target product than Comparative Example 1, which uses only an external heat source, and the amount of benzene by-product is also significantly smaller.
In addition, the coking phenomenon accompanying the reaction is significantly suppressed, and the reactor can be operated for a long period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例1に使用した反応装置の概略
図である。 1:反応器、2:溶融塩、3:電極、4:原料
吹込み管、5:熱電対温度計、6:反応ガス排出
管。
FIG. 1 is a schematic diagram of the reaction apparatus used in Example 1. 1: Reactor, 2: Molten salt, 3: Electrode, 4: Raw material injection pipe, 5: Thermocouple thermometer, 6: Reaction gas discharge pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 1,2―ジクロルプロパンを原料として3―
クロルプロペンを製造するに際し、塩化アルカリ
金属及び塩化アルカリ土類金属塩から選ばれた1
種又は2種以上の金属塩化物中に電極を挿入し、
通電による極間抵抗の発熱を利用して400〜750℃
に加熱した溶融塩中で原料を脱塩化水素反応させ
ることを特徴とする3―クロルプロペンの製法。
1 3- using 1,2-dichloropropane as raw material
When producing chlorpropene, 1 selected from alkali metal chlorides and alkaline earth metal chlorides
Inserting an electrode into a species or two or more metal chlorides;
400 to 750℃ using the heat generated by the resistance between electrodes when energized
A method for producing 3-chloropropene, which is characterized by subjecting a raw material to a dehydrochlorination reaction in a molten salt heated to .
JP6821686A 1986-03-26 1986-03-26 33KURORUPUROPENNOSEIHO Expired - Lifetime JPH0246567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6821686A JPH0246567B2 (en) 1986-03-26 1986-03-26 33KURORUPUROPENNOSEIHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6821686A JPH0246567B2 (en) 1986-03-26 1986-03-26 33KURORUPUROPENNOSEIHO

Publications (2)

Publication Number Publication Date
JPS62223135A JPS62223135A (en) 1987-10-01
JPH0246567B2 true JPH0246567B2 (en) 1990-10-16

Family

ID=13367380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6821686A Expired - Lifetime JPH0246567B2 (en) 1986-03-26 1986-03-26 33KURORUPUROPENNOSEIHO

Country Status (1)

Country Link
JP (1) JPH0246567B2 (en)

Also Published As

Publication number Publication date
JPS62223135A (en) 1987-10-01

Similar Documents

Publication Publication Date Title
US8791311B2 (en) Process for preparing 1,1,2,3-tetrachloropropene
JP4746544B2 (en) Production of 1-chloro-3,3,3-trifluoropropene (HCFC-1233zd) at low temperature
US2758138A (en) Pyrolysis process for making perfluoropropene from tetrafluoroethylene
JPH08104655A (en) Synthesis of 1,1,1,3,3-pentafluoropropane
US2676997A (en) Dehydrochlorination of chloroethanes
US9139496B2 (en) Process for manufacturing perfluoroolefins by pyrolysis of perfluorocarbons in the presence of hydrogen
US10017436B1 (en) Method of making 1,1,1,2,3-pentachloropropane
US3042727A (en) Preparation of fluoroform
WO2017066603A1 (en) Dehydrohalogenation reactor and process
US2841544A (en) Process for the production of fluorinecontaining compounds
JP2004043410A (en) Method for producing 1,3,3,3-tetrafluoropropene
EP0455399A2 (en) Process for making organic fluorine compounds
US2704776A (en) Process for making of fluorocarbon derivatives
JP5495676B2 (en) Method for producing chloroalkane
JPH0246567B2 (en) 33KURORUPUROPENNOSEIHO
JP2609321B2 (en) Hexafluoropropene production method
US2946828A (en) Process for preparing aliphatic fluorine compounds
US2826491A (en) Method of producing refractory metals
CN112723981B (en) Method for preparing E-1,1,1,4,4, 4-hexafluoro-2-butene by gas phase fluorination
US2635117A (en) Preparation of polychloroacetones
US2034292A (en) Production of carbon chlorides
US2412308A (en) Production of vinyl chloride
US20040102659A1 (en) Method of producing difluoromethane
JPH11500132A (en) Synthesis of tetrafluoroethylene
US2884467A (en) Preparation of fluorocarbon compounds from phosphorous v fluoride and carbon

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees