JPH0246326A - Travel speed changing structure of working vehicle - Google Patents

Travel speed changing structure of working vehicle

Info

Publication number
JPH0246326A
JPH0246326A JP63197786A JP19778688A JPH0246326A JP H0246326 A JPH0246326 A JP H0246326A JP 63197786 A JP63197786 A JP 63197786A JP 19778688 A JP19778688 A JP 19778688A JP H0246326 A JPH0246326 A JP H0246326A
Authority
JP
Japan
Prior art keywords
hydraulic clutch
deflection
acceleration
deviation
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63197786A
Other languages
Japanese (ja)
Other versions
JP2545117B2 (en
Inventor
Satoshi Iida
聡 飯田
Yoshiyuki Katayama
良行 片山
Takeshi Ura
裏 猛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP63197786A priority Critical patent/JP2545117B2/en
Publication of JPH0246326A publication Critical patent/JPH0246326A/en
Application granted granted Critical
Publication of JP2545117B2 publication Critical patent/JP2545117B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)

Abstract

PURPOSE:To obtain a smooth start-up characteristic by controlling a booster mechanism by the controlled variable based on the deflection between the actual and target accelerations of a traveling body and the differential value of the deflection and providing a control means for altering the pressure rising characteristic of a hydraulic clutch in a hydraulic clutch type transmission gear. CONSTITUTION:When a forward and backward operating lever 4 is switched in the forward and backward transmission gear of an agricultural tructor and the like, a forward hydraulic clutch FC or a backward hydraulic clutch RC corresponding to the operating direction is switched on, and the opposite side is switched off. The variation DELTAalpha of the pressure rise gradient by the fuzzy inference is calculated based on the deflection value E' of the deflection E between the actual acceleration (a) obtained by differentiating the detected value of a rotation sensor and the target acceleration (a0). The operating voltage V to be outputted into an electromagnetic proportion control valve 3 is then outputted. The supply oil pressure to the hydraulic clutches FC, RC is thus controlled so as to obtain a smooth start-up characteristic with little speed change shock from the semi-clutched state up to the completely connected state.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は油圧クラッチ式変速装置における油圧クラッチ
への給油圧を制御して、半クラツチ状態から完全な接続
状態に到るまでを変速ショック少なく行なえるものを提
供する点に目的を有する作業車の変速構造に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention controls the oil pressure supplied to the hydraulic clutch in a hydraulic clutch type transmission to reduce shift shock from a half-clutched state to a fully engaged state. The present invention relates to a transmission structure for a work vehicle whose purpose is to provide something that can be used.

〔従来の技術〕[Conventional technology]

このような目的を達成するものとして、従来、走行加速
度に応じて昇圧特性を設定する構成のものがあった(例
えば、特開昭62−231841号公報)。
To achieve this purpose, there has conventionally been a structure in which the pressure increase characteristic is set depending on the running acceleration (for example, Japanese Patent Laid-Open No. 62-231841).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

この場合には確かに走行加速度を制御要素としているの
で、走行速度を制御要素とするものに比べて、加速感に
よって゛乗りごこち”状態が左右されることに適合した
制御形態であると言えるが、加速度だけでの制御要素で
あれば、目標加速度に対する偏差が大きい程加速度を高
めるべく油圧クラッチへの昇圧速度を大きくとるので、
偏差に応じた加速度設定しかできない。
In this case, since the driving acceleration is certainly used as a control element, it can be said that this control form is more suited to the fact that the "comfortable ride" is influenced by the feeling of acceleration, compared to the control element that uses driving speed as the control element. However, if the control element is based only on acceleration, the greater the deviation from the target acceleration, the greater the pressure increase rate to the hydraulic clutch to increase the acceleration.
The acceleration can only be set according to the deviation.

しかし、例えば偏差は同じであっても路面の状態や走行
変速位置等の違いで、同じ昇圧特性を採用すると、目標
加速度点でオーバーシュートを起したり、目標加速度に
到るまで時開がかかり過ぎるといった欠点があり、未だ
改善の余地が残されていた。
However, for example, even if the deviation is the same, due to differences in road surface conditions, traveling gear shift positions, etc., if the same boost characteristics are adopted, overshoot may occur at the target acceleration point, or the time difference may be delayed until the target acceleration is reached. There were some shortcomings, such as being too slow, and there was still room for improvement.

本発明の目的は制御要素を追加することによって、より
細かく制御を行い、今まで以上に円滑な発進特性を得る
ことができるものを提供する点にある。
An object of the present invention is to provide a vehicle that can perform more detailed control and obtain smoother starting characteristics than ever before by adding control elements.

〔課題を解決するための手段〕[Means to solve the problem]

本発明による特徴構成は、走行機体の実加速度と目標加
速度との偏差、及び、この偏差の微分値に基づく制御量
で昇圧機構を制御して、油圧クラッチ式変速装置におけ
る油クラッチの昇圧特性を、変更する制御手段を設けて
ある点にあり、その作用・効果は次の通りである。
The characteristic configuration according to the present invention is to control the pressure increase mechanism with a control amount based on the deviation between the actual acceleration and the target acceleration of the traveling aircraft and the differential value of this deviation, thereby controlling the pressure increase characteristic of the oil clutch in the hydraulic clutch type transmission device. , a control means for changing is provided, and its functions and effects are as follows.

〔作 用〕[For production]

つまり、目標加速度との偏差が同じであっても、加速度
の偏差に対する微分値が正の値を採るか或いは負の値を
とるかによって、偏差だけで設定された昇圧特性に対し
て微分値からの補正を加えることができ、目標加速度に
対してオーバーシュートすることなく短時間で到達させ
ることができる。つまり、加速度の微分値が正であると
いうことは、加速度が増大傾向にあるので、加速度の微
分値がOの場合よりも昇圧度を小さくして目標加速度で
のオーバーシュートを抑制でき、又反対に、加速度の微
分値が負であるということは、加速度が減少傾向にある
ので、加速度の微分値が0の場合よりも昇圧度を大きく
して目標加速度に迅速に到達できるようにする。
In other words, even if the deviation from the target acceleration is the same, depending on whether the differential value with respect to the acceleration deviation takes a positive value or a negative value, the differential value will differ from the differential value for the boost characteristic set only by the deviation. correction can be added, and the target acceleration can be reached in a short time without overshooting. In other words, if the differential value of acceleration is positive, the acceleration tends to increase, so the degree of pressure increase can be made smaller than when the differential value of acceleration is O to suppress overshoot at the target acceleration, and vice versa. Furthermore, since the differential value of acceleration is negative, the acceleration tends to decrease, so the degree of pressure increase is made larger than when the differential value of acceleration is 0, so that the target acceleration can be reached more quickly.

〔発明の効果〕〔Effect of the invention〕

したがって、従来に比べてよりショック少なくかつ迅速
にクラッチ接続を行うことができるとともに、エンジン
回転速度及び負荷条件の変化にも対応できる制御形態を
提供できるに到った。
Therefore, it has become possible to provide a control form that can quickly engage the clutch with less shock than before, and can also respond to changes in engine speed and load conditions.

〔実施例〕〔Example〕

農用トラクタに使用される油圧クラッチ式変速装置とし
ての前後進変速装置(1)について説明する。第1図及
び第5図に示すように、前記油圧クラッチは前進用油圧
クラッチ(FC)と後進用油圧クラッチ(RC)とから
なり、両油圧クラッチ(FC)、 (RC)は共通のク
ラッチボディ(17)に対して夫々前進用油圧ピストン
(18)及び後進用油圧ピストン(19)並びに、前進
用摩擦多板(2A)及び後進用摩擦多板(2B)を内装
して構成されている。一方、前記クラッチボディ(17
)が一体回転可能に取付けである出力軸(16)には前
進用入力ギヤ(12)と後進用入力ギヤ(15)とが遊
嵌され、前進用入力ギヤ(12)の張出円筒部と前記後
進用人力ギヤ(15)の張出円筒部とで前記前進用摩擦
多板(2A)と後進用摩擦多板(2B)とを支持して、
これら前進用入力ギヤ(12)と後進用入力ギヤ(15
)からクラッチボディ(17)へ動力が伝達される構成
となっている。又、原動部(E)からの動力を伝達する
前進用出力ギヤ(11)は前進用人力ギヤ(12)に、
後進用出力ギヤ(13)は反転ギヤ(14)を介して後
進用入力ギヤ(15)に夫々伝動連結され、動力伝達系
路を構成する。
A forward/reverse transmission (1) as a hydraulic clutch type transmission used in an agricultural tractor will be explained. As shown in Figs. 1 and 5, the hydraulic clutch consists of a forward hydraulic clutch (FC) and a reverse hydraulic clutch (RC), and both hydraulic clutches (FC) and (RC) share a common clutch body. (17) is constructed with a forward hydraulic piston (18) and a reverse hydraulic piston (19), as well as a forward multi-friction plate (2A) and a reverse multi-friction plate (2B). On the other hand, the clutch body (17
) is attached so as to be able to rotate integrally, and a forward input gear (12) and a reverse input gear (15) are loosely fitted into the output shaft (16), and the protruding cylindrical portion of the forward input gear (12) and Supporting the forward multi-friction plates (2A) and the reverse multi-friction plates (2B) with the protruding cylindrical part of the reverse human-powered gear (15),
These forward input gears (12) and reverse input gears (15)
) to the clutch body (17). Further, the forward output gear (11) that transmits the power from the driving part (E) is connected to the forward manual power gear (12).
The reverse output gears (13) are transmission-connected to the reverse input gears (15) via reversing gears (14), forming a power transmission line.

一方、この前後進用変速装置(1)に対する操作系とし
ては油圧系と操作制御系とが設けてあり油圧系は、ポン
プ(P)からの油路を前記出力軸(16)内に形成して
前進用及び後進用リターンスプリング(26>、 (2
7)力に抗して前進用油圧ピストン(18)、及び、後
進用油圧ピストン(19)を作動させる構成であり、操
作制御系としては、油圧回路に介装されている昇圧機構
としての電磁比例制御弁(3)を操作する前後進操作レ
バー(4)、及び、操作位置を検出するロータリーエン
コーダ式検出センサ(5)、この検出センサ(5)の出
力を受けて前記電磁比例制御弁(3)を制御する制御手
段としての制御装置(6)とからなる構成である。この
電磁比例制御弁(3)は指令電圧に応じた圧に制御する
機能を有する。そこで、前後進用操作レバー(4)を切
換操作すると、その操作方向に応じて、対応する油圧ク
ラッチ(FC又はRC)が大作動され、反対側の油圧ク
ラッチ(RC又はFC)が切作動される。
On the other hand, a hydraulic system and an operation control system are provided as operating systems for this forward/reverse transmission (1), and the hydraulic system forms an oil passage from the pump (P) in the output shaft (16). forward and reverse return springs (26>, (2
7) It is configured to operate the forward hydraulic piston (18) and the reverse hydraulic piston (19) against the force, and the operation control system is an electromagnetic pressure increasing mechanism installed in the hydraulic circuit. A forward/reverse operation lever (4) that operates the proportional control valve (3), a rotary encoder type detection sensor (5) that detects the operating position, and a rotary encoder type detection sensor (5) that detects the operating position, and in response to the output of this detection sensor (5), the electromagnetic proportional control valve ( 3), and a control device (6) as a control means for controlling. This electromagnetic proportional control valve (3) has a function of controlling the pressure according to the command voltage. Therefore, when the forward/reverse operation lever (4) is switched, the corresponding hydraulic clutch (FC or RC) is activated greatly and the opposite hydraulic clutch (RC or FC) is activated, depending on the direction of operation. Ru.

次に、走行機体の実加速度(a) に基づいて電磁比例
制御弁(3)への指令電圧を変化させ、前後進用油圧ク
ラッチ(FC)、 (RC)を円滑に接続できる制御手
段(6)について説明する。ここでの制御はファジィ制
御理論に基づいて行うことにする。この制御では、前記
実加速度(a)を制御要素とするので、第1図に示すよ
うに、前後進変速装置(1)の出力軸(I6)に対する
ピックアップ弐回転センサ(9)を設け、この回転セン
サ(9)の検出値を微分して実加速度(a)、つまり、
出力軸(16)の回転角速度を得ることにする。そして
、ファジィ制御規則の前件部変数を構成する情報として
実加速度(a)  と目標加速度(ao)との偏差(E
)=a−ao、及び、この偏差(E)の微分値(E)を
採る。又、後件部変数としては電磁比例制御弁(3)へ
の出力となる昇圧勾配の変化分(Δα)を採用する。こ
こで、前件部変数より前記昇圧勾配の変化分(Δα)を
推論する過程での制御規則は、第4図に示すようなマツ
プ規則で示され、縦軸に偏差(E)及び横軸に偏差の微
分値(E)及び中央に昇圧勾配の変化分(Δα)に対応
したファジィ変数が示されている。これら制御規則は次
の形に表わされるもので、「もしEがPB(正テ大きく
)かつ、EJ(20(Q)ならば、ΔαをNB (負で
大きい)にしなさい」といったものであり、Δαの個数
でわかるように13個の命題で形成される。そして、こ
れらファジィ変数は、例えば、第2図で示すように、三
角形のファジィ集合で表わされ、横軸に偏差(巳)を採
って実際の走行状態での瞬時値(E′)が図示する位置
にあるとすると、目標加速度(a0)より小さく、かつ
、NMファジィ領域に属する度合、つまり、前記制御規
則が成立する度合が0.7として評価される。この評価
を決定するのが第2図の三角形の形状を表わすメンバー
シップ関数である。したがって、前記偏差(E) と偏
差の微分値(E)及び昇圧勾配の変化分(Δα)に対し
て、夫々、第2図で示すような、メンバーシップ関数が
仮定され(必ずしもメンバーシップ関数は三角形に限ら
ない)、実際の昇圧勾配の変化分(Δα)が算出される
Next, the control means (6) changes the command voltage to the electromagnetic proportional control valve (3) based on the actual acceleration (a) of the traveling aircraft to smoothly connect the forward/reverse hydraulic clutches (FC) and (RC). ) will be explained. Control here will be based on fuzzy control theory. In this control, the actual acceleration (a) is used as a control element, so as shown in FIG. The detected value of the rotation sensor (9) is differentiated to obtain the actual acceleration (a), that is,
Let us obtain the rotational angular velocity of the output shaft (16). Then, the deviation (E
)=a−ao, and the differential value (E) of this deviation (E) is taken. Further, as the consequent variable, the change in pressure increase gradient (Δα), which is output to the electromagnetic proportional control valve (3), is adopted. Here, the control rule in the process of inferring the change in the pressurization gradient (Δα) from the antecedent variable is shown as a map rule as shown in FIG. 4, where the vertical axis represents the deviation (E) and the horizontal axis The differential value of the deviation (E) is shown in the figure, and the fuzzy variable corresponding to the change in the pressure increase gradient (Δα) is shown in the center. These control rules are expressed in the following form: ``If E is PB (positive and large) and EJ (20 (Q), then set Δα to NB (negative and large).'' As can be seen from the number of Δα, these fuzzy variables are formed by 13 propositions.For example, as shown in Figure 2, these fuzzy variables are represented by a fuzzy set of triangles, and the deviation (sniff) is plotted on the horizontal axis. Assuming that the instantaneous value (E') in the actual driving state is at the position shown in the figure, the degree to which it is smaller than the target acceleration (a0) and belongs to the NM fuzzy region, that is, the degree to which the control rule is satisfied is It is evaluated as 0.7. This evaluation is determined by the membership function representing the shape of the triangle in Figure 2. Therefore, the deviation (E), the differential value of the deviation (E), and the change in the boost gradient (Δα), a membership function as shown in Figure 2 is assumed (the membership function is not necessarily triangular), and the actual change in pressure gradient (Δα) is calculated. .

ここで、昇圧勾配の変化分(△α)を求める過程ではフ
ァジィ推論法が用いられる。
Here, a fuzzy inference method is used in the process of determining the change (Δα) in the boost gradient.

■ まず、現在の状態値が属する2つの制御規則を考え
る。それを例えば、第4図の制御マツプより選び出すと
、 〔R1:もし偏差(E)がPM (正でふつう)、かつ
、偏差の微分値(E)がlO(0)ならば昇圧勾配の変
化分(Δα)はNM(負でふつう)である〕〔R2:も
し偏差(E)がPS (正で小さい)、かつ、偏差の微
分値([E)が20 (0)ならば昇圧勾配の変化分(
Δα)はNS (負で小さい)である〕ということにな
る。これら制御規則のメンバーシップ関数を第3図に示
し、まず、これら制御規則の成立する度合を図で評価す
る。そこで、現状の値を偏差(ε)がE′および偏差の
微分値(E)がε°であるとすると、制御規則R1がこ
れら偏差(E′)及び偏差の微分値(E′)を満す度合
は0.5と0.8であり、制御規則R1全体としては0
.5だけ成立しているといえる。この0.5は後件部フ
ァジィ集合の重みづけ数となっており、0.5X(Δα
のファジィ変数)によって後件部としての昇圧勾配の変
化分(Δα)にかかるファジィ変数が図の斜線で表わさ
れるように重みづけされる。このように、制御規則R,
,R2の後件部ファジィ集合を重みづけすることによっ
て得られた二つの集合を重ね合わせる。これが第3図の
右端図で、この集合の重心位置を求めることによって、
最終的な昇圧勾配の変化分(△α°)が求められる。
■ First, consider two control rules to which the current state value belongs. For example, if we select it from the control map in Fig. 4, we find that [R1: If the deviation (E) is PM (positive and normal), and the differential value (E) of the deviation is lO (0), then the pressure increase gradient will change. minute (Δα) is NM (negative and normal)] [R2: If the deviation (E) is PS (positive and small) and the differential value of the deviation ([E) is 20 (0), the pressure increase gradient is Change (
Δα) is NS (negative and small)]. The membership functions of these control rules are shown in FIG. 3, and first, the degree to which these control rules hold true is evaluated using the diagram. Therefore, if the current value is that the deviation (ε) is E' and the differential value (E) of the deviation is ε°, then the control rule R1 satisfies these deviations (E') and the differential value of the deviation (E'). The degrees of control are 0.5 and 0.8, and the overall control rule R1 is 0.
.. It can be said that only 5 is true. This 0.5 is the weighting number of the consequent fuzzy set, and is 0.5X(Δα
The fuzzy variables related to the change (Δα) in the boost gradient as the consequent part are weighted by the fuzzy variables (fuzzy variables) as shown by diagonal lines in the figure. In this way, the control rule R,
, R2, and superimpose the two sets obtained by weighting the consequent fuzzy sets of R2. This is the rightmost view of Figure 3. By finding the center of gravity of this set,
The final change in pressure gradient (Δα°) is determined.

以上の推論結果より求められた昇圧勾配の変化分(Δα
′)を次式に投入すると、 V=V’+(α゛+Δα)Δtから電磁比例制御弁(3
)に対する操作電圧を得ることができる。
The change in boost gradient (Δα
') into the following equation, we get the electromagnetic proportional control valve (3
) can be obtained.

ここに、Vr:Δを時間前の操作電圧、αr:△L時間
前の昇圧勾配、Δt:摸作操作発進間隔である。
Here, Vr: Δ is the operating voltage before time, αr: boosting gradient before ΔL time, and Δt: simulation operation start interval.

〔別実施例〕[Another example]

■ 上記実施例のものは農用トラクタ以外のコンバイン
等地の作業機に利用してもよい。
(2) The above-mentioned embodiments may be used in land-based working machines such as combines other than agricultural tractors.

■ 制御形態としてはファジィ制御を採用せずに、偏差
及び偏差の微分値を利用する所謂PD制御を採用しても
よい。
(2) As a control form, instead of adopting fuzzy control, so-called PD control that utilizes the deviation and the differential value of the deviation may be adopted.

■ 上記実施例では油圧クラッチ式変速装置(1)とし
て前後進変速装置について説明したが、このように油圧
クラッチを用いて変速するものであれば、前後進変速装
置に限定されない。
(2) In the above embodiment, a forward/reverse transmission has been described as the hydraulic clutch type transmission (1), but the present invention is not limited to a forward/reverse transmission as long as a hydraulic clutch is used to change gears.

■ 昇圧機構(3)としては一般的な電磁弁をPWM制
御する方式でもよく、電磁比例制御弁に限定されない。
(2) The pressure increasing mechanism (3) may be a general solenoid valve that is PWM controlled, and is not limited to an electromagnetic proportional control valve.

尚、特許請求の範囲の項に図面との対照を便利にする為
に符号を記すが、該記入により本発明は添付図面の構造
に限定されるものではない。
Incidentally, although reference numerals are written in the claims section for convenient comparison with the drawings, the present invention is not limited to the structure shown in the accompanying drawings.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係る作業車の走行変速構造の実施例を示
し、第1図は全体構成図、第2図は偏差に対するメンバ
ーシップ関数を示すグラフ、第3図はファジィ推論過程
を示すグラフ、第4図は制御ルールマツプ、第5図は前
後進変速装置を示す断面図である。 (FC)、 (RC)・・・・・・油圧クラッチ、(a
)実加速度、(a0)・・・・・・目標加速度、(E)
・・・・・・偏差、(E)・・・・・・偏差の微分値、
(1)・・・・・・油圧クラッチ式変速装置、(3)・
・・・・・昇圧機構。
The drawings show an embodiment of a traveling transmission structure for a working vehicle according to the present invention, in which FIG. 1 is an overall configuration diagram, FIG. 2 is a graph showing a membership function for deviation, and FIG. 3 is a graph showing a fuzzy inference process. FIG. 4 is a control rule map, and FIG. 5 is a sectional view showing the forward/reverse transmission. (FC), (RC)...Hydraulic clutch, (a
) Actual acceleration, (a0)...Target acceleration, (E)
...Difference, (E) ...Differential value of deviation,
(1)...Hydraulic clutch type transmission, (3)...
...boosting mechanism.

Claims (1)

【特許請求の範囲】[Claims]  走行機体の実加速度(a)と目標加速度(a_0)と
の偏差(E)、及び、この偏差(E)の微分値(E′)
に基づく制御量で昇圧機構(3)を制御して、油圧クラ
ッチ式変速装置(1)における油圧クラッチ(FC)、
(RC)の昇圧特性を、変更する制御手段を設けてある
作業車の走行変速構造。
Deviation (E) between the actual acceleration (a) of the traveling aircraft and target acceleration (a_0), and the differential value (E') of this deviation (E)
A hydraulic clutch (FC) in the hydraulic clutch type transmission (1) by controlling the boosting mechanism (3) with a control amount based on the
A traveling transmission structure for a working vehicle, which is provided with a control means for changing the boost characteristics of (RC).
JP63197786A 1988-08-08 1988-08-08 Travel speed change structure of tractor Expired - Fee Related JP2545117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63197786A JP2545117B2 (en) 1988-08-08 1988-08-08 Travel speed change structure of tractor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63197786A JP2545117B2 (en) 1988-08-08 1988-08-08 Travel speed change structure of tractor

Publications (2)

Publication Number Publication Date
JPH0246326A true JPH0246326A (en) 1990-02-15
JP2545117B2 JP2545117B2 (en) 1996-10-16

Family

ID=16380329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63197786A Expired - Fee Related JP2545117B2 (en) 1988-08-08 1988-08-08 Travel speed change structure of tractor

Country Status (1)

Country Link
JP (1) JP2545117B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06294422A (en) * 1993-04-06 1994-10-21 Smc Corp Engaging control of dry clutch for automobile and device therefor
US5588515A (en) * 1992-09-10 1996-12-31 Kabushiki Kaisha Komatsu Seisakusho Method of and apparatus for speed change control
US6747236B1 (en) 2000-03-06 2004-06-08 Mitsubishi Denki Kabushiki Kaisha Wire electric discharge machining apparatus
CN102343907A (en) * 2010-07-29 2012-02-08 现代自动车株式会社 Shift control system of hybrid vehicle with automatic transmission and method thereof
CN104863992A (en) * 2015-06-10 2015-08-26 徐州徐工施维英机械有限公司 Control method and device for clutch started high-load crusher
EP3741487A1 (en) 2019-05-24 2020-11-25 Sodick Co., Ltd. Wire electric discharge machining method and wire electric discharge machine
CN115635956A (en) * 2022-12-23 2023-01-24 北京远特科技股份有限公司 Automatic parking control method, device, control terminal and storage medium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6239332A (en) * 1985-08-14 1987-02-20 Toyoda Autom Loom Works Ltd Clutch control method in switchback running for vehicle with automatic transmission

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6239332A (en) * 1985-08-14 1987-02-20 Toyoda Autom Loom Works Ltd Clutch control method in switchback running for vehicle with automatic transmission

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5588515A (en) * 1992-09-10 1996-12-31 Kabushiki Kaisha Komatsu Seisakusho Method of and apparatus for speed change control
JPH06294422A (en) * 1993-04-06 1994-10-21 Smc Corp Engaging control of dry clutch for automobile and device therefor
US6747236B1 (en) 2000-03-06 2004-06-08 Mitsubishi Denki Kabushiki Kaisha Wire electric discharge machining apparatus
CN102343907A (en) * 2010-07-29 2012-02-08 现代自动车株式会社 Shift control system of hybrid vehicle with automatic transmission and method thereof
CN104863992A (en) * 2015-06-10 2015-08-26 徐州徐工施维英机械有限公司 Control method and device for clutch started high-load crusher
EP3741487A1 (en) 2019-05-24 2020-11-25 Sodick Co., Ltd. Wire electric discharge machining method and wire electric discharge machine
KR20200135177A (en) 2019-05-24 2020-12-02 가부시키가이샤 소딕 Wire electric discharge machining method and wire electric discharge machine
US11440114B2 (en) 2019-05-24 2022-09-13 Sodick Co., Ltd. Wire electric discharge machining method and wire electric discharge machine
CN115635956A (en) * 2022-12-23 2023-01-24 北京远特科技股份有限公司 Automatic parking control method, device, control terminal and storage medium

Also Published As

Publication number Publication date
JP2545117B2 (en) 1996-10-16

Similar Documents

Publication Publication Date Title
US4261229A (en) Automatic speed ratio control system for stepless transmission of automotive vehicles
JP2639173B2 (en) Vehicle differential limiting control device
EP1757513B1 (en) Traveling control device and traveling control program for work vehicle or control device and control program for work vehicle
US5194053A (en) Rotational speed differential responsive type control coupling with variable transfer torque control means
JPH0246326A (en) Travel speed changing structure of working vehicle
US5392875A (en) Hydraulic reaction variable assist power steering system
JP2964622B2 (en) Front and rear wheel torque distribution control device for four-wheel drive vehicles
JPH0544385B2 (en)
JPH0815866B2 (en) Power steering hydraulic control device
JPH0717277A (en) Torque distribution control device for vehicle
JPH0718481B2 (en) Vehicle drive torque distribution device
JPH05248454A (en) Control type rotation difference sensing coupling
JPS62231841A (en) Hydraulically operated gear transmission
JP2559724B2 (en) Power steering hydraulic control device
JP3013560B2 (en) Transmission torque control device for rotational difference sensitive joint
JP2629364B2 (en) Vehicle drive torque distribution device
JP2913968B2 (en) Transmission torque control device for rotational difference sensitive joint
JPH03148336A (en) Differential controller of four-wheel drive car
JP2611349B2 (en) Control method of differential control clutch for front and rear wheel drive vehicles
JP2897487B2 (en) Power steering control device
JPH05164152A (en) Transmission torque control device for rotation difference sensing joint
JPH078354Y2 (en) 4-wheel steering system
JPH078356Y2 (en) 4-wheel steering system
JP2532080B2 (en) Power steering hydraulic control device
JPH051166B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees