JPH0245575A - Self-fusing insulating paint - Google Patents

Self-fusing insulating paint

Info

Publication number
JPH0245575A
JPH0245575A JP19862688A JP19862688A JPH0245575A JP H0245575 A JPH0245575 A JP H0245575A JP 19862688 A JP19862688 A JP 19862688A JP 19862688 A JP19862688 A JP 19862688A JP H0245575 A JPH0245575 A JP H0245575A
Authority
JP
Japan
Prior art keywords
resin
bisphenol
formula
reaction
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19862688A
Other languages
Japanese (ja)
Other versions
JP2663353B2 (en
Inventor
Toshihiko Chin
俊彦 陳
Hiroshi Nakanishi
宏 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohto Kasei Co Ltd
Original Assignee
Tohto Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohto Kasei Co Ltd filed Critical Tohto Kasei Co Ltd
Priority to JP63198626A priority Critical patent/JP2663353B2/en
Publication of JPH0245575A publication Critical patent/JPH0245575A/en
Application granted granted Critical
Publication of JP2663353B2 publication Critical patent/JP2663353B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Insulating Materials (AREA)
  • Paints Or Removers (AREA)

Abstract

PURPOSE:To provide the subject paint containing a specific sulfone group- containing polyhydroxy polyether resin, having excellent thermal bonding workability of a deflection coil of a CRT for color TV and giving a coil coated with a film having high heat-resistance and twist deformation resistance. CONSTITUTION:The objective paint contains a sulfone group-containing polyhydroxy polyether resin expressed by formula I [X is CH3; Y is SO2 or C(CH3)2; R is H; n is 0-20; m is >=20; i is 0-40; the content of the structural unit of formula II is 15-70% of the whole units; the reduced specific viscosity of the solution diluted with cyclohexane is 0.35-0.65].

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は優れた耐熱性を有するスルホン基含有ポリヒド
ロキシポリエーテル樹脂を含有する自己融着性絶縁塗料
に関する。
DETAILED DESCRIPTION OF THE INVENTION "Industrial Application Field" The present invention relates to a self-bonding insulating paint containing a sulfone group-containing polyhydroxy polyether resin having excellent heat resistance.

「従来技術」 自己融着性エナメル電線の融着層に用いられる融着被膜
材料は一般にポリビニルブチラール樹脂、ポリアミド系
樹脂、アルキレンエーテル変性エチレンテレフタレート
樹脂等の熱可塑性樹脂が使用されている。しかしこれら
の融着材料は熱変形温度が低く、機器の使用温度が高く
なったシ間欠的温度上昇により融着層の流動や熱変形を
起こしてしまい、耐熱寿命A種あるいはE種程度の部品
にしか使用できない。
"Prior Art" The adhesive coating material used for the adhesive layer of self-bonding enameled electric wires is generally a thermoplastic resin such as polyvinyl butyral resin, polyamide resin, or alkylene ether modified ethylene terephthalate resin. However, these adhesive materials have a low heat distortion temperature, and when the operating temperature of the equipment is high, intermittent temperature rises can cause the adhesive layer to flow and thermal deformation, resulting in parts with a heat-resistant life of class A or class E. Can only be used.

又接着力や耐熱変形等の改良のためにエポキシ樹脂、フ
ェノール樹脂、ポリイソシアネートブロック体等の熱硬
化性樹脂を混合して熱硬化型とし半硬化状態に塗布し焼
付けて、自己融着性絶縁電線を得る方法がある。しかし
この方法は焼付被膜の可撓性、作業性や熱硬化性樹脂の
配合に制限され大巾な向上は期待できない。一方耐熱性
の高いエンジニアリングプラスチック、例えばポリスル
ホン樹脂、ポリエーテルスルホン樹脂を用いる方法もあ
る。この方法の場合、耐熱性はすぐれているものの融着
成形するときに高温を必要とするため、絶縁電線の不良
を発生させたり形成被膜が可撓性に乏しい欠点があった
In order to improve adhesion and heat deformation resistance, thermosetting resins such as epoxy resin, phenol resin, and polyisocyanate blocks are mixed to form a thermosetting type, applied to a semi-cured state, and baked to create self-bonding insulation. There is a way to get the wire. However, this method is limited by the flexibility of the baked film, workability, and the composition of the thermosetting resin, and no significant improvement can be expected. On the other hand, there is also a method of using engineering plastics with high heat resistance, such as polysulfone resin and polyethersulfone resin. Although this method has excellent heat resistance, it requires high temperatures during fusion molding, resulting in defects in the insulated wire and poor flexibility in the formed coating.

又実用上有効な方法としてフェノキン樹脂を用いる方法
がある。フェノキシ樹脂単独又はその分子中の2級水酸
基を利用しブロック化インシアネート類を架橋剤として
配合し熱硬化させることができる。フェノキシ樹脂は自
己融着性にすぐれているものの耐熱性が低く熱変形温度
85〜100℃であり使用用途が限定されている。この
耐熱性を改善するために特殊なフェノキシ樹脂が提案さ
れており、代表的には臭素化ポリヒドロキシポリエーテ
ル樹脂、スルホン基含有ポリヒドロキシポリエーテル樹
脂がある。臭素化ポリヒドロキシポリエーテル樹脂は臭
素含有量によυ耐熱性が変化するため臭素含有量を選択
し、自己融着性と耐熱性のバランスがとれた性能を得る
ことができ有効であった。しかし200℃×240時間
の長期耐熱信頼テストによ#)塗膜破壊が起り絶縁不良
となる欠点があった。
Furthermore, there is a method using phenokine resin as a practically effective method. It is possible to thermally cure the phenoxy resin alone or by blending blocked incyanates as a crosslinking agent using the secondary hydroxyl group in the molecule. Although phenoxy resin has excellent self-fusion properties, it has low heat resistance, with a heat deformation temperature of 85 to 100°C, and its uses are limited. Special phenoxy resins have been proposed to improve this heat resistance, and representative examples include brominated polyhydroxy polyether resins and sulfone group-containing polyhydroxy polyether resins. Since the heat resistance of brominated polyhydroxypolyether resin changes depending on the bromine content, it was effective to select the bromine content and obtain performance with a well-balanced self-bonding property and heat resistance. However, a long-term heat resistance reliability test at 200° C. for 240 hours showed that the coating film was destroyed and the insulation was poor.

一方スルホン基含有ポリヒドロキシボリエーテ骨格を含
有することにより耐熱性を向上させることが知られてい
る。しかし加熱融着温度と耐熱性は相反する性質のだめ
、ビスフェノールSの骨格の含有量や分子量及び還元比
粘度を選択しなければ実用性がなく、い壕だすぐれたも
のが見い出されてい々いのが現状である。
On the other hand, it is known that heat resistance can be improved by containing a sulfone group-containing polyhydroxyboriate skeleton. However, heat fusion temperature and heat resistance are contradictory properties, and it is not practical unless the content of the bisphenol S skeleton, molecular weight, and reduced specific viscosity are selected. is the current situation.

「発明が解決しようとする課題」 近年の電子部品は高品質、高信頼性が要求され%にカラ
ーテレビ建おいては画面の色ずれ発生がないこと、さら
に鮮明度の高い高画質が要求されてきている。画面の色
ずれ等の原因については画面に映しだすだめの重要な役
割をもっている偏向コイルがテレビ受信中にコイル温度
40〜90℃に上昇するため熱変形したりコイル巻線の
捻じれ変形する為と考えられている。すなわち偏向コイ
ルの熱接着加工性と巻線加工後の被膜の耐熱性、耐捻じ
れ変形性を同時に解決された樹脂を見い出すのが必須で
あった。
``Problem to be solved by the invention'' In recent years, electronic components are required to be of high quality and high reliability, and color TVs are required to have no color shift on the screen and high image quality with high clarity. It's coming. The cause of color shift on the screen is that the deflection coil, which plays an important role in projecting images on the screen, is thermally deformed due to the coil temperature rising to 40 to 90 degrees Celsius during TV reception, and the coil windings are twisted and deformed. It is believed that. In other words, it was essential to find a resin that can simultaneously solve the problems of heat bonding processability of the deflection coil, heat resistance of the coating after winding, and resistance to torsional deformation.

本発明者らはビスフェノールS類骨格を含有するポリヒ
ドロキシポリエーテル樹脂について着目し、その改良を
行ったものである。すなわち熱接着性を向上させSため
には実用性のあるできるだけ低温にお(Aで加熱碧着が
可能であることが必要であり、そのために本発明の樹脂
の還元比粘度を限定選択することにより優れた加工性が
得られることを見い出したものである。更に樹脂の熱変
形温度やガラス転移点を高めるにはビスフェノールS骨
格の含有量を増すことが非常て有効であった。
The present inventors focused their attention on a polyhydroxy polyether resin containing a bisphenol S skeleton, and made improvements thereto. In other words, in order to improve thermal adhesion, it is necessary to be able to thermally bond the resin at a temperature as low as practical (A), and for this purpose, the reduced specific viscosity of the resin of the present invention must be selected in a limited manner. Furthermore, it was found that increasing the bisphenol S skeleton content was very effective in increasing the heat distortion temperature and glass transition point of the resin.

しかしながらビスフェノールS骨格を増すと兜、脂自身
の溶融粘度が上昇し、熱接着性がわるくなる重大な欠点
が新たに生じることに々る。発明者らは前述の問題を解
決するために次の事をみいだした。すなわちビスフェノ
ールS骨格の含有量を高めた樹脂においては、分子中の
水酸基の一部を低分子有機酸又はそのエステル及びカプ
ロラクトンでエステル化変性することにより耐熱性を実
用レベルに保持し、且つ熱接着性の優れた樹脂を見い出
した。
However, when the bisphenol S skeleton is increased, the melt viscosity of the fat itself increases, resulting in a new serious drawback of poor thermal adhesion. The inventors discovered the following in order to solve the above-mentioned problem. In other words, in a resin with a high content of bisphenol S skeleton, a part of the hydroxyl groups in the molecule is esterified and modified with a low-molecular organic acid or its ester and caprolactone to maintain heat resistance at a practical level and to maintain thermal adhesive properties. We have discovered a resin with excellent properties.

又ビスフェノールS骨格の含有量とエステル化変性率は
互に対比した割合で選択する必要があり、ビスフェノー
ルS類の骨格を低減するとエステル化変性率を下げて耐
熱性と熱接着性のバランスをとることができる。
In addition, the content of bisphenol S skeleton and the esterification modification rate must be selected in proportion to each other; reducing the bisphenol S skeleton reduces the esterification modification rate and balances heat resistance and thermal adhesiveness. be able to.

さらに有益であるものとしてビスフェノールSの他に芳
香族にメチル基の置換したビスフェノールS類を選択す
るとより効果的である。かかるビスフェノールS類とし
て具体的には、3,3′−ジメチル4.4−ジヒドロキ
シジフェニルスルホン、3゜3’、5.5’−テトラメ
チル4,4−ジヒドロキシジフェニルスルホンがあげら
れ、これらを骨格に導入することにより耐熱性と熱接着
性のバランスをとることができたのである。ガラス転移
点が高く速比 元粘度が限定した範囲の物性をもつスルホン基台△ 有ポリヒドロキシポリエーテル樹脂を含有する絶am料
は、従来技術の欠点を解消し且つコイル巻後の熱接着性
、耐熱変形性の優れた自己融着絶縁電線を提供すること
ができるのである。
Furthermore, it is more effective to select, in addition to bisphenol S, bisphenol S having an aromatic substitution with a methyl group. Specific examples of such bisphenol S include 3,3'-dimethyl 4,4-dihydroxydiphenylsulfone and 3゜3',5.5'-tetramethyl 4,4-dihydroxydiphenylsulfone, which have a skeleton structure. By introducing it into the market, it was possible to achieve a good balance between heat resistance and thermal adhesion. The absolute AM material containing a sulfone-based polyhydroxy polyether resin with a high glass transition point and a limited range of specific viscosity eliminates the drawbacks of the conventional technology and has excellent thermal adhesion after coil winding. Therefore, it is possible to provide a self-bonding insulated wire with excellent heat deformation resistance.

「課題を解決するための手段及び作用」本発明は、 (1)下記の一形式CI〕で表されるスルホン基含有ポ
リヒドロキシポリエーテル樹脂を含有することを特徴と
する自己融着性絶縁塗料。
"Means and Effects for Solving the Problems" The present invention provides: (1) A self-adhesive insulating paint characterized by containing a sulfone group-containing polyhydroxy polyether resin represented by one type CI below. .

〔I〕[I]

〔式中Xはメチル基を、YばS02又はC(CH3)2
を、Rは水素原子を示し、nはO〜20の整数、mは2
0以上の整数、iはO〜4の整数を示す。
[In the formula, X is a methyl group, Y is S02 or C(CH3)2
, R represents a hydrogen atom, n is an integer of O to 20, m is 2
An integer of 0 or more; i represents an integer of 0 to 4;

〜70%の範囲にあシ且つシクロヘキサノン希釈溶液の
還元比粘度が0.35〜0.65の範囲である。〕 (Q:)  NIJ求項(1)に記載の化学式〔I〕に
おいてX、 Y。
-70%, and the reduced specific viscosity of the diluted cyclohexanone solution is in the range of 0.35 to 0.65. ] (Q:) In the chemical formula [I] described in NIJ requirement (1), X, Y.

n、m、iは請求項(1)と同一であるが、Rは水素原
子又は低分子有機酸残基又は −CCH2CH2CH2−OHを示し 以上でありシクロヘキサノン希釈溶液の還元比粘度が0
.35〜0.65の範囲であわ、且つORのエステル化
率が3〜100%であるスルホン基含有ポリヒドロキシ
ポリエーテル樹脂を含有することを特徴とする自己融着
性絶縁塗料である。
n, m, and i are the same as in claim (1), but R represents a hydrogen atom, a low-molecular-weight organic acid residue, or -CCH2CH2CH2-OH, and the reduced specific viscosity of the diluted cyclohexanone solution is 0.
.. This is a self-fusing insulating coating material characterized by containing a sulfone group-containing polyhydroxy polyether resin having a hardness in the range of 35 to 0.65 and an OR esterification rate of 3 to 100%.

本発明樹脂はビスフェノールA又はビスフェノールS類
のジェポキシ化合物とビスフェノールA又はビスフェノ
ールS類を有機塩基の存在下、不活性極性溶媒中で反応
さすことによって得られ、必要に応じて分子中のアルコ
ール性水醗基の一部をエステル化変性したもので、−形
式〔■〕をもつ自己融着性にすぐれた耐熱性スルホン基
含有ポリヒドロキシポリエーテル樹脂である。
The resin of the present invention is obtained by reacting a jepoxy compound of bisphenol A or bisphenol S with bisphenol A or bisphenol S in the presence of an organic base in an inert polar solvent, and if necessary, alcoholic water in the molecule is added. It is a heat-resistant sulfone group-containing polyhydroxypolyether resin with excellent self-bonding properties, which has a part of the base group modified by esterification and has a - format [■].

原料であるジェポキシ化合物はビスフェノールAのジェ
ポキシ化合物、又はビスフェノールS類のジェポキシ化
合物であり、ビスフェノールA又はビスフェノールS類
とエピクロルヒドリンの大過剰の範囲で得られるもので
公知の方法によって得ることができる。ビスフェノール
Aは工業的に生産されているもので良く、より具体的に
は2゜2ビス(4−ヒドロキシジフェニル)プロパンが
望まシく、ビスフェノールS類については4.4′−ジ
ヒドロキシジフェニルスルホン、3.3−ジメチル4.
4−ジヒドロキシジフェニルスルホン、3゜3.5.5
−テトラメチル4.4−ジヒドロキシジフェニルスルホ
ンがあげられる。
The jepoxy compound as a raw material is a jepoxy compound of bisphenol A or a jepoxy compound of bisphenol S, and can be obtained by a known method in a large excess of bisphenol A or bisphenol S and epichlorohydrin. Bisphenol A may be one that is industrially produced, and more specifically, 2゜2bis(4-hydroxydiphenyl)propane is preferable, and for bisphenol S, 4,4'-dihydroxydiphenylsulfone, 3. .3-dimethyl4.
4-dihydroxydiphenylsulfone, 3°3.5.5
-tetramethyl 4,4-dihydroxydiphenylsulfone.

本発明のスルホン基を有するポリヒドロキシポリエーテ
ル樹脂はビスフェノールA又はビスフエノールS類の合
計が1又はそれ以上と、前記したビスフェノールA又は
ビスフェノールS類のジェポキシ化合物の合計が1又は
それ以上とを、エポキシ基とビスフェノール類のOH基
とが当量となる様に不活性極性溶媒中で有機塩基触媒の
存在下反応させて得られたもので、必要に応じて分子中
に存在する2級水酸基の3〜100%に相当する当量の
低分子有機酸又はそのエステル又はカプロラクトンでエ
ステル化反応して得られるものである。
The polyhydroxy polyether resin having a sulfone group of the present invention has a total of 1 or more bisphenol A or bisphenol S, and a total of 1 or more jepoxy compounds of bisphenol A or bisphenol S as described above. It is obtained by reacting the epoxy group and the OH group of bisphenols in equivalent amounts in an inert polar solvent in the presence of an organic base catalyst. It is obtained by an esterification reaction with an equivalent amount of a low molecular weight organic acid or its ester or caprolactone corresponding to ~100%.

本発明においてジェポキシ化合物のエポキシ基に対する
フェノール類のモル比は1.05〜0.95の範囲を含
むもので、好壕しくけ1.03〜0.97である。1.
05以上又は0.95以下では高分子量のものが得られ
ない。ビスフェノールAとビスフェノールS類の比率は
生成樹脂の耐熱性に重大な影響を受けるため、ビスフェ
ノールS類成分〜70%が好ましい。ビスフェノールs
 m成分の割合が大きくなると耐熱性が向上するが溶剤
に対する溶解性や流動性がわるくなるので、よシ好まし
くは0.25〜0.6が最適である。ビスフェノールA
/ビスフェノールS類の比と生成するヒト四キシポリエ
ーテル樹脂の耐熱性は、参考例によって示すと表1の関
係が得られる。
In the present invention, the molar ratio of the phenol to the epoxy group of the jepoxy compound is in the range of 1.05 to 0.95, preferably 1.03 to 0.97. 1.
If the molecular weight is 0.05 or more or 0.95 or less, a product with a high molecular weight cannot be obtained. Since the ratio of bisphenol A to bisphenol S is significantly affected by the heat resistance of the resulting resin, the bisphenol S component is preferably 70% to 70%. bisphenol s
As the ratio of the m component increases, heat resistance improves, but solubility and fluidity in solvents deteriorate, so the optimum ratio is preferably 0.25 to 0.6. Bisphenol A
The relationship between the ratio of /bisphenol S and the heat resistance of the human tetraxypolyether resin produced is shown in Table 1 using reference examples.

一方ビスフエノールS類の成分の割合が増加してもアル
コール性水醗基の3〜100%をエステル化すること及
び/又はビスフェノールSのベンゼン環にメチル基を導
入することにより、耐熱性、溶解性、流動性、耐熱変形
性のバランスを計ることができる。
On the other hand, even if the proportion of bisphenol S components increases, heat resistance and solubility can be improved by esterifying 3 to 100% of the alcoholic water groups and/or introducing a methyl group into the benzene ring of bisphenol S. It is possible to balance properties, fluidity, and heat deformation resistance.

反応溶媒として好適なものの例はシクロヘキサノン、ア
セトフェノ/、ベンゾフェノン、N−メチルピロリドン
等のケトン類、フリ7ラール等のベンゼン、1−クロロ
2−ニトロベンゼン、1−クロロ3−ニトロベンゼン、
モノクロルベンゼン等の芳香族化合物、ジメチルスルホ
キシド等のスルホキシド類、ジメチルホルムアミド、環
状又は直鎖状エーテル化合物類のジオキサン、ジェトキ
シエタン等がある。あるいは上記の混合溶媒を用いるこ
とができる。
Examples of suitable reaction solvents include cyclohexanone, acetophenone, benzophenone, ketones such as N-methylpyrrolidone, benzenes such as fur7ral, 1-chloro2-nitrobenzene, 1-chloro3-nitrobenzene,
Examples include aromatic compounds such as monochlorobenzene, sulfoxides such as dimethyl sulfoxide, dimethylformamide, and cyclic or linear ether compounds such as dioxane and jetoxyethane. Alternatively, the above mixed solvents can be used.

触媒としては公知の触媒で良く有機塩基が効果的である
。有機塩基の代表的なものとしてはトリエチルアミン、
n−ブチルアミン、メチルアミン誘導体、エチルアミン
誘導体、ピペリジン、ピペリジン誘導体ピロリジン、N
−メチルピロリジン、モルホリン、トリエチレンジアミ
ン、ヘキサメチレンジアミン、ピリジン、イミダゾール
類、1,8シアサビシクロ(5,4,0)ウンデセ/−
7等の有機塩基類等を挙げることができる。触媒はビス
フェノール類に対して0.5ないし4モル係の範囲で使
用される。特に触媒量は製品の還元比粘度に影響をおよ
ぼすので特に重要であり、本発明においてより好ましく
は1.0〜3モル係が最適である。
As the catalyst, any known catalyst may be used, and organic bases are effective. Typical organic bases include triethylamine,
n-butylamine, methylamine derivative, ethylamine derivative, piperidine, piperidine derivative pyrrolidine, N
-Methylpyrrolidine, morpholine, triethylenediamine, hexamethylenediamine, pyridine, imidazoles, 1,8cyasabicyclo(5,4,0)undece/-
Examples include organic bases such as No. 7 and the like. The catalyst is used in an amount of 0.5 to 4 molar based on the bisphenol. In particular, the amount of catalyst is particularly important since it affects the reduced specific viscosity of the product, and in the present invention, the optimum amount is more preferably 1.0 to 3 molar ratio.

触媒量が4モル係以上の場合は反応速度が早く制御がむ
ずかしく、生成物のゲル化や分子内分枝反応が進んで好
ましくない。触媒が0.5モル係以下の場合は反応時間
が長時間にわたシ、所望の分子量に到達せずに低分子化
合物が多く残存してしまう。
When the amount of catalyst is 4 molar or more, the reaction rate is fast and difficult to control, and gelation of the product and intramolecular branching reaction progress, which is undesirable. If the catalyst has a molar ratio of less than 0.5, the reaction time will be long, and the desired molecular weight will not be reached and many low-molecular compounds will remain.

反応温度は80〜200℃の間が好ましく特に不活性極
性溶媒の沸点に左右されるが、好ましくは100〜18
0℃が有効である。又反応が進行するに従い反応物の粘
度が上昇するため適時、不活性種性溶媒を追加して均一
化を計ることが必要である。反応時間は2〜8時間を要
する。増粘がなくなったら必要に応じて低分子有機酸又
はそのエステル、カプロラクトンを、分子内2級水酸基
の3〜100%相当する量を仕込み、さらに同温度で継
続して4時間反応させる。
The reaction temperature is preferably between 80 and 200°C, depending on the boiling point of the inert polar solvent, but preferably between 100 and 18°C.
0°C is effective. Furthermore, as the reaction progresses, the viscosity of the reactant increases, so it is necessary to add an inert seed solvent from time to time to ensure uniformity. The reaction time requires 2 to 8 hours. When the viscosity disappears, a low molecular weight organic acid or its ester, caprolactone, is charged in an amount corresponding to 3 to 100% of the secondary hydroxyl groups in the molecule, and the reaction is continued at the same temperature for 4 hours.

エステル化剤としてはカプロラクトンが挙げられ、ラク
トンを開環し1級水酸基を側鎖に生成することができる
。又低分子有機酸及びそのエステルとしては以下のもの
があげられる。代表的にはギ酸、酢酸、安息香酸、プロ
ピオン醗、ステアリン酸、パラトルエンスルホン醗、メ
ルカプト酸、及びそのメチルエステル又はエチルエステ
ル類、さらにはクロロアセチル等のハロゲン化アセチル
化合物があげられる。2級水酸基へのカプロラクトンの
開環重合及びエステル化反応は100〜200℃の反応
温度で行なう。この反応では新たに触媒を添加しなくて
もよく、必要により触媒を用いても良く、かかる触媒と
してテトラブチルチタネート、テトラエチルチタネート
、テトラエチルチタネート等のチタン化合物、さらには
塩化第一スズ、臭化第一スズ、ヨウ化第−スズ等があげ
られる。使用量は反応温度によって異なるが一般には1
1000ppから0.lppmで好ましくは500 p
ppm−0−2ppを用いる。
Examples of the esterification agent include caprolactone, which can open the ring of lactone and generate a primary hydroxyl group in the side chain. Examples of low molecular weight organic acids and esters thereof include the following. Representative examples include formic acid, acetic acid, benzoic acid, propionic acid, stearic acid, para-toluenesulfonic acid, mercaptoic acid, methyl esters or ethyl esters thereof, and halogenated acetyl compounds such as chloroacetyl. The ring-opening polymerization and esterification reaction of caprolactone to a secondary hydroxyl group are carried out at a reaction temperature of 100 to 200°C. In this reaction, it is not necessary to add a new catalyst, and a catalyst may be used if necessary. Such catalysts include titanium compounds such as tetrabutyl titanate, tetraethyl titanate, and tetraethyl titanate, as well as stannous chloride and stannous bromide. Examples include tin and stannous iodide. The amount used varies depending on the reaction temperature, but generally 1
1000pp to 0. preferably 500 p in lppm
Use ppm-0-2pp.

反応の終点は酸価あるいはガスクロマトグラフィーによ
り決定する。還元比粘度は熱接着性に重大な影響を与え
る物性である。本発明において還元比粘度とは樹脂(1
00チ) 0.2 yを100M1のシクロヘキサノン
溶液に調整し恒温水槽(25℃)中、キャノンフェンス
ケ桑75粘度計にテ測定した値である。
The end point of the reaction is determined by acid value or gas chromatography. Reduced specific viscosity is a physical property that has a significant effect on thermal adhesiveness. In the present invention, reduced specific viscosity refers to resin (1
This is the value obtained by adjusting 0.2y to a 100M1 cyclohexanone solution and measuring it with a Canon Fenske Kuwa 75 viscometer in a constant temperature water bath (25°C).

以下実施例を比較例とともに説明する。Examples will be described below along with comparative examples.

「実施例、比較例」 実施例1 エポキシ当量186.51/eqのビスフェノールA(
以下BPAという)型エポキシ樹脂(東部化成(株)製
YD−128、以下YD−128と略す)186.59
 ト4.4−ジヒドロキシジフェニルスルホン(以下B
PSと略す>122.1y(0,488モル)とシクロ
ヘキサノン308.69とを11丸底フラスコに仕込み
、窒素パージしながら昇温し完全に溶解後、トリエチル
アミン0.77y(0,0076モル)を加え150℃
、4時間で反応をさせた。
"Examples, Comparative Examples" Example 1 Bisphenol A (with an epoxy equivalent of 186.51/eq)
186.59
4,4-dihydroxydiphenylsulfone (hereinafter referred to as B
122.1y (abbreviated as PS) (0,488 mol) and 308.69 cyclohexanone were placed in a 11 round bottom flask, heated while purging with nitrogen to completely dissolve, and then 0.77y (0,0076 mol) of triethylamine was added. Add 150℃
, the reaction was allowed to take place for 4 hours.

反応終了後は渦紋使用の不活性溶蝶もしくはその他の溶
媒で30チに希釈し溶液を精密涙過する。
After the reaction is completed, the solution is diluted to 30% with an inert molten liquid or other solvent, and the solution is passed through a precision sieve.

得られたスルホン基含有ポリヒドロキシポリエーテル樹
脂溶液をバーコーターにてポリエステルフィルムに塗布
し、160℃、30分熱風循環乾燥機で揮発分を除去し
20μの樹脂フィルムを得た。
The obtained sulfone group-containing polyhydroxypolyether resin solution was applied to a polyester film using a bar coater, and volatile components were removed using a hot air circulation dryer at 160° C. for 30 minutes to obtain a 20 μm resin film.

上記樹脂フィルムを集めて還元比粘度、ガラス転移点(
TMA法)等を測定した。以下の各実施例、各比較例と
も反応後に同様の処理をした。得られた樹脂の物性を表
1に示す。
Collect the above resin films and check the reduced specific viscosity and glass transition point (
TMA method) etc. were measured. In each of the following Examples and Comparative Examples, the same treatment was performed after the reaction. Table 1 shows the physical properties of the obtained resin.

実施例2 実施例1と同様に仕込み、触媒を添加する前にトルエン
による還流脱水を行い、トルエンを溜去したのち、触媒
N−メチルモルホリンを0.77y添加し、実施例1と
同様に150℃、4時間で反応をさせた後、ε−カプロ
ラクトンを15.4 y(5phr )加え、さらに4
時間反応をさせた。得られた樹脂の物性を表1に示す。
Example 2 Prepared in the same manner as in Example 1, reflux dehydration with toluene was performed before adding the catalyst, and after distilling off the toluene, 0.77y of N-methylmorpholine was added as the catalyst, and 150 y was added as in Example 1. After reacting at ℃ for 4 hours, 15.4 y (5 phr) of ε-caprolactone was added, and then 4
A time reaction was allowed. Table 1 shows the physical properties of the obtained resin.

実施例3 エポキシ当i 241.4 y/ eqのBPS型エポ
キシ樹脂241.47とBPS 122.1y(0,4
88モル)とシクロヘキサノン363.59とを仕込み
、実施例2と同様に還流脱水後、N−メチルモルホリン
0.77 ’;! (0,0076モル)を加え、15
0°C14時間で反応をさせたのちにε−カプロラクト
ン136.6y(37,6phr )を加え、さらに4
時間反応をさせた。樹脂の物性を表1に示す。
Example 3 BPS type epoxy resin 241.47 with i 241.4 y/eq and BPS 122.1 y (0,4
88 mol) and 363.59 cyclohexanone, and after dehydration under reflux in the same manner as in Example 2, N-methylmorpholine 0.77';! (0,0076 mol) and 15
After reacting at 0°C for 14 hours, 136.6y (37.6 phr) of ε-caprolactone was added, and then 4
A time reaction was allowed. Table 1 shows the physical properties of the resin.

実施例4 YD−128(エポキシ当量186.5 y/ eq 
)186.5 yとビス(3,5−ジメチル−4−ヒド
ロキシフェニル)スルホン(以下TMSと略す)149
.51 (0,488モル)とシクロヘキサノン336
yとを仕込み、窒素パージしながら昇温溶解後、2−エ
チル−4メチルイミダゾール6.72phrを添加し、
150℃、7時間で反応をさせた。
Example 4 YD-128 (epoxy equivalent weight 186.5 y/eq
) 186.5 y and bis(3,5-dimethyl-4-hydroxyphenyl)sulfone (hereinafter abbreviated as TMS) 149
.. 51 (0,488 mol) and cyclohexanone 336
After dissolving at elevated temperature while purging with nitrogen, 6.72 phr of 2-ethyl-4 methylimidazole was added,
The reaction was carried out at 150°C for 7 hours.

得られた樹脂の物性を表1に示す。Table 1 shows the physical properties of the obtained resin.

実施例5 実施例4ど同様に仕込み、還流脱水後、ピリジン0.6
9 (0,0076モル)を加え、150℃、4時間で
反応をさせたのち、ε−カプロラクトン10.1y(3
phr )を加え、さらに4時間反応をした。
Example 5 Prepared in the same manner as Example 4, and after reflux dehydration, pyridine 0.6
9 (0,0076 mol) and reacted at 150°C for 4 hours, ε-caprolactone 10.1y (3
phr) was added, and the reaction was further continued for 4 hours.

実施例6 YD−128(エポキシ当量186.51?/ eq 
)186.5 yとビス(323−メチル−4−ヒドロ
キシフェニル)スルホン135.8yとシクロヘキサノ
ン322.37とを仕込み、窒素パージし々がら昇温溶
解後、トリエチルアミン0.779を加え、150℃、
4時間で反応を行なった。
Example 6 YD-128 (epoxy equivalent weight 186.51?/eq
) 186.5 y, bis(323-methyl-4-hydroxyphenyl)sulfone 135.8 y, and cyclohexanone 322.37 y, and after dissolving at elevated temperature while purging with nitrogen, 0.779 y of triethylamine was added, and 150°C.
The reaction was carried out for 4 hours.

比較例I YD−128(エポキシ当量186.5 y/eq)1
86.5 yとBPS 122.7y(0,49モル)
とシクロヘキサノン309.2 yとを仕込み、窒素ノ
(−ジしながら昇温溶解し、トリエチルアミン2.48
.7(0,0245モル)を加え、150℃、4時間反
応を行なった。
Comparative Example I YD-128 (Epoxy equivalent weight 186.5 y/eq) 1
86.5 y and BPS 122.7 y (0,49 mol)
and 309.2 y of cyclohexanone, and dissolved at elevated temperature while blowing with nitrogen, to dissolve 2.48 y of triethylamine.
.. 7 (0,0245 mol) was added thereto, and the reaction was carried out at 150°C for 4 hours.

比較例2 YD−128(エポキシ当f1186.5 y/ e(
1)186.5 yとBPS 120.3 P (0,
48モル)とシクロヘキサノン306.89とを仕込み
、触媒としてはピリジンl、9y(0−024モル)を
用い、比較例1と同様に反応を行なった。
Comparative Example 2 YD-128 (epoxy f1186.5 y/e(
1) 186.5 y and BPS 120.3 P (0,
A reaction was carried out in the same manner as in Comparative Example 1, using pyridine 1,9y (0-024 mol) as a catalyst.

比較例3 YD−128(エポキシ当量186.59’/eq)1
86.59とBPA 84 y(0,3684モル)と
BPS 30.4y(0,1215モル)とシクロヘキ
サノン303.81とを仕込み、ピリジン0−97y(
0,0243モル)を用い、反応を行なった。
Comparative example 3 YD-128 (epoxy equivalent 186.59'/eq) 1
Pyridine 0-97y (
0,0243 mol) was used to carry out the reaction.

比較例4 BPS屋エポキシ樹脂(エポキシ当量241.4y/e
q)241.4yとBPS 122.7? (0,49
モル)とシクロヘキサノン364.19とを仕込み、比
較例1と同様に反応を行なった。
Comparative example 4 BPS shop epoxy resin (epoxy equivalent 241.4y/e
q) 241.4y and BPS 122.7? (0,49
A reaction was carried out in the same manner as in Comparative Example 1.

表  1 1、 n/ (m+ n ) :式〔DによるBPS類
の含有量(wtチ)。
Table 1 1, n/(m+n): Content of BPS (wt) according to the formula [D].

2、エステル化率:ε−カプロラクトンのモル数/フェ
ノキシ樹脂中水酸基のモル数。
2. Esterification rate: number of moles of ε-caprolactone/number of moles of hydroxyl groups in the phenoxy resin.

3、還元比粘度:固形樹脂0.2 yをシクロヘキサノ
ンで100 tnlの溶液に調製し、牟75キャノンフ
ェンスケ動粘度計を用い、25℃で測定した値。
3. Reduced specific viscosity: Value measured at 25° C. by preparing a 100 tnl solution of 0.2 y of solid resin with cyclohexanone and using a 75 Cannon Fenske kinematic viscometer.

4、Tg:高車DT−30を用いてTMAの測定値。4. Tg: TMA measurement value using Takashisha DT-30.

5、融着性: JIS−K 6850を準する、融着条
件200℃×10分セン断接着強度が、室温で120K
y/σ2以上では○、120 h/口口取以下は×。
5. Fusion property: Based on JIS-K 6850, fusion conditions: 200°C x 10 minutes, shear adhesive strength is 120K at room temperature.
○ for y/σ2 or more, × for 120 h/kuchitori or less.

6、耐熱変形性:100℃に於ける融着性の判定。6. Heat deformation resistance: Judgment of fusion properties at 100°C.

「発明の効果」 本発明で使用するスルホン基含有ポリヒドロキシポリエ
ーテル樹脂は樹脂そのものの還元比粘度を0.35〜0
.65の範囲にしたにもかかわらず、ガラス転移点が高
い事が特徴であり、従来技術では考えられなかったこと
である。この樹脂を使用した自己融着性絶縁塗料は電線
に塗布した場合にすぐれた熱接着性、耐熱変形性を与え
るという予期されなかった効果を示すものである。
"Effects of the Invention" The sulfone group-containing polyhydroxypolyether resin used in the present invention has a reduced specific viscosity of 0.35 to 0.
.. Although it is in the range of 65, it is characterized by a high glass transition point, which was inconceivable with the prior art. A self-adhesive insulating paint using this resin exhibits unexpected effects in that it provides excellent thermal adhesion and heat deformation resistance when applied to electric wires.

Claims (2)

【特許請求の範囲】[Claims] (1)下記の一般式〔 I 〕で表されるスルホン基含有
ポリヒドロキシポリエーテル樹脂を含有することを特徴
とする自己融着性絶縁塗料。 ▲数式、化学式、表等があります▼ 〔 I 〕 〔式中Xはメチル基を、YはSO_2又は C(CH_3)_2を、Rは水素原子を示し、nは0〜
20の整数、mは20以上の整数、iは0〜4の整数を
示す。更に ▲数式、化学式、表等があります▼が全体の15〜 70%の範囲にあり且つシクロヘキサノン希釈溶液の還
元比粘度が0.35〜0.65の範囲である。〕
(1) A self-adhesive insulating paint characterized by containing a sulfone group-containing polyhydroxy polyether resin represented by the following general formula [I]. ▲There are mathematical formulas, chemical formulas, tables, etc.▼ [I] [In the formula, X is a methyl group, Y is SO_2 or C(CH_3)_2, R is a hydrogen atom, and n is 0 to
An integer of 20, m is an integer of 20 or more, and i is an integer of 0 to 4. Furthermore, ▲There are mathematical formulas, chemical formulas, tables, etc.▼ is in the range of 15 to 70% of the total, and the reduced specific viscosity of the diluted cyclohexanone solution is in the range of 0.35 to 0.65. ]
(2)請求項(1)に記載の化学式〔 I 〕においてX
、Y、n、m、iは請求項(1)と同一であるが、Rは
水素原子又は低分子有機酸残基又は ▲数式、化学式、表等があります▼を示し ▲数式、化学式、表等があります▼が全体の35% 以上でありシクロヘキサノン希釈溶液の還元比粘度が0
.35〜0.65の範囲であり、且つORのエステル化
率が3〜100%であるスルホン基含有ポリヒドロキシ
ポリエーテル樹脂を含有することを特徴とする自己融着
性絶縁塗料。
(2) In the chemical formula [I] according to claim (1),
, Y, n, m, and i are the same as in claim (1), but R represents a hydrogen atom, a low-molecular organic acid residue, or ▲a mathematical formula, a chemical formula, a table, etc. etc. ▼ is more than 35% of the total and the reduced specific viscosity of the diluted cyclohexanone solution is 0.
.. 35 to 0.65, and a sulfone group-containing polyhydroxy polyether resin having an esterification rate of 3 to 100%.
JP63198626A 1988-08-08 1988-08-08 Self-fusing insulating paint Expired - Fee Related JP2663353B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63198626A JP2663353B2 (en) 1988-08-08 1988-08-08 Self-fusing insulating paint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63198626A JP2663353B2 (en) 1988-08-08 1988-08-08 Self-fusing insulating paint

Publications (2)

Publication Number Publication Date
JPH0245575A true JPH0245575A (en) 1990-02-15
JP2663353B2 JP2663353B2 (en) 1997-10-15

Family

ID=16394326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63198626A Expired - Fee Related JP2663353B2 (en) 1988-08-08 1988-08-08 Self-fusing insulating paint

Country Status (1)

Country Link
JP (1) JP2663353B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006321879A (en) * 2005-05-18 2006-11-30 Nippon Steel Chem Co Ltd Polymer having aromatic ether sulfone skeleton, method for producing the same and composition of the same
JP2009067934A (en) * 2007-09-14 2009-04-02 Hitachi Magnet Wire Corp Heat-resistant self-fusing paint and heat-resistant self-fusing enamel wire
JP2009099557A (en) * 2007-09-27 2009-05-07 Sumitomo Electric Wintec Inc Self-fusion insulated wire and motor for driving compressor
US8816038B2 (en) 2006-01-12 2014-08-26 Nippon Steel & Sumikin Chemical Co., Ltd. Aromatic ether polymer, method for producing the same, and polymer composition
JP2017115055A (en) * 2015-12-25 2017-06-29 日立化成株式会社 Phenoxy resin

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS604523A (en) * 1983-06-23 1985-01-11 Sumitomo Bakelite Co Ltd Electrical insulating resin paste

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS604523A (en) * 1983-06-23 1985-01-11 Sumitomo Bakelite Co Ltd Electrical insulating resin paste

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006321879A (en) * 2005-05-18 2006-11-30 Nippon Steel Chem Co Ltd Polymer having aromatic ether sulfone skeleton, method for producing the same and composition of the same
US8816038B2 (en) 2006-01-12 2014-08-26 Nippon Steel & Sumikin Chemical Co., Ltd. Aromatic ether polymer, method for producing the same, and polymer composition
JP2009067934A (en) * 2007-09-14 2009-04-02 Hitachi Magnet Wire Corp Heat-resistant self-fusing paint and heat-resistant self-fusing enamel wire
JP2009099557A (en) * 2007-09-27 2009-05-07 Sumitomo Electric Wintec Inc Self-fusion insulated wire and motor for driving compressor
JP2017115055A (en) * 2015-12-25 2017-06-29 日立化成株式会社 Phenoxy resin

Also Published As

Publication number Publication date
JP2663353B2 (en) 1997-10-15

Similar Documents

Publication Publication Date Title
EP0009645B1 (en) 5-(2,5-diketotetrahydrofuryl)-3-methyl-3-cyclohexene-1,2-dicarboxylicanhydride, its use as curing agent for epoxy resins and as raw material for the production of polyimides, epoxy resins containing it, and their use in the preparation of various articles, and powder coating compositions
US8637612B2 (en) Thermosetting compositions containing isocyanurate ring
JP5131506B2 (en) Epoxy resin
US4686250A (en) Moisture resistant, wet winding epoxy resin system containing aromatic diamines
JP2002527529A (en) Viscosity modifier for thermosetting resin composition
MX2012013529A (en) Curable compositions.
EP1972648B1 (en) Aromatic ether polymer, method for producing same and polymer composition
WO2006067955A1 (en) Method for producing acid anhydride based epoxy resin curing agent, acid anhydride based epoxy resin curing agent, epoxy resin composition, cured article therefrom and optical semiconductor device
JPH04233935A (en) Thermosetting composition for producing epoxide network structure, and manufacture and use thereof
US5872196A (en) Liquid epoxy resin composition
JPH0245575A (en) Self-fusing insulating paint
US6103825A (en) Epoxy resin pre-advanced with carboxyl-containing polyester and advanced with bisphenol
US4529537A (en) Liquid epoxy resin hardeners and processes for their preparation
JP6295048B2 (en) High molecular weight epoxy resin, epoxy resin composition and cured product
JP2782467B2 (en) Pioneering epoxy resin
KR20190025964A (en) Process for the production of epoxy-functional polyesters, epoxy-functional polyesters obtained by this process, and coating compositions comprising such epoxy-functional polyesters
US5310943A (en) Aromatic trisanhydrides
TW202214736A (en) Modified phenoxy resin, method for producing same, resin composition, cured product, and laminated board for electrical/electronic circuit
JP7202136B2 (en) N-alkyl-substituted aminopyridine phthalate and epoxy resin composition containing the same
JPH04264123A (en) Triglycidyl isocyanurate composition
US4861861A (en) Saturated polyesters containing imide groups and terminal carboxyl groups
WO2020232596A1 (en) Active ester with amino groups at two ends, preparation method therefor, thermosetting resin composition and use thereof
WO2005097882A1 (en) Thermosetting composition and curing method thereof
JP7412939B2 (en) Method for manufacturing phenoxy resin
TW201026735A (en) Epoxy resin composition

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees