JPH0244849B2 - JIKOKOKASEIJUSHINOSEIZOHOHO - Google Patents

JIKOKOKASEIJUSHINOSEIZOHOHO

Info

Publication number
JPH0244849B2
JPH0244849B2 JP18828685A JP18828685A JPH0244849B2 JP H0244849 B2 JPH0244849 B2 JP H0244849B2 JP 18828685 A JP18828685 A JP 18828685A JP 18828685 A JP18828685 A JP 18828685A JP H0244849 B2 JPH0244849 B2 JP H0244849B2
Authority
JP
Japan
Prior art keywords
group
parts
self
resin
michael
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18828685A
Other languages
Japanese (ja)
Other versions
JPS6248720A (en
Inventor
Kunihiro Kagawa
Akira Oosawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
Nippon Oil and Fats Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil and Fats Co Ltd filed Critical Nippon Oil and Fats Co Ltd
Priority to JP18828685A priority Critical patent/JPH0244849B2/en
Publication of JPS6248720A publication Critical patent/JPS6248720A/en
Publication of JPH0244849B2 publication Critical patent/JPH0244849B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳现な説明】[Detailed description of the invention] 【産業䞊の利甚分野】[Industrial application field]

本発明は、カチオン電着塗装に適した、氎分散
性で䜎枩硬化性の自己硬化性暹脂の補造方法に関
するものである。
The present invention relates to a method for producing a water-dispersible, low-temperature-curing self-curing resin suitable for cationic electrodeposition coating.

【埓来の技術】[Conventional technology]

カチオン電着塗装は、これたでのアニオン電着
塗装に比べお、被塗䜓の防錆力が優れおいるた
め、自動車塗装分野を䞭心ずしお、近幎その䜿甚
が増加しおきおいる。 このようなカチオン電着塗装に甚いられる暹脂
に぀いお、皮々のものが提案されおいるが、その
䞀぀に、特願昭60−72924号に瀺されたものがあ
る。 該発明は、アミノ基又はむミノ基を有するポリ
アミン暹脂に、アミンむミド基をペンダントに導
入するこずによ぀お、次匏 のように、アミンむミド基が120℃以䞊170℃以
䞋、奜たしくは140〜160℃の䜎枩で熱分解埌、転
䜍しお第䞉アミンが脱離し、む゜シアネヌト基が
生成し、その生成したむ゜シアネヌト基が、暹脂
䞭の氎酞基、アミノ基又はむミノ基ず反応しお䞉
次元構造を圢成しお䞍融䞍溶の硬化塗膜が埗られ
るこず、及びアミンむミド基が酞で䞭和されおア
シルヒドラゞニりム塩基ずなるこずによ぀お、陜
むオン性暹脂の安定な氎性分散液が埗られるこず
を利甚しおカチオン電着塗装に適した暹脂組成物
ずしたものである。
Cationic electrodeposition coating has superior anti-corrosion properties for coated objects compared to conventional anionic electrodeposition coating, and therefore its use has been increasing in recent years, mainly in the automotive coating field. Various resins have been proposed for use in such cationic electrodeposition coatings, one of which is disclosed in Japanese Patent Application No. 72924/1983. The invention provides the following formula by introducing an amine imide group pendant into a polyamine resin having an amino group or an imino group. After the amine imide group is thermally decomposed at a low temperature of 120°C to 170°C, preferably 140 to 160°C, the tertiary amine is eliminated by rearrangement and an isocyanate group is generated, and the generated isocyanate group is It reacts with the hydroxyl group, amino group, or imino group in the resin to form a three-dimensional structure to obtain an infusible and insoluble cured coating, and the amine imide group is neutralized with acid to become an acylhydrazinium base. In particular, by taking advantage of the fact that a stable aqueous dispersion of a cationic resin can be obtained, the resin composition is made suitable for cationic electrodeposition coating.

【発明が解決しようずする問題点】 特開昭60−72924号公報に蚘茉のアミンむミド
基含有アミノ倉性ポリ゚ポキシド以䞋、自己硬
化性暹脂ず称するを補造する方法は、第䞀工皋
で、ポリ゚ポキシドず第䞀モノアミン又はケチミ
ンブロツク化アミノ基含有ポリアミンず反応させ
おポリアミン暹脂を埗、次に第二工皋でポリアミ
ン暹脂ずアミンむミド基を有する゚チレン性䞍飜
和化合物以䞋、アミンむミド化合物ず称する
ずを反応させるこずによ぀お行われる。 しかし、この補造工皋では、圓該自己硬化性暹
脂䞭に占める第䞀工皋のポリアミン暹脂の比率が
非垞に倧きいため、ポリアミン暹脂を事前に䞀定
容積の補造装眮で数バツチ分たずめお補造するこ
ずができず、バツチ分毎にポリアミン暹脂を補
造する必芁がある。又、ポリアミン暹脂を埗るた
めには、その暹脂䞭に、マむケル圢付加が可胜な
掻性氎玠を有する窒玠含有基を導入する必芁か
ら、ポリ゚ポキシドの゚ポキシ基に付加するアミ
ン類ずしお、第䞀モノアミン、ケチミンブロツク
化アミノ基含有ポリアミン又はその混合物を甚い
なければならない。この堎合に、第䞀モノアミン
を甚いるず、ポリ゚ポキシドずのゲル化を防止す
るために倧過剰に䜿甚し、䞔぀、反応埌は未反応
アミンの陀去を必芁ずする。又、ケチミンブロツ
ク化アミノ基含有ポリアミンぱポキシ基ず反応
する段階では、むミノ基を含有しおいるため、ゲ
ル化しないが、ポリアミンを䜿甚するため、暹脂
䞭の窒玠含有基の濃床が必芁以䞊に増加しお塗膜
性胜等が䜎䞋する傟向がある。
[Problems to be Solved by the Invention] The method for producing an amine imide group-containing amino-modified polyepoxide (hereinafter referred to as a self-curing resin) described in JP-A No. 60-72924 involves the step of manufacturing a polyepoxide and a polyepoxide in the first step. A polyamine resin is obtained by reacting with a first monoamine or a ketimine-blocked amino group-containing polyamine, and then in a second step, the polyamine resin and an ethylenically unsaturated compound having an amine imide group (hereinafter referred to as an amine imide compound) are produced.
This is done by reacting with. However, in this manufacturing process, the proportion of the polyamine resin in the first step in the self-curing resin is very large, so it is not possible to manufacture several batches of polyamine resin in advance using a manufacturing device with a fixed volume. First, it is necessary to produce polyamine resin for each batch. In addition, in order to obtain a polyamine resin, it is necessary to introduce into the resin a nitrogen-containing group having an active hydrogen that is capable of Michael-type addition. Polyamines containing blocked amino groups or mixtures thereof must be used. In this case, if the primary monoamine is used, it must be used in large excess to prevent gelation with the polyepoxide, and unreacted amine must be removed after the reaction. In addition, the ketimine-blocked amino group-containing polyamine does not gel at the stage of reaction with the epoxy group because it contains imino groups, but since the polyamine is used, the concentration of nitrogen-containing groups in the resin may be higher than necessary. There is a tendency for the coating film performance to deteriorate due to the increase in the amount of water.

【問題点を解決するための手段】[Means to solve the problem]

本発明者らは、䞊蚘のような問題点を解決する
ため、鋭意研究を重ねた結果、アミンむミド化合
物ず第䞀モノアミンずのマむケル圢付加物を補造
し、次にこのマむケル型付加物をポリ゚ポキシド
に付加させるこずによ぀お、容易に自己硬化性暹
脂を埗るこずができ、その結果圓該自己硬化性暹
脂の補造工皋の簡略化及び短瞮化が可胜ずなるず
同時に、暹脂䞭の窒玠含有基濃床が必芁以䞊に増
加しないため、塗膜性態に悪圱響を及がさないこ
ずを芋い出し、本発明を完成するに至぀たもので
ある。 即ち、本発明は、アミンむミド基を有する゚チ
レン性䞍飜和化合物に第䞀モノアミンを付加させ
お、䞋蚘䞀般匏 匏䞭、R1は炭玠数〜30のアルキル基、ア
ルコキシアルキル基、アルケニル基、ヒドロキシ
アルキル基又はアリヌル基を衚し、R2R3R4
はそれぞれ炭玠数〜のアルキル基又はヒドロ
キシアルキル基を衚す。 のマむケル圢付加物を埗、曎にポリ゚ポキシドに
該マむケル圢付加を付加させお、アミンむミド基
含有アミノ倉性ポリ゚ポキシドを埗るこずを特城
ずする自己硬化性暹脂の補造法に関するものであ
る。 本発明に甚いられるアミンむミド基を有する゚
チレン性䞍飜和化合物ずしおは、䟋えば
−トリメチルアミンメタクリルむミド、
−ゞメチル−−゚チルアミンメタクリルむミ
ド、−ゞメチル−−−ヒドロキシプ
ロピルアミンメタクリルむミド等があげられ
る。 次に本発明に甚いられる第䞀モノアミンは、炭
玠数が〜30のアルキル基、アルコキシルアルキ
ル基、アルケニル基、ヒドロキシアルキル基又は
アリヌル基を有するものであればよく、䟋えば、
゚チルアミン、プロピルアミン、ブチルアミン、
−メチルブチルアミン、ヘキシルアミン、−
゚チルヘキシルアミン、−メトキシプロピルア
ミン、−゚トキシプロピルアミン、プロポキシ
プロピルアミン、ブトキシプロピルアミン、−
゚チルヘキシロキシプロピルアミン、デシロキシ
プロピルアミン、ドデシロキシプロピルアミン、
−アミノ−−プロペン、−アミノ−−ブ
テン、−アミノ−−ペンテン、オレむルアミ
ン、−アミノ゚タノヌル、−アミノ−−プ
ロパノヌル、−ゞメチル−−アミノ−プ
ロパノヌル、プニルアミン、ベンゞルアミン、
α−プネチルアミン、β−プネチルアミン等
がある。第䞀モノアミンは、アミンむミド化合物
にマむケル圢付加しお、その埌のポリ゚ポキシド
ずの反応に有甚なむミノ基が圢成される。 ポリ゚ポキシドに付加させるアミンずしおは、
䞊蚘のアミンむミド化合物に第䞀モノアミンを付
加させおなるマむケル圢付加物ず共に、所望に応
じお埓来公知の第二アミンを䜵甚しおもよい。 このような第二アミンずしおは、分子䞭にむ
ミノ基を個以䞊有するものであればよく、䟋え
ばゞ゚チルアミン、ゞむ゜プロピルアミン、ゞ゚
タノヌルアミン、メチル゚タノヌルアミン、ゞむ
゜プロパノヌルアミン、N′−ゞメチル゚チ
レンゞアミン等や、党おのアミノ基がケチミンで
ブロツク化されお生じた第二モノアミンやポリア
ミン等があげられる。 ケチミンブロツク化アミノ基含有ポリアミンず
しおは、䟋えばモノメチルアミノプロピルアミ
ン、ゞ゚チレントリアミン、ゞプロピレントリア
ミン、ゞブチレントリアミン、トリ゚チレントリ
アミン等のポリアミン䞭のアミノ基が、䟋えばア
セトン、メチル゚チルケトン、メチルむ゜ブチル
ケトン等のケトンずの反応によ぀おケチミンに倉
換されたものがあげられる。 次に、本発明においお甚いられるポリ゚ポキシ
ドずしおは、゚ポキシ基を以䞊有する化
合物であ぀お、䟋えば先ずポリプノヌルのポリ
グリシゞル゚ヌテルがあげられる。 ここで、ポリプノヌルずしおは、䟋えばビス
プノヌル
In order to solve the above-mentioned problems, the present inventors have conducted intensive research and have produced a Michael-type adduct of an amine imide compound and a primary monoamine, and then converted this Michael-type adduct to polyepoxide. By adding this, a self-curing resin can be easily obtained, and as a result, the manufacturing process of the self-curing resin can be simplified and shortened, and at the same time, the concentration of nitrogen-containing groups in the resin can be increased. The present inventors have discovered that since the amount does not increase beyond that level, the properties of the coating film are not adversely affected, leading to the completion of the present invention. That is, the present invention adds a primary monoamine to an ethylenically unsaturated compound having an amine imide group to form the following general formula: (In the formula, R1 represents an alkyl group, alkoxyalkyl group, alkenyl group, hydroxyalkyl group, or aryl group having 2 to 30 carbon atoms, R2, R3, R4
each represents an alkyl group or a hydroxyalkyl group having 1 to 8 carbon atoms. The present invention relates to a method for producing a self-curing resin, which is characterized by obtaining a Michael type adduct of ) and further adding the Michael type adduct to a polyepoxide to obtain an amino-modified polyepoxide containing an amine imide group. Examples of the ethylenically unsaturated compound having an amine imide group used in the present invention include 1, 1,
1-trimethylamine methacrylimide, 1,1
-dimethyl-1-ethylamine methacrylimide, 1,1-dimethyl-1-(2-hydroxypropyl)amine methacrylimide, and the like. Next, the first monoamine used in the present invention may have an alkyl group, an alkoxylalkyl group, an alkenyl group, a hydroxyalkyl group, or an aryl group having 2 to 30 carbon atoms, for example,
ethylamine, propylamine, butylamine,
1-methylbutylamine, hexylamine, 2-
Ethylhexylamine, 3-methoxypropylamine, 3-ethoxypropylamine, propoxypropylamine, butoxypropylamine, 2-
Ethylhexyloxypropylamine, decyloxypropylamine, dodecyloxypropylamine,
1-amino-2-propene, 1-amino-2-butene, 1-amino-2-pentene, oleylamine, 2-aminoethanol, 2-amino-1-propanol, 2,2-dimethyl-3-amino-propanol , phenylamine, benzylamine,
Examples include α-phenethylamine and β-phenethylamine. The primary monoamine undergoes Michael addition to the amine imide compound to form an imino group useful for subsequent reaction with the polyepoxide. The amine added to polyepoxide is
If desired, a conventionally known secondary amine may be used in combination with the Michael type adduct obtained by adding a primary monoamine to the above-mentioned amine imide compound. Such secondary amines may have one or more imino groups in one molecule, such as diethylamine, diisopropylamine, diethanolamine, methylethanolamine, diisopropanolamine, N,N'-dimethylethylenediamine, etc. Examples include secondary monoamines and polyamines produced by blocking all amino groups with ketimine. Examples of ketimine-blocked amino group-containing polyamines include monomethylaminopropylamine, diethylenetriamine, dipropylenetriamine, dibutylenetriamine, triethylenetriamine, and other polyamines in which amino groups are combined with ketones such as acetone, methylethylketone, and methylisobutylketone. Examples include those converted to ketimine by the following reaction. Next, the polyepoxide used in the present invention is a compound having two or more 1,2 epoxy groups, such as polyglycidyl ether of polyphenol. Here, as the polyphenol, for example, bisphenol A

【−ビス−ヒドロキシフ
゚ニルプロパン】、−ビス−ヒドロ
キシプニル゚タン、−メチル−−ビ
ス−ヒドロキシプニルプロパン、
−ビス−ヒドロキシ−−−ブチルプニ
ルプロパン、ビス−ヒドロキシナフチル
メタン、−ゞヒドロキシナフタレン等があ
げられる。 又、䟋えばポリプノヌルの゚チレンオキシド
付加物やプロピレンオキシド付加物等のオキシア
ルキル付加物や、ノボラツク圢プノヌル暹脂及
びこれらず類䌌のポリプノヌル暹脂等のポリグ
リシゞル゚ヌテルも甚いられる。 次いで、そのほかのポリ゚ポキシドずしおは、
䟋えば゚ポキシ化ポリアルカゞ゚ン系暹脂、グリ
シゞルアクリレヌト共重合䜓系暹脂、グリシゞル
メタアクリレヌト共重合䜓系暹脂、氎酞基含有暹
脂のポリグリシゞル゚ヌテル、カルボキシル基含
有暹脂のポリグリシゞル゚ステル等があげられ
る。 ポリ゚ポキシドは、曎に反応させお連鎖延長を
させ、その分子量を増加させたものでもよい。そ
の堎合の連鎖延長剀ずしおは、゚ポキシ基ず反応
性を有する掻性氎玠含有化合物、䟋えばグリコヌ
ル、ゞアミン、ポリ゚ヌテルポリオヌル、ダむマ
ヌ酞、ヒダントむン、ビスプノヌル、ポリア
ミノアミド、アミノ酞等の氎酞基、アミノ基、む
ミノ基、チオヌル基、カルボキシル基等を含有す
る化合物等があげられる。 次に、本発明の特城をなす、自己硬化性暹脂の
補造法に぀いお説明する。 先ず、第䞀モノアミンずアミンむミド化合物ず
のマむケル圢付加反応方法は、反応容噚に第䞀モ
ノアミン及び有機溶媒を仕蟌み、適圓な枩床、奜
たしくは70℃以䞊120℃以䞋で䞍掻性ガス気流䞋
に撹拌しながら、アミンむミド化合物を添加す
る。枩床を120℃以䞋に保぀理由は、反応䞭にお
けるアミンむミド化合物の熱分解を防止するため
である。 アミンむミド化合物の添加は、党量を䞀床に添
加する方法、数回に分割添加する方法、滎䞋する
方法等によ぀お行うこずができる。 又、アミンむミド化合物ず第䞀モノアミンずの
反応は、そのアミンむミド基を酞で䞭和したアシ
ルヒドラゞニりム塩基の方が、第䞀モノアミンず
の反応性を高める効果が倧きいため、酞の存圚䞋
で行うのが奜たしい。この目的のために甚いる酞
は、本発明で埗られる自己硬化性暹脂を氎分散さ
せるのに有甚な埓来公知の有機酞は無機酞であ
れば良く、その量は、アミンむミド化合物モル
に察しお、0.5〜モルである。 又、この段階では、加熱、冷华、揮発成分の還
流、有機溶媒等の添加等を行うこずができる。 アミンむミド化合物の添加終了埌、必芁に応じ
適圓な枩床ず時間で反応を継続した埌、有機溶媒
による垌釈、過等の工皋を行い、マむケル圢付
加物である暹脂状溶液を埗る。 ここで、有機溶媒ずは、第䞀モノアミンずアミ
ンむミド化合物ずのマむケル圢付加反応及びその
埌のマむケル圢付加物ずポリ゚ポキシドずの付加
反応に甚いる有機溶剀の事であり、前者の反応に
甚いる有機溶媒ずしおは䟋えばメチルアルコヌ
ル、゚チルアルコヌル、む゜プロピルアルコヌル
等のアルコヌル類や゚チレングリコヌルモノ゚チ
ル゚ヌテル、゚チレングリコヌルモノブチル゚ヌ
テル等の゚ヌテルアルコヌル類が奜たしく、埌者
の反応に甚いる有機溶媒ずしおは、䟋えばトル゚
ン、キシレン、メチルむ゜ブチルケトン、ゞむ゜
プロピルケトン、ミネラルスピリツト、゚チレン
グリコヌルモノ゚チル゚ヌテルアセテヌト、ゞ゚
チレングリコヌルゞメチル゚ヌテル、酢酞ブチル
等が奜たしい。 次に、埗られたマむケル圢付加物ずポリ゚ポキ
シドずの付加反応方法は、反応容噚にポリ゚ポキ
シドの䞀郚又は党郚を仕蟌み、䞍掻性ガス気流䞋
に混合しお均䞀な液状物ずする。この工皋で必芁
あれば、加熱、適圓な有機溶媒の添加、ポリ゚ポ
キシドず䟋えばビスプノヌル等のそのほかの
成分ずの予備的反応等を行うこずができる。次い
で、䞊蚘の均䞀な液状物を適圓な枩床で䞍掻性ガ
ス気流䞋に撹拌しながら、マむケル圢付加物を添
加する。マむケル圢付加物の添加は、党量を䞀床
に添加する方法、数回に分割添加する方法、滎䞋
する方法等によ぀お行われ、工皋䞊の時期に応じ
お、マむケル圢付加物の皮類や量を倉えるこずが
できる。この段階では、加熱、冷华、揮発成分の
還流、ポリ゚ポキシドの䞀郚や有機溶媒等の添加
等を行うこずができる。マむケル圢付加物の添加
終了埌、必芁に応じ、適圓な枩床ず時間で反応を
継続した埌、有機溶媒による垌釈、蒞溜、過等
の操䜜を行い、自己硬化性暹脂を埗る。 自己硬化性暹脂の䞭に占めるマむケル圢付加物
の割合は、固圢分ずしお〜35重量であるこず
が奜たしく、重量未満の堎合は、䜎枩硬化性
ではなくなり、埗られる塗膜の物性も䞍充分であ
り、35重量を超える堎合は、埗られる氎性分散
液の電着性や、埗られる塗膜の物性に問題が生じ
る。 本発明により補造される自己硬化性暹脂は、す
でにその圓該暹脂䞭にアシルヒドラゞニりム塩基
を含有するが、さらに必芁により残存するアミン
むミド基も酞で䞭和するこずでアシルヒドラゞニ
りム塩基ぞの倉換が可胜であり、さらに氎で垌釈
するこずにより氎性分散液の圢成が可胜ずなる。
ここで酞ずしおは、有機酞又は無機酞であり、䟋
えば蟻酞、酢酞、乳酞、リン酞等が挙げられる。 又、アミンむミド基を䞭和しお埗られた自己硬
化性暹脂䞭のアシルヒドラゞニりム塩基の割合、
皮々の成分の構造や分子量は、圓該自己硬化性暹
脂を氎ず混合した堎合の分散安定性、電着性、架
橋硬化性、塗膜性胜等を勘案しお、盞互に調敎し
なければならない。 自己硬化性暹脂の氎性分散液即ち、カチオン電
着塗料济䞭に陜極ず電導性被塗䜓ずからなる陰極
ずを浞挬し、䞡極の間に電圧を印加すれば、可電
着性暹脂が塗膜ずしお、陰極衚面に析出する。 そのようなカチオン電着塗装技術は、圓該技術
分野で呚知であるが、析出塗膜は、カチオン電着
塗料济䞭から匕き䞊げた埌の氎掗で、被塗䜓衚面
から掗い萜されない皋床に、付着力を有しおいな
ければならない。 本発明で補造される自己硬化性暹脂は、基本的
にはアミンむミド基含有アミノ倉性ポリ゚ポキシ
ドず䞭和剀である酞ずからなり、そのほかの成分
ずしお、通垞のカチオン電着塗装に甚いられおい
る成分である可塑剀界面掻性剀䟋えば二酞化
チタン、カヌボンブラツク、タルク、カオリン、
シリカ、ケむ酞鉛、塩基性クロム酞鉛、リン酞亜
鉛等の着色顔料、䜓質顔料、防錆顔料等の顔料
䟋えばむ゜プロピルアルコヌル、ブチルアルコヌ
ル、゚チレングリコヌルモノ゚チル゚ヌテル、゚
チレングリコヌルモノブチル゚ヌテル、ゞアセト
ンアルコヌル等の芪氎性・半芪氎性の有機溶剀
䟋えばゞブチルスズゞラりレヌト、ゞブチルスズ
ゞオキサむド、ゞプニルスズオキサむド等の硬
化觊媒氎等を適宜に加えたものであり、塗料の
補造に通垞甚いられおいるデゟルバヌ、ホモミキ
サヌ、サンドグラむンドミル、アトラむタヌ、ロ
ヌルミル等の混合機や分散機等によ぀お、均䞀に
混合、分散し、暹脂分の固圢分がおよび10〜25重
量の氎性分散液であるカチオン電着塗料济ずす
る。
[2,2-bis(4-hydroxyphenyl)propane], 1,1-bis(4-hydroxyphenyl)ethane, 2-methyl-1,1-bis(4-hydroxyphenyl)propane, 2, 2
-Bis(4-hydroxy-3-t-butylphenyl)propane, bis(2-hydroxynaphthyl)
Examples include methane and 1,5-dihydroxynaphthalene. Also used are, for example, oxyalkyl adducts of polyphenols such as ethylene oxide adducts and propylene oxide adducts, and polyglycidyl ethers such as novolac type phenol resins and polyphenol resins similar to these. Next, as other polyepoxides,
Examples include epoxidized polyalkadiene resins, glycidyl acrylate copolymer resins, glycidyl methacrylate copolymer resins, polyglycidyl ethers of hydroxyl group-containing resins, and polyglycidyl esters of carboxyl group-containing resins. The polyepoxide may be further reacted to undergo chain extension to increase its molecular weight. In this case, chain extenders include active hydrogen-containing compounds that are reactive with epoxy groups, such as glycols, diamines, polyether polyols, dimer acids, hydantoins, bisphenol A, polyaminoamides, hydroxyl groups and amino groups such as amino acids, Examples include compounds containing imino groups, thiol groups, carboxyl groups, and the like. Next, a method for producing a self-curing resin, which is a feature of the present invention, will be explained. First, in the Michael type addition reaction method between a primary monoamine and an amine imide compound, the primary monoamine and an organic solvent are charged into a reaction vessel, and the mixture is stirred at an appropriate temperature, preferably 70°C or higher and 120°C or lower, under an inert gas flow. while adding the amine imide compound. The reason for keeping the temperature below 120°C is to prevent thermal decomposition of the amine imide compound during the reaction. The amine imide compound can be added by a method of adding the entire amount at once, a method of adding in several portions, a method of adding dropwise, or the like. In addition, the reaction between an amine imide compound and a primary monoamine is not possible in the presence of an acid because the acylhydrazinium base whose amine imide group is neutralized with an acid is more effective in increasing the reactivity with the primary monoamine. It is preferable to do so. The acid used for this purpose may be any conventionally known organic acid 2 useful for dispersing the self-curing resin obtained in the present invention in water, as long as it is an inorganic acid, and the amount thereof is determined per mole of the amine imide compound. It is 0.5 to 1 mole. Further, at this stage, heating, cooling, refluxing of volatile components, addition of an organic solvent, etc. can be performed. After the addition of the amine imide compound is completed, the reaction is continued at an appropriate temperature and time as necessary, and then dilution with an organic solvent, filtration, and other steps are performed to obtain a resinous solution of the Michael adduct. Here, the organic solvent is an organic solvent used in the Michael addition reaction between the primary monoamine and the amine imide compound and the subsequent addition reaction between the Michael adduct and polyepoxide; For example, alcohols such as methyl alcohol, ethyl alcohol, and isopropyl alcohol, and ether alcohols such as ethylene glycol monoethyl ether and ethylene glycol monobutyl ether are preferable, and the organic solvent used in the latter reaction is, for example, toluene, xylene, methyl isobutyl. Ketone, diisopropyl ketone, mineral spirits, ethylene glycol monoethyl ether acetate, diethylene glycol dimethyl ether, butyl acetate and the like are preferred. Next, in the method of addition reaction between the obtained Michael adduct and polyepoxide, part or all of the polyepoxide is charged into a reaction vessel and mixed under an inert gas flow to form a uniform liquid. If necessary in this step, heating, addition of a suitable organic solvent, preliminary reaction of the polyepoxide with other components such as bisphenol A, etc. can be carried out. Next, the Michael adduct is added to the homogeneous liquid while stirring the mixture at an appropriate temperature and under a stream of inert gas. Addition of the Michael type adduct can be carried out by adding the entire amount at once, adding it in several portions, dropping it, etc. Depending on the timing of the process, the type and amount of the Michael type adduct can be added. can be changed. At this stage, heating, cooling, refluxing of volatile components, addition of a portion of polyepoxide, an organic solvent, etc. can be performed. After the addition of the Michael type adduct is completed, the reaction is continued at an appropriate temperature and time as required, and then dilution with an organic solvent, distillation, filtration, etc. are performed to obtain a self-curing resin. The proportion of the Michael type adduct in the self-curing resin is preferably 5 to 35% by weight as a solid content, and if it is less than 5% by weight, it will not be curable at low temperature and the physical properties of the resulting coating will deteriorate. If the amount exceeds 35% by weight, problems will arise in the electrodeposition properties of the resulting aqueous dispersion and in the physical properties of the resulting coating film. The self-curing resin produced according to the present invention already contains an acylhydrazinium base, but if necessary, the remaining amine imide groups can also be neutralized with an acid to convert them into acylhydrazinium bases. conversion is possible and further dilution with water allows the formation of an aqueous dispersion.
Here, the acid is an organic acid or an inorganic acid, such as formic acid, acetic acid, lactic acid, phosphoric acid, and the like. In addition, the proportion of acylhydrazinium base in the self-curing resin obtained by neutralizing the amine imide group,
The structures and molecular weights of the various components must be mutually adjusted by taking into account dispersion stability, electrodepositivity, crosslinking curability, coating film performance, etc. when the self-curing resin is mixed with water. By immersing an anode and a cathode consisting of a conductive coating material in an aqueous dispersion of a self-curing resin, that is, a cationic electrodeposition paint bath, and applying a voltage between the two electrodes, the electrocoatable resin is coated. It is deposited as a film on the cathode surface. Such cationic electrodeposition coating techniques are well known in the art; however, the deposited coating can be applied to the surface of the coated material to such an extent that it is not washed off by water washing after removal from the cationic electrodeposition paint bath. It must have staying power. The self-curing resin produced in the present invention basically consists of an amino-modified polyepoxide containing an amine imide group and an acid as a neutralizing agent, and other components include those used in ordinary cationic electrodeposition coatings. plasticizer; surfactant; such as titanium dioxide, carbon black, talc, kaolin,
Pigments such as color pigments such as silica, lead silicate, basic lead chromate, and zinc phosphate, extender pigments, and antirust pigments;
For example, hydrophilic/semi-hydrophilic organic solvents such as isopropyl alcohol, butyl alcohol, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diacetone alcohol;
For example, curing catalysts such as dibutyltin dilaurate, dibutyltin dioxide, diphenyltin oxide; water, etc. are added as appropriate, and are commonly used in the manufacture of paints, such as resolvers, homomixers, sand grind mills, attritors, and roll mills. The mixture is uniformly mixed and dispersed using a mixer or a dispersing machine such as the above, to form a cationic electrodeposition paint bath which is an aqueous dispersion having a resin solid content of 10 to 25% by weight.

【実斜䟋】【Example】

次に、実斜䟋、比范䟋をあげお本発明を曎に詳
现に説明する。䟋䞭、郚は重量郚、は重量で
ある。 ◇実斜䟋  枩床蚈、撹拌機、還流冷华噚、滎䞋ロヌト及び
窒玠ガス吹蟌口を取り付けた反応容噚に、窒玠ガ
ス気流䞋−゚チルヘキシルアミン300郚を仕蟌
み90℃たで埐々に昇枩した。次いで、90℃を保ち
぀぀、䞋蚘の混合物を玄時間を芁しお滎䞋し
た。 −トリメタルアミンメタクリルむミ
ド 329郚 酢 酾 111郚 ゚チレングリコヌルモノブチル゚ヌテル 329郚 滎䞋埌、90℃で時間反応を継続しお淡黄色透
明な固圢分58.8のマむケル圢付加物を埗た。 又、別の䞊蚘ず同様な反応容噚に窒玠ガス気流
䞋、ポリ゚ポキシド商品名゚ピコヌト1004油化
シ゚ル゚ポキシ株匏䌚瀟補、950郚ずメチルむ゜
ブチルケトン282郚を仕蟌み、110℃たで埐々に昇
枩しお溶解した。次いで前蚘マむケル圢付加物
369郚及びケチミンモノメチルアミノプロピル
アミンモルずメチルむ゜ブチルケトンモルず
から埗られたもので、固圢分90.0のメチルむ゜
ブチルケトン溶液38郚を加え、窒玠ガス気流䞋
90℃で時間反応させお、数平均分子量2370、固
圢分73.3の自己硬化性暹脂を埗た。 埗られた自己硬化性暹脂136郚を脱むオン氎で
垌釈しお暹脂固圢分10の氎性分散液を埗た。 埗られた氎性分数液を内容積玄リツトルのポ
リ塩化ビニル補の電着槜に移し、枩床を25℃に調
敎しお、被塗䜓ずしおリン酞亜鉛凊理鋌板を陰極
に接続した。 次いで、炭玠板を陜極ずしお氎性分散液䞭に挿
入し、氎性分散液を撹拌しながら80ボルトの盎流
電流を分間印加しお、カチオン電着塗装を行぀
た。 氎掗埌、150℃で30分間焌付けお、也燥膜厚
19Όの硬化塗膜を埗た。埗られた硬化塗膜の詊隓
結果を䞋蚘第衚に瀺した。 ◇実斜䟋  実斜䟋ず同様な反応容噚に窒玠ガス気流䞋、
−アミノ−−プロパノヌル150郚を仕蟌み、
70℃たで埐々に昇枩した。 次いで、70℃を保ち぀぀、䞋蚘の混合物を玄
時間を芁しお滎䞋した。 −ゞメチル−−−ヒドロキシプロ
ピルアミンメタクリルむミド 372郚 酢 酾 120郚 ゚チレングリコヌルモノブチル゚ヌテル 372郚 滎䞋埌、70℃で時間反応を継続しお淡黄色透
明な固圢分51.5のマむケル圢付加物を埗た。 又、別の実斜䟋ず同様な反応容噚に窒玠ガス
気流䞋ポリ゚ポキシド商品名゚ピナヌト1004æ²¹
化シ゚ル゚ポキシ株匏䌚瀟補950郚ずメチルむ
゜ブチルケトン244郚を仕蟌み、110℃たで埐々に
昇枩しお溶解した。次いで前蚘マむケル圢付加物
506郚を加え、窒玠ガス気流は䞋90℃で時間反
応させお、数平均分子量2380、固圢分71.2の自
己硬化性暹脂を埗た。 埗られた自己硬化性暹脂140郚を、脱むオン氎
で垌釈しお暹脂固圢分10の氎性分散液を埗た。 埗られた氎性分散液を実斜䟋ず同様にしお、
カチオン電着塗装を行぀た。 氎掗埌、150℃30分間焌付けお、也燥膜厚19ÎŒ
の硬化塗膜を埗た。 埗られた硬化塗膜の詊隓結果を䞋蚘第衚に瀺
した。 ◇実斜䟋  実斜䟋ず同様な反応容噚に、窒玠ガス気流
䞋、オレむルアミン商品名アミンOB 日本油
脂株匏䌚瀟補534郚を仕蟌み、80℃たで埐々に
昇枩した。次いで、80℃を保ち぀぀、䞋蚘の混合
物を玄時間芁しお滎䞋した。 −ゞメチル−−−ヒドロキシプロ
ピルアミンメタクリルむミド 372郚 酢 酾 96郚 ゚チレングリコヌルモノブチル゚ヌテル 372郚 滎䞋埌、80℃で時間反応を継続しお黄耐色透
明な固圢分65.9のマむケル圢付加物を埗た。 又、別の実斜䟋ず同様な反応容噚に窒玠ガス
気流䞋、ポリ゚ポキシド商品名゚ピコヌト1004
油化シ゚ル゚ポキシ株匏䌚瀟補950郚ずメチル
む゜ブチルケトン244郚を仕蟌み、110℃たで埐々
に昇枩しお溶解した。次いで、マむケル圢付加物
687郚を加え、窒玠ガス気流䞋90℃で時間反応
させお、数平均分子量2800、固圢分74.6の自己
硬化性暹脂を埗た。 埗られた自己硬化性暹脂134郚に察しお、脱む
オン氎で垌釈しお暹脂固圢分10の氎性分散液を
埗た。 埗られた氎性分散液を実斜䟋ず同様にしお、
カチオン電着塗装を行぀た。 氎掗埌、150℃で30分間焌付けお、也燥膜厚
20Όの硬化塗膜を埗た。 埗られた硬化塗膜の詊隓結果を䞋蚘第衚に瀺
した。 ◇比范䟋  実斜䟋ず同様な反応容噚に、窒玠ガス気流
䞋、ポリ゚ポキシド商品名゚ピコヌト1004油化
シ゚ル゚ポキシ株匏䌚瀟補950郚ずメチルむ゜
ブチルケトン336郚を仕蟌み、110℃たで埐々に昇
枩し、溶解した。次いで、プロピルアミン118郚
を仕蟌み、窒玠ガス気流䞋50℃で時間反応させ
た。次いで、120℃たで昇枩し、激しく窒玠ガス
を吹き蟌んで、未反応アミンを陀き、淡黄色透明
な固圢分76.6のポリアミン暹脂を埗た。埗られ
たポリアミン暹脂を70℃に保ち぀぀、䞋蚘の混合
物を玄時間を芁しお滎䞋した。 −ゞメチル−−−ヒドロキシプロ
ピルアミンアクリルアミド 138郚 ゚チレングリコヌルモノブチル゚ヌテル 138郚 滎䞋埌、70℃で時間反応を継続しお、数平均
分子量2200、固圢分72.0の自己硬化性暹脂を埗
た。 埗られた自己硬化性暹脂138郚に察しお酢酞
郚を加えお充分混合した埌、脱むオン氎で垌釈し
お暹脂固圢分10の氎性分散液を埗た。 埗られた氎性分散液を実斜䟋ず同様にしお、
カチオン電着塗装を行぀た。氎掗埌、150℃で30
分間焌付けお、也燥膜厚18Όの硬化塗膜を埗た。 埗られた硬化塗膜の詊隓結果を䞋蚘第衚に瀺
した。 ◇比范䟋  実斜䟋ず同様な反応容噚に、窒玠ガス気流
䞋、ポリ゚ポキシド商品名゚ピコヌト1004油化
シ゚ル゚ポキシ株匏䌚瀟補950郚ずメチルむ゜
ブチルケトン355郚を仕蟌み、110℃たで埐々に昇
枩しお溶解した。次いでケチミンモノメチルア
ミノプロピルアミンモルずメチルむ゜ブチルケ
トンモルずから埗られたもので、固圢分90.0
のメチルむ゜ブチルケトン溶液188郚を加え、
窒玠ガス気流䞋90℃で時間反応させお、淡黄色
透明な固圢分76.2のポリアミン暹脂を埗た。埗
られたポリアミン暹脂を90℃に保ち぀぀、脱むオ
ン氎27郚、゚チレングリコヌルモノブチル゚ヌテ
ル20郚を埐々に加えた埌、䞋蚘の混合物を玄時
間を芁しお滎䞋した。 −トリメチルアミンアクリルむミド
128郚 ゚チレングリコヌルモノブチル゚ヌテル 128郚 滎䞋埌、90℃で時間反応を継続しお、数平均
分子量2330、固圢分65.0の自己硬化性暹脂を埗
た。 埗られた自己硬化性暹脂154郚に察しお酢酞
郚を加えお充分混合した埌、脱むオン氎で垌釈し
お暹脂固圢分10の氎性分散液を埗た。 埗られた氎性分散液を実斜䟋ず同様にしお、
カチオン電着塗装を行぀た。氎掗埌、150℃で30
分間焌付けお、也燥膜厚19Όの硬化塗膜を埗た。 埗られた硬化塗膜の詊隓結果を䞋蚘第衚に瀺
した。たた䞋蚘第衚には、実斜䟋〜、比范
䟋〜により埗られた電着析出塗膜のアミン
倀、自己硬化性暹脂䞭の比率、補造時間に぀いお
も瀺した。
Next, the present invention will be explained in more detail by giving Examples and Comparative Examples. In the examples, parts are parts by weight, and % is % by weight. ◇Example 1 In a reaction vessel equipped with a thermometer, a stirrer, a reflux condenser, a dropping funnel, and a nitrogen gas inlet, 300 parts of 2-ethylhexylamine was charged under a nitrogen gas stream, and the temperature was gradually raised to 90°C. Next, the following mixture was added dropwise over about 1 hour while maintaining the temperature at 90°C. 1,1,1-Trimetalamine methacrylimide 329 parts Acetic acid 111 parts Ethylene glycol monobutyl ether 329 parts After the dropwise addition, the reaction was continued at 90°C for 2 hours to form a pale yellow transparent Michael adduct with a solid content of 58.8%. Obtained. In addition, 950 parts of polyepoxide (trade name: Epicote 1004, manufactured by Yuka Ciel Epoxy Co., Ltd.) and 282 parts of methyl isobutyl ketone were charged into another reaction vessel similar to the above under a nitrogen gas stream, and the temperature was gradually raised to 110°C. and dissolved. Then the Michael adduct
369 parts and 38 parts of ketimine (obtained from 1 mol of monomethylaminopropylamine and 1 mol of methyl isobutyl ketone, a methyl isobutyl ketone solution with a solid content of 90.0%) were added, and the mixture was heated under a nitrogen gas stream.
The reaction was carried out at 90° C. for 2 hours to obtain a self-curing resin having a number average molecular weight of 2370 and a solid content of 73.3%. 136 parts of the obtained self-curing resin was diluted with deionized water to obtain an aqueous dispersion having a resin solid content of 10%. The obtained aqueous fraction was transferred to a polyvinyl chloride electrodeposition tank having an internal volume of about 1 liter, the temperature was adjusted to 25°C, and a zinc phosphate-treated steel plate was connected to the cathode as the object to be coated. Next, a carbon plate was inserted into the aqueous dispersion as an anode, and a cationic electrodeposition coating was performed by applying a direct current of 80 volts for 2 minutes while stirring the aqueous dispersion. After washing with water, bake at 150℃ for 30 minutes to obtain a dry film thickness.
A cured coating film of 19ÎŒ was obtained. The test results of the obtained cured coating films are shown in Table 1 below. ◇Example 2 In a reaction vessel similar to Example 1, under a nitrogen gas stream,
Prepare 150 parts of 2-amino-1-propanol,
The temperature was gradually raised to 70°C. Next, while maintaining the temperature at 70℃, add about 1 cup of the following mixture.
It took some time to drip. 1,1-Dimethyl-1-(2-hydroxypropyl)amine methacrylimide 372 parts Acetic acid 120 parts Ethylene glycol monobutyl ether 372 parts After dropping, the reaction was continued at 70°C for 1 hour to give a light yellow transparent solid content of 51.5%. Michael-shaped adducts were obtained. In addition, 950 parts of polyepoxide (trade name: Epiyute 1004 manufactured by Yuka Ciel Epoxy Co., Ltd.) and 244 parts of methyl isobutyl ketone were charged into a reaction vessel similar to that in Example 1 under a nitrogen gas stream, and the temperature was gradually raised to 110°C. and dissolved. Then the Michael adduct
506 parts were added, and the reaction was carried out at 90° C. for 2 hours under a nitrogen gas stream to obtain a self-curing resin with a number average molecular weight of 2380 and a solid content of 71.2%. 140 parts of the obtained self-curing resin was diluted with deionized water to obtain an aqueous dispersion having a resin solid content of 10%. The obtained aqueous dispersion was treated in the same manner as in Example 1,
Cationic electrodeposition painting was performed. After washing with water, bake at 150℃ for 30 minutes, dry film thickness: 19ÎŒ
A cured coating film was obtained. The test results of the obtained cured coating films are shown in Table 1 below. ◇Example 3 In a reaction vessel similar to Example 1, 534 parts of oleylamine (trade name: Amine OB, manufactured by NOF Corporation) was charged under a nitrogen gas flow, and the temperature was gradually raised to 80°C. Next, the following mixture was added dropwise over a period of about 1 hour while maintaining the temperature at 80°C. 1,1-dimethyl-1-(2-hydroxypropyl)amine methacrylimide 372 parts Acetic acid 96 parts Ethylene glycol monobutyl ether 372 parts After dropping, the reaction was continued at 80°C for 2 hours to give a yellowish brown transparent solid content of 65.9%. Michael-shaped adducts were obtained. In addition, polyepoxide (trade name: Epicoat 1004
950 parts (manufactured by Yuka Ciel Epoxy Co., Ltd.) and 244 parts of methyl isobutyl ketone were charged, and the temperature was gradually raised to 110°C to dissolve them. Then, the Michael type adduct
687 parts were added and reacted for 2 hours at 90°C under a nitrogen gas stream to obtain a self-curing resin with a number average molecular weight of 2800 and a solid content of 74.6%. 134 parts of the obtained self-curing resin was diluted with deionized water to obtain an aqueous dispersion having a resin solid content of 10%. The obtained aqueous dispersion was treated in the same manner as in Example 1,
Cationic electrodeposition coating was performed. After washing with water, bake at 150℃ for 30 minutes to obtain a dry film thickness.
A cured coating film of 20ÎŒ was obtained. The test results of the obtained cured coating films are shown in Table 1 below. ◇Comparative Example 1 In a reaction vessel similar to Example 1, 950 parts of polyepoxide (trade name Epicoat 1004 manufactured by Yuka Ciel Epoxy Co., Ltd.) and 336 parts of methyl isobutyl ketone were charged under a nitrogen gas flow, and the mixture was gradually raised to 110°C. Warm and dissolve. Next, 118 parts of propylamine was charged, and the mixture was reacted at 50° C. for 5 hours under a nitrogen gas stream. Next, the temperature was raised to 120°C and nitrogen gas was blown vigorously to remove unreacted amine, yielding a pale yellow transparent polyamine resin with a solid content of 76.6%. The following mixture was added dropwise to the resulting polyamine resin over a period of about 1 hour while maintaining the temperature at 70°C. 1,1-dimethyl-1-(2-hydroxypropyl)amine acrylamide 138 parts Ethylene glycol monobutyl ether 138 parts After dropping, the reaction was continued at 70°C for 2 hours to achieve a self-curing product with a number average molecular weight of 2200 and a solid content of 72.0%. A synthetic resin was obtained. 2 parts of acetic acid per 138 parts of the self-curing resin obtained.
After adding 1.0 parts and thoroughly mixing, the mixture was diluted with deionized water to obtain an aqueous dispersion having a resin solids content of 10%. The obtained aqueous dispersion was treated in the same manner as in Example 1,
Cationic electrodeposition coating was performed. 30 at 150℃ after washing with water
After baking for a minute, a cured coating film with a dry film thickness of 18 ÎŒm was obtained. The test results of the obtained cured coating films are shown in Table 1 below. ◇Comparative Example 2 In a reaction vessel similar to Example 1, 950 parts of polyepoxide (trade name Epicoat 1004 manufactured by Yuka Ciel Epoxy Co., Ltd.) and 355 parts of methyl isobutyl ketone were charged under a nitrogen gas flow, and the mixture was gradually heated to 110°C. It was heated and dissolved. Next, ketimine (obtained from 1 mol of monomethylaminopropylamine and 1 mol of methyl isobutyl ketone, solid content 90.0%)
Add 188 parts of methyl isobutyl ketone solution),
The reaction was carried out at 90°C for 2 hours under a nitrogen gas stream to obtain a pale yellow transparent polyamine resin with a solid content of 76.2%. While maintaining the obtained polyamine resin at 90°C, 27 parts of deionized water and 20 parts of ethylene glycol monobutyl ether were gradually added, and then the following mixture was added dropwise over about 1 hour. 1,1,1-trimethylamine acrylimide
128 parts ethylene glycol monobutyl ether 128 parts After the dropwise addition, the reaction was continued at 90°C for 2 hours to obtain a self-curing resin with a number average molecular weight of 2330 and a solid content of 65.0%. 2 parts of acetic acid per 154 parts of the self-curing resin obtained.
After adding 1.0 parts and thoroughly mixing, the mixture was diluted with deionized water to obtain an aqueous dispersion having a resin solids content of 10%. The obtained aqueous dispersion was treated in the same manner as in Example 1,
Cationic electrodeposition coating was performed. 30 at 150℃ after washing with water
After baking for a minute, a cured coating film with a dry film thickness of 19 ÎŒm was obtained. The test results of the obtained cured coating films are shown in Table 1 below. Table 1 below also shows the amine values, proportions in the self-curing resin, and manufacturing times of the electrodeposition coating films obtained in Examples 1 to 3 and Comparative Examples 1 to 2.

【衚】【table】

【衚】【table】

【発明の効果】【Effect of the invention】

実斜䟋〜の補造工皋においお、自己硬化性
暹脂䞭に占めるマむケル圢付加物の比率が平均
29.2ず小さいため、マむケル圢付加物を事前
に、䞀定容積の補造装眮で数バツチ分たずめお補
造しお保管し、自己硬化性暹脂を補造するたび毎
にその䞀郚を甚いるこずが可胜である。それに察
しお、比范䟋〜の補造工皋においお、第䞀工
皋の自己硬化性暹脂䞭に占めるポリアミン暹脂の
比率が平均81.8ず倧きいため、ポリアミン暹脂
を事前に䞀定容積の補造装眮で数バツチ分たずめ
お補造するこずができず、バツチ分毎にポリア
ミン暹脂を補造する必芁がある。 埓぀お実斜䟋〜は自己硬化性暹脂を補造す
る際、補造時間は時間で枈み補造工皋の簡略化
ず短瞮化が可胜であるのに察し、比范䟋〜
は、自己硬化性暹脂を補造する際、補造時間は
〜時間ず長時間を芁する。 又、本発明によ぀お補造される暹脂は、暹脂䞭
の窒玠含有基の濃床を垞に必芁最小限にするこず
ができるので、窒玠含有基の濃床が増加しお塗膜
性胜の䜎䞋をもたらす欠点がない。 又、本発明によ぀お埗られたカチオン電着塗料
济で、電導性被塗䜓を陰極ずしお、通垞のカチオ
ン電着塗装ず同様にしお電着塗装を行い、氎掗
埌、130〜160℃で20〜40分間焌付けるこずによ぀
お硬化塗膜が埗られる。 このようにしお埗られた硬化塗膜は、鉛筆硬
床、付着性、察衝撃性、可撓性、耐アセトンラビ
ング性、耐氎性、耐蝕性、耐酞性等に優れおい
る。しかし、ポリアミン暹脂にアミンむミド化合
物を付加させお圓該暹脂を埗る公知方法では、電
着析出塗膜のアミン倀が高いため硬化塗膜は耐氎
性、耐蝕性及び耐酞性が劣る傟向が認められる。
In the manufacturing process of Examples 1 to 3, the average proportion of Michael adducts in the self-curing resin was
Because it is as small as 29.2%, it is possible to manufacture and store several batches of Michael-shaped adducts in advance in a fixed-volume manufacturing device, and use a portion each time self-curing resin is manufactured. be. On the other hand, in the manufacturing process of Comparative Examples 1 and 2, the ratio of polyamine resin in the self-curing resin in the first step is as high as 81.8% on average, so the polyamine resin is prepared in advance in several batches using a manufacturing device with a fixed volume. It is not possible to produce the polyamine resin in batches, and it is necessary to produce the polyamine resin in batches. Therefore, when manufacturing the self-curing resin in Examples 1 to 3, the manufacturing time was only 3 hours, making it possible to simplify and shorten the manufacturing process, whereas in Comparative Examples 1 to 2
When manufacturing self-curing resin, the manufacturing time is 6
It takes a long time, ~9 hours. In addition, the resin produced according to the present invention can always keep the concentration of nitrogen-containing groups in the resin to the minimum necessary, so there is no drawback that the concentration of nitrogen-containing groups increases and deteriorates coating performance. There is no. In addition, electrodeposition was carried out using the cationic electrodeposition paint bath obtained according to the present invention, using the conductive object as a cathode, in the same manner as ordinary cationic electrodeposition, and after washing with water, it was heated at 130 to 160°C. A cured coating is obtained by baking for 20-40 minutes. The cured coating film thus obtained is excellent in pencil hardness, adhesion, impact resistance, flexibility, acetone rubbing resistance, water resistance, corrosion resistance, acid resistance, etc. However, in the known method of obtaining the resin by adding an amine imide compound to the polyamine resin, the cured coating film tends to be inferior in water resistance, corrosion resistance, and acid resistance due to the high amine value of the electrodeposited coating film.

Claims (1)

【特蚱請求の範囲】  アミンむミド基を有する゚チレン性䞍飜和化
合物に第䞀モノアミンを付加させお、䞋蚘䞀般匏 匏䞭、R1は炭玠数〜30のアルキル基、ア
ルコキシアルキル基、アルケニル基、ヒドロキシ
アルキル基又はアリヌル基を衚し、R2R3R4
はそれぞれ炭玠数〜のアルキル基又はヒドロ
キシアルキル基を衚す。 のマむケル圢付加物を埗、曎にポリ゚ポキシドに
該マむケル圢付加物を付加させお、アミンむミド
基含有アミノ倉性ポリ゚ポキシドを埗るこずを特
城ずする自己硬化性暹脂の補造方法。  アミンむミド基を有する゚チレン性䞍飜和化
合物は、アミンむミド䞀郚又は党郚を有機酞又は
無機酞で䞭和したものである。特蚱請求の範囲第
項蚘茉の自己硬化性暹脂の補造方法。
[Claims] 1. A first monoamine is added to an ethylenically unsaturated compound having an amine imide group to obtain the following general formula: (In the formula, R 1 represents an alkyl group, alkoxyalkyl group, alkenyl group, hydroxyalkyl group, or aryl group having 2 to 30 carbon atoms, and R 2 , R 3 , R 4
each represents an alkyl group or a hydroxyalkyl group having 1 to 8 carbon atoms. 1. A process for producing a self-curing resin, which comprises obtaining a Michael-type adduct of ) and further adding the Michael-type adduct to a polyepoxide to obtain an amino-modified polyepoxide containing an amine imide group. 2. The ethylenically unsaturated compound having an amine imide group is one in which part or all of the amine imide is neutralized with an organic acid or an inorganic acid. A method for producing a self-curing resin according to claim 1.
JP18828685A 1985-08-27 1985-08-27 JIKOKOKASEIJUSHINOSEIZOHOHO Expired - Lifetime JPH0244849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18828685A JPH0244849B2 (en) 1985-08-27 1985-08-27 JIKOKOKASEIJUSHINOSEIZOHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18828685A JPH0244849B2 (en) 1985-08-27 1985-08-27 JIKOKOKASEIJUSHINOSEIZOHOHO

Publications (2)

Publication Number Publication Date
JPS6248720A JPS6248720A (en) 1987-03-03
JPH0244849B2 true JPH0244849B2 (en) 1990-10-05

Family

ID=16220973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18828685A Expired - Lifetime JPH0244849B2 (en) 1985-08-27 1985-08-27 JIKOKOKASEIJUSHINOSEIZOHOHO

Country Status (1)

Country Link
JP (1) JPH0244849B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2000649A1 (en) * 1988-10-17 1990-04-17 Tsuyoshi Inoue Electrocoating composition
US10351661B2 (en) 2015-12-10 2019-07-16 Ppg Industries Ohio, Inc. Method for producing an aminimide
US10377928B2 (en) 2015-12-10 2019-08-13 Ppg Industries Ohio, Inc. Structural adhesive compositions

Also Published As

Publication number Publication date
JPS6248720A (en) 1987-03-03

Similar Documents

Publication Publication Date Title
JP2543332B2 (en) Cationic microgels and their use in electrodeposition
US5908912A (en) Electrodepositable coating composition containing bismuth and amino acid materials and electrodeposition method
JPH0759680B2 (en) How to electrodeposit a substrate
JPS6063223A (en) Synthetic resin containing basic nitrogen group and manufacture
WO1985001506A1 (en) Self-curing resin composition
KR100290971B1 (en) Cathodic electrodeposition method utilizing cyclic carbonate-curable coating composition
US4172193A (en) Cathodic electrocoating binders
JPS62127360A (en) Coating composition for resin
JPH0244849B2 (en) JIKOKOKASEIJUSHINOSEIZOHOHO
KR20010101313A (en) Cathodic electrocoat coating composition
JPS62174278A (en) Binder composition made water-dilutive by supplying proton by acid
US5362772A (en) Crosslinked microgel for cathodic electrocoating compositions
JP2625939B2 (en) Cationic electrodeposition coating composition
JP2660014B2 (en) Resin composition for coating
JP2517001B2 (en) Resin composition for cationic electrodeposition coating
EP0109553B1 (en) Resin composition for self-heat-curable paints
US5371120A (en) Crosslinked microgel for cathodic electrocoating compositions
JPS63137970A (en) Binder made dilutive by water by adding proton by acid
JPH0571070B2 (en)
US6372108B1 (en) Binders for use in cathodic electrodeposition coatings, process for their preparation and cathodic electrodeposition coating compositions containing same
JPH02110170A (en) Water-base thermosetting coating material for cathodic electrodeposition coating
JPS61218619A (en) Production of self-curing resin
JP3112749B2 (en) Coating method
JPS6141274B2 (en)
JPH0244848B2 (en) TOSOYONET SUKOKASEIJUSHISOSEIBUTSU