JPH0244708B2 - SENIKYOKAJUSHISEIBANJOKOZOZAI - Google Patents

SENIKYOKAJUSHISEIBANJOKOZOZAI

Info

Publication number
JPH0244708B2
JPH0244708B2 JP5033986A JP5033986A JPH0244708B2 JP H0244708 B2 JPH0244708 B2 JP H0244708B2 JP 5033986 A JP5033986 A JP 5033986A JP 5033986 A JP5033986 A JP 5033986A JP H0244708 B2 JPH0244708 B2 JP H0244708B2
Authority
JP
Japan
Prior art keywords
fiber
plate
structural
reinforcing material
reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5033986A
Other languages
Japanese (ja)
Other versions
JPS62207636A (en
Inventor
Akira Taniguchi
Kuniji Koshio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON KOKUKI KAIHATSU KYOKAI
Original Assignee
NIPPON KOKUKI KAIHATSU KYOKAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON KOKUKI KAIHATSU KYOKAI filed Critical NIPPON KOKUKI KAIHATSU KYOKAI
Priority to JP5033986A priority Critical patent/JPH0244708B2/en
Publication of JPS62207636A publication Critical patent/JPS62207636A/en
Publication of JPH0244708B2 publication Critical patent/JPH0244708B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、加工工数の低減が可能でかつ重量当
りの強度、剛性が大きな繊維強化製板状構造材に
係り、特に航空機構造材に適した構造材に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a fiber-reinforced plate-like structural material that can reduce the number of processing steps and has high strength and rigidity per weight, and is particularly suitable for aircraft structural materials. It is related to materials.

従来技術およびその問題点 重量当りの強度、剛性の高い板状構造材として
第15図に図示するように、1枚の軽合金または
チタニユーム合金製厚板の一面を削出して、平板
部01と一体に補強リブ部02を形成したものが
従来からあるが、切削加工代が大きくて、無駄と
なる部分が多く、しかも加工時間が長くなるた
め、コスト高が避けられない。
Prior art and its problems As shown in FIG. 15, a plate-like structural material with high strength and rigidity per weight is produced by cutting out one side of a thick plate made of light alloy or titanium alloy, and forming a flat plate part 01. Conventionally, there is a structure in which reinforcing rib portions 02 are integrally formed, but the cutting cost is large, many parts are wasted, and the machining time becomes long, so high costs are unavoidable.

また第16図に図示するように、軽合金薄板を
一定間隔毎に一方向へ弯曲させ、その弯曲先端部
04を中空円筒状に形成し、その両隣接部05が
相互に接触するように軽合金薄板を成形して補強
材03を形成し、この補強材03の平面部06を
軽合金平板07に当て、スポツト溶接または接着
剤で両者を一体に接合した板状構造材がある。
Further, as shown in FIG. 16, a light alloy thin plate is curved in one direction at regular intervals, the curved tip 04 is formed into a hollow cylindrical shape, and the light alloy is bent so that both adjacent parts 05 are in contact with each other. There is a plate-like structural material in which a reinforcing material 03 is formed by molding a thin alloy plate, a flat part 06 of this reinforcing material 03 is applied to a light alloy flat plate 07, and both are joined together by spot welding or adhesive.

しかしながら第16図に図示の板状構造材でス
ポツト溶接した場合には、平板07に溶接痕が残
つて外観の面で好ましくなく、接合部分が不連続
であるので、強度、剛性向上の面で不利であり、
信頼性が低い。
However, when spot welding is carried out using the plate-shaped structural material shown in Fig. 16, welding marks remain on the flat plate 07, which is unfavorable in terms of appearance, and the joined part is discontinuous, so it is difficult to improve strength and rigidity. disadvantageous;
Unreliable.

また接着剤によつて接合する場合には、成形さ
れた補強材03の両隣接部05の間に接着剤を一
定の厚さに均一に介在させることが困難である。
さらに接合部に隙間が残ることが避けられず、こ
の隙間に水分が浸入して、錆が発生し、しかもこ
の隙間に浸入した水の凍結膨張によりこの隙間が
広がり、強度、剛性が低下するため、接着剤の接
合によつて第16図に図示の構造材を製造するこ
とは、頗る困難である。
In addition, when joining with an adhesive, it is difficult to uniformly interpose the adhesive at a constant thickness between both adjacent portions 05 of the molded reinforcing member 03.
Furthermore, gaps inevitably remain in the joints, and moisture infiltrates into these gaps, causing rust.Furthermore, the freezing and expansion of the water that has entered these gaps widens the gaps, reducing strength and rigidity. It is extremely difficult to manufacture the structural member shown in FIG. 16 by adhesive bonding.

さらに第17図に図示するように、2組の繊維
強化成形材料08,09を成形ブロツク012,
013に当ててチヤンネル状に折曲し、この成形
材料08,09を背中合せに相互に合わせるとと
もにこの成形材料08,09の両折曲部の外面に
他の2組の繊維強化成形材料010,011を合
わせたI形断面の補強材015を平板材016に
一体化した構造材(第18図参照)では、4組の
繊維強化成形材料08,09,010,011を
必要とするため、成形材料の切出し枚数が増え、
また2組の成形材料08,09の折曲工程と成形
材料08,09,010,011の合せ工程とが
必要となつて工数が多く、コスト高となる。また
第18図に図示するように補強材の長手方向に沿
つて構造材が弯曲した場合には、成形材料010
を押え付ける成形ブロツク014を構造材の曲率
に合致させて弯曲させなければならないため、曲
率の大きな構造材を製造することが困難である。
Furthermore, as shown in FIG.
The molding materials 08 and 09 are placed back to back and bent into a channel shape, and two other sets of fiber-reinforced molding materials 010 and 011 are placed on the outer surfaces of both bent portions of the molding materials 08 and 09. In the structural material (see Fig. 18) in which the reinforcing material 015 with an I-shaped cross section is integrated with the flat plate material 016, four sets of fiber-reinforced molding materials 08, 09, 010, and 011 are required. The number of cutouts increases,
Furthermore, the process of bending the two sets of molding materials 08 and 09 and the process of joining the molding materials 08, 09, 010, and 011 are required, resulting in a large number of man-hours and high costs. Further, when the structural material is curved along the longitudinal direction of the reinforcing material as shown in FIG. 18, the molding material 010
Since the molded block 014 that presses down must be curved to match the curvature of the structural material, it is difficult to manufacture a structural material with a large curvature.

しかも前記第17図に図示の構造材を航空機の
翼等に適用した場合には、第19図に図示するよ
うに上方構造材017と下方構造材018とをシ
アタイ019で相互に一体に結合するに際して、
I形断面の補強材015を避けるための切欠き0
20が広くなり、シアタイ019と構造材01
7,018との接合長さlが短くなり、この点に
関しても強度、剛性の面で不利であつた。
Moreover, when the structural member shown in FIG. 17 is applied to an aircraft wing, etc., the upper structural member 017 and the lower structural member 018 are integrally connected to each other with shear ties 019 as shown in FIG. 19. On the occasion of
Notch 0 to avoid reinforcement 015 of I-shaped cross section
20 is wider, shear tie 019 and structural material 01
The joining length l with No. 7,018 was shortened, which was also disadvantageous in terms of strength and rigidity.

さらにまた第20図に図示するように、梯形断
面のシリコンゴムブロツク021の外周に繊維強
化成形材料022を巻付け、これを平板材024
に載せた後、その成形材料022を被い端部を平
板材024に接するように繊維強化成形材料02
3をその上に重ねて一体化した構造材では、やは
り2種類の繊維強化成形材料022,023を必
要とするため、やはり成形材料の切出し枚数が多
く、また成形材料022の巻付け工程と、これを
平板材024に載せて成形材料023で覆う工程
とが必要となつて工数を低減させることができ
ず、コストが高くなり、しかも補強材の長手方向
に沿つた構造材の曲率が大きい場合、成形材料0
22よりシリコンゴムブロツク021を引抜くこ
とができず。曲率の大きな構造材を得ることがで
きない。
Furthermore, as illustrated in FIG.
After placing the molding material 022 on the plate material 024, the fiber-reinforced molding material 02 is placed so that the end portion is in contact with the flat plate material 024.
3 is stacked on top of the structural material 022 and 023, which requires two types of fiber-reinforced molding materials 022 and 023, so the number of molding materials cut out is large, and the process of wrapping the molding material 022 and This requires a step of placing it on a flat plate material 024 and covering it with molding material 023, which makes it impossible to reduce the number of man-hours and increases costs.Moreover, when the curvature of the structural material along the longitudinal direction of the reinforcing material is large. , molding material 0
Unable to pull out silicone rubber block 021 from 22. It is not possible to obtain structural materials with large curvature.

問題点を解決するための手段および作用 本発明はこのような難点を克服した板状構造材
の改良に係り、予め所要枚数を積層した所定巾の
繊維強化成形材料の巾方向中央部を中空円筒状に
弯曲させてその両側部を相互に接合しその側端部
を外方へそれぞれ直角に折曲してなる補強材の両
側端部を、平板状繊維強化成形材料よりなる平板
材の一面に所定の間隔を存し接合した状態で両者
を一体的に硬化することにより、繊維強化樹脂製
板状構造材を構成することができる。
Means and Effects for Solving the Problems The present invention relates to an improvement of a plate-like structural material that overcomes the above-mentioned difficulties.The present invention relates to an improvement of a plate-like structural material that overcomes the above-mentioned difficulties. Both side ends of the reinforcing material, which is formed by bending the reinforcing material into a shape, joining the both sides to each other, and bending the side ends outward at right angles, are attached to one side of a flat plate made of a flat fiber-reinforced molding material. A plate-like structural material made of fiber-reinforced resin can be constructed by integrally curing the two parts in a state where they are joined at a predetermined interval.

このように構成された本発明の繊維強化樹脂製
板状構造材では、前記補強材の長手方向に対し直
角方向の中立軸に対する断面係数は、該補強材に
より大きいため、前記補強材に沿つた曲げ荷重に
対し、大きな強度と剛性を有する。
In the fiber-reinforced resin plate-like structural material of the present invention configured in this manner, the section modulus of the reinforcing material with respect to the neutral axis in the direction perpendicular to the longitudinal direction is larger due to the reinforcing material. It has great strength and rigidity against bending loads.

実施例 以下、第1図および第14図に図示された本発
明の一実施例について説明する。
Embodiment Hereinafter, an embodiment of the present invention illustrated in FIGS. 1 and 14 will be described.

繊維強化樹脂製板状構造材1は、炭素繊維強化
成形材料よりなる平板材2の一方に、所定の間隔
pを存し相互に平行に、炭素繊維強化成形材料よ
りなる補強材4の両側折曲端部5を接合し、両者
2,4を一体的に硬化することにより、構成され
ている。
A plate-shaped structural material 1 made of fiber-reinforced resin has a reinforcing material 4 made of a carbon fiber-reinforced molding material bent on one side of a flat plate 2 made of a carbon-fiber-reinforced molding material in parallel with each other at a predetermined interval p. It is constructed by joining the curved ends 5 and hardening both 2 and 4 integrally.

前記平板材2および補強材4の繊維強化成形材
料は、エポキシ樹脂、フエノール樹脂、ジアゾル
フタレート樹脂、不飽和ポリエステル樹脂等の樹
脂に硬化剤を加えた混合液に炭素繊維を含浸し、
これを所要枚数積層した状態で加熱することによ
つて得られたプリプレグである。
The fiber-reinforced molding material of the flat plate material 2 and reinforcing material 4 is obtained by impregnating carbon fibers in a mixture of a resin such as epoxy resin, phenolic resin, diazol phthalate resin, or unsaturated polyester resin and adding a curing agent.
This is a prepreg obtained by heating a required number of sheets laminated together.

補強材4の横断面形状を第1図に図示するよう
に〓状に成形するには、第2図ないし第11図に
図示するような工程によればよい。
In order to form the reinforcing material 4 into a cross-sectional shape as shown in FIG. 1, the steps shown in FIGS. 2 to 11 may be used.

第1図に図示されたような断面形状に成形され
たシリコンゴム製の成形治具10の両側折曲端部
11の孔(図示されず)を第3図にように治具支
持部材14の係合突起15に嵌合し、この治具支
持部材14を上方へ拡開起立し(第4図参照)、
その成形治具10の上面に補強材4を載せ(第5
図参照)、中子支持部材17の下面に保持された
テフロン製の円柱状中子16を補強材4の巾方向
中央部上方に位置し(第6図参照)、円柱状中子
16を補強材4の巾方向中央部に接触させたま
ま、治具支持部材14を前記とは逆方向へ傾動し
(第7図参照)、円柱状中子16を残したまま中子
支持部材17を引き上げるとともに治具支持部材
14を倒伏し(第8図参照)、折曲押圧部材18
により補強材4の両側折曲端部5を成形治具10
の両側折曲端部11に折曲押圧し(第9図参照)、
中子支持部材17および折曲押圧部材18を持上
げ(第10図参照)、成形治具10の両側折曲端
部11を治具支持部材14の係合突起15より外
せば(第11図参照)、補強材4を〓状に成形す
ることができる。
Holes (not shown) in both bent ends 11 of a silicone rubber molding jig 10 formed into the cross-sectional shape shown in FIG. 1 are inserted into the jig support member 14 as shown in FIG. Fitting into the engagement protrusion 15, the jig support member 14 is expanded upward and raised (see FIG. 4).
A reinforcing material 4 is placed on the upper surface of the forming jig 10 (the fifth
(see figure), the cylindrical core 16 made of Teflon held on the lower surface of the core support member 17 is positioned above the widthwise center of the reinforcing member 4 (see figure 6), reinforcing the cylindrical core 16. Tilt the jig support member 14 in the opposite direction to the above while keeping it in contact with the center part in the width direction of the material 4 (see FIG. 7), and pull up the core support member 17 while leaving the cylindrical core 16. At the same time, the jig support member 14 is laid down (see FIG. 8), and the bending pressing member 18 is folded down.
The bent ends 5 on both sides of the reinforcing material 4 are formed using a forming jig 10.
Fold and press the bent ends 11 on both sides (see Fig. 9),
Lift up the core support member 17 and the bending pressing member 18 (see Fig. 10) and remove the bent ends 11 on both sides of the forming jig 10 from the engagement protrusions 15 of the jig support member 14 (see Fig. 11). ), the reinforcing material 4 can be formed into a square shape.

次に第12図に図示するように、平板当金19
に平板材2を載せ、前記成形治具10に囲まれて
成形された補強材4の両側折曲端部5を平板材2
の表面3に平行に置き、その間にカールプレート
20を敷き詰め、成形治具10およびカールプレ
ート20の上面にブリーザネツト21およびナイ
ロンフイルム22を掛け、平板当金19とナイロ
ンフイルム22との接合部にシール材23を介装
した後、平板当金19およびナイロンフイルム2
2で囲まれた空間内の空気を開口24より真空脱
気すれば、大気圧により、補強材4の両側折曲端
部5は平板材2の表面3に圧接される。
Next, as shown in FIG.
The flat plate material 2 is placed on the flat plate material 2, and both bent ends 5 of the reinforcing material 4, which has been molded while being surrounded by the forming jig 10, are placed on the flat plate material 2.
The curl plate 20 is spread between the surfaces 3 of After interposing the sealing material 23, the flat plate 19 and the nylon film 2
When the air in the space surrounded by 2 is evacuated through the opening 24, the bent ends 5 on both sides of the reinforcing material 4 are pressed against the surface 3 of the flat plate material 2 due to atmospheric pressure.

これを第13図に図示のオートクレーブ25内
に充填し、所要時間加熱、加圧し、その後円柱状
中子16を中空円筒状部6より引抜くことによ
り、補強材4の両側接合部7を相互に一体に接合
しかつ補強材4の両側折曲端部5を平板材2の表
面3に一体に接合した状態で、平板材2および補
強材4を硬化して、一体構造の繊維強化樹脂製板
状構造材1を製造することができる。
This is filled into an autoclave 25 shown in FIG. 13, heated and pressurized for a required period of time, and then the cylindrical core 16 is pulled out from the hollow cylindrical part 6, so that the joints 7 on both sides of the reinforcing material 4 are mutually connected. With the bent ends 5 of the reinforcing material 4 integrally joined to the surface 3 of the flat plate material 2, the flat plate material 2 and the reinforcing material 4 are cured to form an integral structure made of fiber reinforced resin. The plate-like structural material 1 can be manufactured.

第1図および第14図に図示の繊維強化樹脂製
板状構造材1では、補強材4の両側接合部7は相
互に一体に接合されるとともに補強材4の両側折
曲端部5は平板材2の表面3に一体に接合された
状態で一体に硬化されて製作されるので、繊維強
化樹脂製板状構造材1は均一な材質で一体構造と
なり、繊維強化樹脂製板状構造材1に生ずる応力
は応力集中を起すことなく全断面に亘り連続的に
伝達され、しかも繊維強化樹脂製板状構造材1中
の繊維は炭素繊維であり、そのため繊維強化樹脂
製板状構造材1の重量当りの強度、剛性が頗る高
い。
In the fiber-reinforced resin plate-like structural material 1 shown in FIGS. 1 and 14, the joints 7 on both sides of the reinforcing material 4 are integrally joined to each other, and the bent ends 5 on both sides of the reinforcing material 4 are flat plates. Since it is manufactured by being integrally bonded to the surface 3 of the material 2 and cured, the fiber-reinforced resin plate-like structural material 1 has a uniform structure with uniform material, and the fiber-reinforced resin plate-like structural material 1 The stress generated in the fiber-reinforced resin plate-like structural material 1 is transmitted continuously over the entire cross section without stress concentration, and the fibers in the fiber-reinforced resin plate-like structural material 1 are carbon fibers. Extremely high strength and rigidity per weight.

また前記実施例では、材料を無駄にすることが
なく、能率良く低コストで繊維強化樹脂製板状構
造材1を製造することができる。
Further, in the above embodiment, the fiber-reinforced resin plate-shaped structural material 1 can be manufactured efficiently and at low cost without wasting materials.

さらに補強材4の頂部の中空円筒部6を形成す
るための円柱状中子16にフレキシブルな素材を
用たので、その補強材4全体を簡単に弯曲させて
補強材4の長手方向およびこれと直角方向に弯曲
または捩れた曲面板材にこの補強材を容易に接合
できるので、複雑に弯曲した板状構造材を製造す
ることができる。
Furthermore, since a flexible material is used for the cylindrical core 16 for forming the hollow cylindrical portion 6 at the top of the reinforcing material 4, the entire reinforcing material 4 can be easily curved in the longitudinal direction of the reinforcing material 4 and Since this reinforcing material can be easily joined to a curved plate material that is curved or twisted in the right angle direction, a plate-like structural material that is complicatedly curved can be manufactured.

前記実施例においては、平板材2および補強材
4の繊維強化成形材料はプリプレグであつたが、
増粘された不飽和ポリエステル樹脂等の樹脂をペ
ースとする樹脂混合物をマツト状の炭素繊維また
はガラス繊維に含浸され得られたSMC(Sheet
Molding Compound)であつてもよい。
In the above embodiment, the fiber-reinforced molding material of the flat plate material 2 and reinforcing material 4 was prepreg,
SMC (Sheet
Molding Compound).

発明の効果 このように本発明においては、前記繊維強化成
形材料よりなる1枚の板の先端縁を中空円筒状に
形成するとともに該補強材の直角に折曲して補強
材を形成するため、材料の切出し枚数を減らすこ
とができるとともに積層工数を低減することがで
き、また材料を弯曲させればよいので自動化が容
易であり、その結果、一層のコスト低下が期待で
きる。
Effects of the Invention As described above, in the present invention, the tip edge of one plate made of the fiber-reinforced molding material is formed into a hollow cylindrical shape, and the reinforcing material is bent at right angles to form the reinforcing material. It is possible to reduce the number of cut out materials and the number of lamination steps, and since it is only necessary to curve the material, automation is easy, and as a result, further cost reduction can be expected.

また本発明の板状構造材は、形状的にI型断面
の補強材で補強された板状構造材と本質的に変る
ことがなく、充分な強度を有する繊維強化樹脂製
であるので、削出しにより製造される板状構造材
のような材料の無駄がなく、製造が簡単であり、
そのため生産性が高くて製造コストが安い。
In addition, the plate-like structural material of the present invention is essentially the same in shape as a plate-like structural material reinforced with a reinforcing material having an I-shaped cross section, and is made of fiber-reinforced resin with sufficient strength. There is no waste of material like plate-shaped structural materials manufactured by drawing, and manufacturing is easy.
Therefore, productivity is high and manufacturing costs are low.

さらに本発明においては、繊維強化成形平板材
と繊維強化補強材とをそれぞれ別個に成形し、所
定の間隔を存して繊維強化成形平板材の一面に繊
維強化補強材を接合したため、該補強材の間隔お
よびその配置関係を適宜変更でき、その結果多種
類の板状構造材を低コストで能率良く生産するこ
とができる。
Furthermore, in the present invention, the fiber-reinforced molded flat plate material and the fiber-reinforced reinforcing material are molded separately, and the fiber-reinforced reinforcing material is bonded to one side of the fiber-reinforced molded flat plate material at a predetermined interval. The spacing and arrangement relationship between the two can be changed as appropriate, and as a result, many types of plate-like structural materials can be efficiently produced at low cost.

さらにまた、本発明では、この補強材全体を簡
単に弯曲させて補強材の長手方向およびこれと直
角方向に弯曲しまたは捩れた曲面板材にこの補強
材を容易に接合できるので、複雑に弯曲した板状
構造材を製造することができる。
Furthermore, in the present invention, the entire reinforcing material can be easily curved and the reinforcing material can be easily joined to a curved plate material that is curved or twisted in the longitudinal direction of the reinforcing material and in a direction perpendicular thereto. A plate-like structural material can be manufactured.

しかも本発明においては、補強材の頂部が中空
円筒状に形成されて、その巾が狭いため、上下1
対の構造材をシアタイで相互に1体に結合する場
合、この補強材の中空円筒状頂部を避けるための
切欠きの巾を狭くすることができ、シアタイと構
造材の接合長さを長くすることができるので、シ
アタイを薄肉化して軽量化を図ることができる。
Moreover, in the present invention, since the top of the reinforcing material is formed into a hollow cylindrical shape and its width is narrow,
When a pair of structural members are joined together into a single piece using a shear tie, the width of the notch to avoid the hollow cylindrical top of this reinforcing member can be narrowed, increasing the length of the joint between the shear tie and the structural member. Therefore, the shear tie can be made thinner and lighter.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る繊維強化樹脂製板状構造
材の一実施例の横断面図、第2図ないし第13図
は前記実施例の製造工程を示す説明図、第14図
は前記実施例の斜視図、第15図および第16図
はそれぞれ従来の板状構造材の斜視図、第17図
は従来の繊維強化樹脂製板状構造材の製造工程を
図示した説明図、第18図はその構造材の斜視
図、第19図は第18図に図示のようなI形補強
材を備えた構造材を航空機主翼に適用した場合の
横断面図、第20図は従来のさらに他の構造材の
斜視図である。 1……繊維強化樹脂製板状構造材、2……平板
材、3……表面、4……補強材、5……両側折曲
端部、6……中空円筒状部、7……両側接合部、
10……成形治具、11……両側折曲端部、12
……円筒状弯曲部、13……両側部、14……治
具支持部材、15……係合突起、16……円柱状
中子、17……中子支持部材、18……折曲押圧
部材、19……平板当金、20……カールプレー
ト、21……ブリーザネツト、22……ナイロン
フイルム、23……シール材、24……開口、2
5……オートクレーブ。
FIG. 1 is a cross-sectional view of an embodiment of the fiber-reinforced resin plate-like structural material according to the present invention, FIGS. 2 to 13 are explanatory diagrams showing the manufacturing process of the embodiment, and FIG. FIGS. 15 and 16 are perspective views of conventional plate-shaped structural materials, respectively. FIG. 17 is an explanatory diagram illustrating the manufacturing process of conventional fiber-reinforced resin plate-shaped structural materials, and FIG. 18 is a perspective view of an example. is a perspective view of the structural material, FIG. 19 is a cross-sectional view of a structural material equipped with an I-shaped reinforcement shown in FIG. 18 applied to an aircraft main wing, and FIG. It is a perspective view of a structural member. DESCRIPTION OF SYMBOLS 1...Fiber-reinforced resin plate-shaped structural material, 2...Flat plate material, 3...Surface, 4...Reinforcement material, 5...Both bent ends, 6...Hollow cylindrical part, 7...Both sides joint,
10...Forming jig, 11...Both bent ends, 12
... Cylindrical curved part, 13 ... Both sides, 14 ... Jig support member, 15 ... Engagement projection, 16 ... Cylindrical core, 17 ... Core support member, 18 ... Bending press Components, 19... Flat plate abutment, 20... Curl plate, 21... Breather net, 22... Nylon film, 23... Sealing material, 24... Opening, 2
5...Autoclave.

Claims (1)

【特許請求の範囲】[Claims] 1 予め所要枚数を積層した所定巾の繊維強化成
形材料の巾方向中央部を中空円筒状に弯曲させて
その両側部を相互に接合しその側端部を外方へそ
れぞれ直角に折曲してなる補強材の両側端部を、
平板状繊維強化成形材料よりなる平板材の一面に
所定の間隔を存し接合した状態で両者を一体的に
硬化して構成したことを特徴とする繊維強化樹脂
製板状構造材。
1 The center part in the width direction of a fiber-reinforced molding material of a predetermined width, which has been laminated in advance in the required number of sheets, is curved into a hollow cylindrical shape, its both sides are joined together, and the side ends are bent outward at right angles. Both ends of the reinforcing material are
1. A plate-shaped structural material made of fiber-reinforced resin, characterized in that it is constructed by integrally curing the two plates in a state where they are joined at a predetermined interval on one side of a flat plate made of fiber-reinforced molding material.
JP5033986A 1986-03-10 1986-03-10 SENIKYOKAJUSHISEIBANJOKOZOZAI Expired - Lifetime JPH0244708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5033986A JPH0244708B2 (en) 1986-03-10 1986-03-10 SENIKYOKAJUSHISEIBANJOKOZOZAI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5033986A JPH0244708B2 (en) 1986-03-10 1986-03-10 SENIKYOKAJUSHISEIBANJOKOZOZAI

Publications (2)

Publication Number Publication Date
JPS62207636A JPS62207636A (en) 1987-09-12
JPH0244708B2 true JPH0244708B2 (en) 1990-10-04

Family

ID=12856161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5033986A Expired - Lifetime JPH0244708B2 (en) 1986-03-10 1986-03-10 SENIKYOKAJUSHISEIBANJOKOZOZAI

Country Status (1)

Country Link
JP (1) JPH0244708B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0708333D0 (en) * 2007-04-30 2007-06-06 Airbus Uk Ltd Composite structure
JP6611369B2 (en) * 2017-10-23 2019-11-27 株式会社栗本鐵工所 Fiber-reinforced resin molded product and method for producing the same

Also Published As

Publication number Publication date
JPS62207636A (en) 1987-09-12

Similar Documents

Publication Publication Date Title
US6689246B2 (en) Method of making composite airfoil structures
JP4191343B2 (en) Method for manufacturing honeycomb sandwich panel
US6561459B2 (en) Method of fabricating a wing of composite material
JP4416900B2 (en) Composite panel and method for manufacturing the same
JP2003072691A (en) Manufacturing method of composite material wing and composite material wing
KR20090047445A (en) Improved composite resin window frame constructions for airplanes
JP4187878B2 (en) Aircraft composite wing and method for manufacturing the same
JPH1199993A (en) Composite material wing construction and manufacture thereof
JP4545339B2 (en) COMPOSITE WING AND MANUFACTURING METHOD THEREOF
JP6238168B2 (en) Composite structure
JPH02175135A (en) Production of fiber reinforced resin member
JPH0244708B2 (en) SENIKYOKAJUSHISEIBANJOKOZOZAI
US20220034293A1 (en) Improvements relating to wind turbine blade manufacture
GB2220724A (en) Composite panel with integral edge structure
JP2517634B2 (en) Method of molding composite material products
JP2815665B2 (en) Integral molding method and integral molding apparatus for composite multi-girder structure
JP3723659B2 (en) Method for forming honeycomb core material
JPS6010840Y2 (en) Composite tensile structure
JPH0436905Y2 (en)
JP4425647B2 (en) FRP molded product having joint ends, manufacturing method thereof, and FRP molded product obtained by joining metal structures
JP7255025B2 (en) Jig and composite material processing method
JPS6131234A (en) Bonding of composite material
JP2968300B2 (en) Composite material joining method and joining jig
CA3055052C (en) Tool for forming a composite member
JPS6331291B2 (en)