JPH0244654A - Gas replacement method for fuel cell - Google Patents

Gas replacement method for fuel cell

Info

Publication number
JPH0244654A
JPH0244654A JP63194909A JP19490988A JPH0244654A JP H0244654 A JPH0244654 A JP H0244654A JP 63194909 A JP63194909 A JP 63194909A JP 19490988 A JP19490988 A JP 19490988A JP H0244654 A JPH0244654 A JP H0244654A
Authority
JP
Japan
Prior art keywords
gas
fuel cell
dehumidifier
fuel
oxygen remover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63194909A
Other languages
Japanese (ja)
Inventor
Toshihiro Sugiyama
杉山 智弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP63194909A priority Critical patent/JPH0244654A/en
Publication of JPH0244654A publication Critical patent/JPH0244654A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04231Purging of the reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To steadily maintain the forming function and drying function of purge gas by supplying inert air to a fuel cell for gas replacement when a system is discontinued, and conducting heat exchange with a high temperature coolant after start of reoperation to reduce an oxidizing catalyst and to regenerate a dehumidifying agent by heating. CONSTITUTION:When a system is constantly operated, reaction gases are supplied to a fuel cell 1 through gas supply lines 3, 5, and heat generated by power generation in a fuel cell 1 is radiated with a heat radiator 6. When operation is discontinued, inert, dry air treated with an oxygen remover 12 filled with an oxidizing catalyst and a dehumidifier 13 is supplied as purge gas to the cell 1 for gas replacement. After start ot reoperation, heat exchange is conducted with a high temperature coolant flowing through the remover 12, the dehumidifier 13, and a cooling line 9, and part of fuel gas extracted from a reaction line is introduced into the remover 12 to reduce the catalyst with hydrogen and to regenerate a defumidifying agent by heating. The forming function and drying function of purge gas are steadily maintained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、燃料電池の停止時に反応ガス系を不活性化し
たガスでパージする燃料電池のガス置換方式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a gas replacement method for a fuel cell in which a reactive gas system is purged with an inert gas when the fuel cell is stopped.

〔従来の技術〕[Conventional technology]

周知のように、燃料電池は、りん酸などの電解質を含侵
保持したマトリックス層と、白金触媒をカーボンに担持
させた一対の燃料を掻、酸化剤電極からなる単セルを多
数個積層してセルスタックを構成し、かつこのセルスタ
ックに水素を主成分とする燃料ガス、空気ないしは酸素
の酸化剤を供給して発電するものである。また、かかる
燃料電池は発電反応に発熱を伴うので、燃料電池を適正
な運転温度(りん酸型燃料電池で約190°C)に維持
するために、通常は空気、水、油等を冷媒として電池本
体を冷却するようにしている。
As is well known, a fuel cell consists of a matrix layer impregnated with an electrolyte such as phosphoric acid, a pair of fuels in which a platinum catalyst is supported on carbon, and a large number of single cells made of oxidizer electrodes stacked together. It constitutes a cell stack and generates electricity by supplying a fuel gas containing hydrogen as a main component and an oxidizing agent of air or oxygen to the cell stack. In addition, since such fuel cells generate heat during the power generation reaction, air, water, oil, etc. are usually used as a coolant to maintain the fuel cell at an appropriate operating temperature (approximately 190°C for phosphoric acid fuel cells). The battery itself is cooled down.

一方、りん酸型燃料電池の電解質として使用するりん酸
はw&湿性が強く、例えば空気中に晒した状態で温度が
190 ’Cから50°Cまで低下すると、りん酸の体
積は大気中の水分を吸収して杓50%増加することが知
られている。したがって燃料電池の停止時に反応ガス系
に大気が混入すると、りん酸の吸湿による体積膨張が原
因で燃料電橿、酸化剤′g!壜へりん酸が過剰に浸透し
、電池出力が低下ようになる。また、前記した電極は、
高温、高電位状態で空気中に放置されると触媒担体であ
るカーボンの酸化腐食、白金触媒のシンタリングなどが
生じて触媒の活性が低下することが知られている。
On the other hand, phosphoric acid used as an electrolyte in phosphoric acid fuel cells has strong w&humidity.For example, when exposed to air and the temperature drops from 190'C to 50°C, the volume of phosphoric acid is reduced by the amount of moisture in the atmosphere. It is known that the amount of water can be increased by 50% by absorbing it. Therefore, if air enters the reaction gas system when the fuel cell is stopped, the volume expansion due to moisture absorption of phosphoric acid will cause the fuel cell and the oxidizer to evaporate. Excessive phosphoric acid permeates into the bottle, reducing battery output. Moreover, the above-mentioned electrode is
It is known that when a catalyst is left in the air at high temperature and high potential, oxidative corrosion of the catalyst carrier carbon and sintering of the platinum catalyst occur, resulting in a decrease in the activity of the catalyst.

このために、現行では燃料電池の停止時に際して、電池
本体のガススペースを含む反応ガス系に十分乾燥した窒
素ガスなどの不活性ガスを供給してパージし、りん酸の
吸湿による体積膨張、電極触媒の劣化を防止することが
一部に実施されており、かつパージガスとして用いる窒
素ガスなどの不活性ガスは、別に用意した不活性ガスボ
ンベ等から得るようにしている。
For this reason, currently, when a fuel cell is stopped, the reactant gas system including the gas space in the cell body is purged by supplying sufficiently dry inert gas such as nitrogen gas, and the volume expansion due to moisture absorption of phosphoric acid is prevented. This is partly done to prevent deterioration of the catalyst, and the inert gas such as nitrogen gas used as the purge gas is obtained from a separately prepared inert gas cylinder.

〔発明が解決しようとする課題〕 ところで、前記のように不活性ガスボンベなどのガス源
を用意し、ここから燃料電池の停止の都度不活性ガスを
供給して反応ガス系をパージするガス置換方式では、不
活性ガスの消費に伴い補給を要するためにランニングコ
ストが嵩む他、その保守管理が厄介となるし、特に不活
性ガスとして用いる窒素ガスを液体窒素として貯留させ
る場合には大損りな貯蔵設備も必要とする。
[Problems to be Solved by the Invention] As mentioned above, there is a gas replacement method in which a gas source such as an inert gas cylinder is prepared, and inert gas is supplied from there to purge the reaction gas system each time the fuel cell is stopped. However, as the inert gas is consumed, it is necessary to replenish it, which increases running costs, and its maintenance becomes troublesome. Especially when storing nitrogen gas used as an inert gas as liquid nitrogen, storage equipment is a major loss. also required.

このために、例えば数KW〜数十KW程度の小出力な移
動形燃料電池発電装置など、設備の小形化、メンテナン
スの簡易化が望まれる小規模な燃料電池発電装置に対し
ては、前記した従来のガス置換方式の適用にかなりの問
題点が残る。
For this reason, for small-scale fuel cell power generation devices, such as mobile fuel cell power generation devices with a small output of several kilowatts to several tens of kilowatts, where downsizing of equipment and easy maintenance are desired, the above-mentioned Considerable problems remain in the application of conventional gas replacement methods.

本発明は上記の点にかんがみ成されたものであり、不活
性ガスボンベなどの不活性ガス源を特別に用意すること
なく、大気中より採取した空気を原料に不活性化したパ
ージガスを生成して燃料電池の停止時に反応ガス系をパ
ージさせるとともに、燃料電池発電装置自体の設備を巧
みに活用してパージガスの生成機能、並びにパージガス
の乾燥機能の安定維持が図れるようにした燃料電池のガ
ス置換方式を提供することを目的とする。
The present invention has been made in consideration of the above points, and it is possible to generate inert purge gas using air collected from the atmosphere as a raw material without the need to prepare a special inert gas source such as an inert gas cylinder. A gas replacement method for fuel cells that purges the reactive gas system when the fuel cell is stopped, and skillfully utilizes the equipment of the fuel cell power generation device itself to stably maintain the purge gas generation function and purge gas drying function. The purpose is to provide

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、本発明のガス置換方式は、
一端が大気側に通じるパージガス系の配管に酸化触媒を
充填した酸素除去器、および乾燥剤を充填した除湿器を
介装するとともに、前記の酸素除去器、除湿器を燃料電
池本体の冷却系を通流する高温側の冷媒との間で熱交換
させるように配置し、燃料電池の停止時には、前記の酸
素除去器、除湿器を経て不活性化された乾燥空気をパー
ジガスとして燃料電池の反応ガス系へ供給してガス置換
し、燃料電池の運転再開後には、酸素除去器、除湿器と
冷却系を通流する高温冷媒との間で熱交換させつつ、同
時に酸素除去器へ反応ガス系より抽出した燃料ガスの一
部を導入して水素による酸化触媒の還元、並びに除湿剤
の加熱再生を行うものとする。
In order to solve the above problems, the gas replacement method of the present invention is as follows:
An oxygen remover filled with an oxidation catalyst and a dehumidifier filled with a desiccant are installed in the purge gas system piping whose one end communicates with the atmosphere, and the oxygen remover and dehumidifier are connected to the cooling system of the fuel cell main body. It is arranged so that heat is exchanged with the flowing refrigerant on the high temperature side, and when the fuel cell is stopped, the dry air that has been inactivated through the oxygen remover and dehumidifier is used as a purge gas to supply the reactant gas of the fuel cell. After the fuel cell is restarted, heat is exchanged between the oxygen remover, dehumidifier, and the high-temperature refrigerant flowing through the cooling system, and at the same time, the reactant gas is supplied to the oxygen remover from the reaction gas system. A portion of the extracted fuel gas is introduced to reduce the oxidation catalyst with hydrogen and heat and regenerate the dehumidifier.

〔作用〕[Effect]

上記において、酸化触媒には例えばシリカを担体とする
銅系触媒が、また乾燥剤には例えばシリカゲルが採用さ
れており、また酸素除去器、除湿器はそれ自体を熱交換
器構造として燃料電池本体の冷却系の配管中に介装配備
されている。
In the above, the oxidation catalyst is, for example, a copper-based catalyst with silica as a carrier, the desiccant is, for example, silica gel, and the oxygen remover and dehumidifier are themselves heat exchangers, and the fuel cell itself is used as a heat exchanger. It is installed interveningly in the piping of the cooling system.

ここで、燃料電池の停止時に大気中より採取した空気を
パージガス系へ導入することにより、酸化触媒との接触
反応で空気中に含まれている酸素が除去されて不活性化
するとともに、さらに乾燥剤で湿気が除湿されて窒素を
主成分とした不活性の乾燥ガスが得られる。したがって
この不活性化・した乾燥ガスをパージガスとして燃料電
池へ供給することにより反応ガス系がパージされ、系内
に残留している反応ガスがパージガスでガス置換される
ようになる。
By introducing the air sampled from the atmosphere when the fuel cell is stopped into the purge gas system, the oxygen contained in the air is removed through a catalytic reaction with the oxidation catalyst, making it inert, and further drying the air. The moisture is removed by the agent and an inert dry gas containing nitrogen as the main component is obtained. Therefore, by supplying this inactivated dry gas as a purge gas to the fuel cell, the reactive gas system is purged, and the reactive gas remaining in the system is replaced with the purge gas.

一方、燃料電池の運転再開後は、燃料電池の冷却系を通
流する高温冷媒との熱交換により、酸素除去器、除湿器
が燃料電池の排熱で加熱され、同時に酸素除去器に対し
ては水素を含む燃料ガスの一部が供給される。これによ
り、前記したガス置換工程における空気の酸素除去、除
湿処理に伴って機能の低下した酸化触媒、乾燥剤が再生
されるようになる、すなわち、空気との接触反応で酸化
した触媒は、高温条件の下で水素により還元されて触媒
機能が回復し、また湿気を含んでいる乾燥剤は加熱によ
り再生して除湿機能が回復する。
On the other hand, after the fuel cell resumes operation, the oxygen remover and dehumidifier are heated by the exhaust heat of the fuel cell through heat exchange with the high-temperature refrigerant flowing through the fuel cell's cooling system, and at the same time, the oxygen remover and dehumidifier are heated by the exhaust heat of the fuel cell. is supplied with a portion of fuel gas containing hydrogen. As a result, the oxidation catalyst and desiccant whose functions have deteriorated due to the oxygen removal and dehumidification treatment from the air in the gas replacement process described above are regenerated. Under certain conditions, the desiccant is reduced by hydrogen to restore its catalytic function, and the desiccant containing moisture is regenerated by heating to restore its dehumidifying function.

〔実施例〕〔Example〕

第1図は本発明実施例を示す燃料電池の配管系統図であ
る0図において、1は燃料電池、1a+ lbは略示的
に表した燃料ガス、酸化剤ガス供給用のマニホールドで
あり、ここに反応ガス供給系として燃料ガス側には燃料
改質器2との間に燃料ガス供給ライン3が、酸化剤ガス
側には空気ブロア4を経て酸化剤ガス供給ライン5が配
管されている。
FIG. 1 is a piping system diagram of a fuel cell showing an embodiment of the present invention. In FIG. As a reaction gas supply system, a fuel gas supply line 3 is connected to the fuel reformer 2 on the fuel gas side, and an oxidant gas supply line 5 is connected to the oxidant gas side via an air blower 4.

なお、3a、 3bは燃料ガス供給ライン3に介装した
供給側、排出側の弁、5a、 5bは酸化剤ガス供給ラ
イン5に介装した弁である。一方、燃料電池1には放熱
器6.送水ポンプ7を含む水を冷媒とした循環送水路8
が配管されており、これらで冷却系9を構成している。
Note that 3a and 3b are supply-side and discharge-side valves installed in the fuel gas supply line 3, and 5a and 5b are valves installed in the oxidant gas supply line 5. On the other hand, the fuel cell 1 has a heat sink 6. Circulating water channel 8 using water as a refrigerant, including a water pump 7
are piped, and these constitute a cooling system 9.

かかる構成に対し、前記した燃料ガス供給ライン3.お
よび酸化剤ガス供給ライン5に対して、一端が大気側に
通じるパージガス供給ライン10が配管され、かつその
大気開放端側には空気ブロア11が、また配管の途中に
は酸素除去器12.および除湿器13が介装されており
、これらでパージガス系14を構成している。なお10
a、 10bはパージガス供給ライン10における燃料
ガス供給ライン3.酸化剤ガス供給ライン5との接続端
側に介装した弁である。ここで、酸素除去器12.除湿
器13は、例えばシェルアンドチューブ形熱交換器とし
て先記した循環送水路8の燃料電池出口側に介装配備さ
れており、かつ酸素除去器12にはシリカを担体とする
銅系触媒などの酸化触媒15が、また除湿器13にはシ
リカゲルなどの乾燥剤16がシェル内に充填されている
。さらに、酸素除去器12を経由して、燃料ガス供給ラ
イン3から枝分かれした分岐配管17が燃料電池1の出
口側との間に配管されており、かつ酸素除去器12の前
後に弁17a、 17bが介装接続されている。
For such a configuration, the above-mentioned fuel gas supply line 3. A purge gas supply line 10 with one end communicating with the atmosphere is connected to the oxidant gas supply line 5, and an air blower 11 is installed on the atmosphere open end side, and an oxygen remover 12 is installed in the middle of the piping. and a dehumidifier 13 are interposed, and these constitute a purge gas system 14. Note 10
a and 10b are fuel gas supply lines 3.a and 10b in the purge gas supply line 10; This is a valve interposed at the connection end side with the oxidant gas supply line 5. Here, the oxygen remover 12. The dehumidifier 13 is, for example, a shell-and-tube heat exchanger that is interposed on the fuel cell outlet side of the circulation water channel 8 described above, and the oxygen remover 12 is equipped with a copper-based catalyst having silica as a carrier. The shell of the dehumidifier 13 is filled with a desiccant 16 such as silica gel. Further, a branch pipe 17 branched from the fuel gas supply line 3 is connected to the outlet side of the fuel cell 1 via the oxygen remover 12, and valves 17a and 17b are installed before and after the oxygen remover 12. is connected via an intervening connection.

次に上記構成による燃料電池の運転、並びにガス置換時
の操作手順を説明する。まず、燃料電池の定常運転時に
は、パージガス系14の弁10a、 10bおよび分岐
配管17の弁17a、 17bを閉じ、反応ガス供給系
におけるガス供給ライン3,4の弁3a、 3bおよび
4a、 4bを開放した状態で、燃料電池1に対し燃料
ガス供給ライン3.酸化剤ガス供給ライン4を通じて反
応ガスを供給する。これにより燃料電池が発電する。ま
た発電に伴う燃料電池1の発熱は、循環送水路8に冷媒
水を循環送流させることにより放熱器6を介して系外に
除熱され、これにより燃料電池を適正な運転温度にコン
トロールしている。
Next, the operation of the fuel cell with the above configuration and the operating procedure during gas replacement will be explained. First, during steady operation of the fuel cell, the valves 10a, 10b of the purge gas system 14 and the valves 17a, 17b of the branch pipe 17 are closed, and the valves 3a, 3b, 4a, 4b of the gas supply lines 3, 4 in the reaction gas supply system are closed. In the open state, the fuel gas supply line 3. Reaction gas is supplied through the oxidant gas supply line 4. This causes the fuel cell to generate electricity. Furthermore, the heat generated by the fuel cell 1 during power generation is removed from the system via the radiator 6 by circulating refrigerant water through the circulation waterway 8, thereby controlling the fuel cell at an appropriate operating temperature. ing.

次に、燃料電池1を停止する場合には、まず弁3a、 
5aを閉じて燃料電池への反応ガス供給を停止し、次に
パージガス系の弁10a、 10bを開放した上で空気
ブロア11を始動してパージガス供給ライン10へ大気
中より採取した空気を送気する。これにより、空気はま
ず酸素除去器12を貫流する過程で酸化触媒15と接触
反応し、空気中に含まれている酸素が次式により除かれ
て不活性化する。
Next, when stopping the fuel cell 1, first the valve 3a,
5a to stop the supply of reaction gas to the fuel cell, then open the purge gas system valves 10a and 10b, and then start the air blower 11 to supply air sampled from the atmosphere to the purge gas supply line 10. do. As a result, the air first comes into contact with the oxidation catalyst 15 in the process of flowing through the oxygen remover 12, and the oxygen contained in the air is removed and inactivated according to the following equation.

Cu+%0−4CuO(1) また酸素除去器12を通過して不活性化したガスは、後
段の除湿器13を貫流する過程で乾燥剤16により湿気
が除湿される。そして、この不活性化した乾燥ガスをパ
ージガスとして、弁10a、 10bより燃料ガス供給
ライン3.酸化剤ガス供給ライン5を通じて燃料電池1
に供給される。これにより電池本体のガススペース内に
残留している燃料ガス。
Cu+%0-4CuO(1) Further, the gas that has passed through the oxygen remover 12 and has been inactivated is dehumidified by the desiccant 16 in the process of flowing through the subsequent dehumidifier 13. Then, using this inactivated dry gas as a purge gas, the fuel gas supply line 3. Fuel cell 1 through oxidant gas supply line 5
is supplied to This causes fuel gas to remain in the gas space of the battery body.

酸化剤ガスがパージガスでガス置換されることになる。The oxidizing gas will be replaced with the purge gas.

なお、燃料電池1の反応ガス系がパージガスでガス置換
され、かつ電池本体の温度が十分に低下した後は燃料電
池出口側の弁3b、 5bおよびパージガス系の弁10
a、 10bを閉じ、燃料電池の停止期間中にパージガ
スを反応ガス系内に封じ込めた状態に保つ。
Note that after the reaction gas system of the fuel cell 1 has been replaced with purge gas and the temperature of the cell body has sufficiently decreased, the valves 3b and 5b on the fuel cell outlet side and the purge gas system valve 10 are closed.
a, 10b are closed to keep the purge gas confined within the reactant gas system during the fuel cell shutdown period.

一方、燃料電池の運転が再開されると、再び前記した定
常運転と同様に喜寿を切替えて燃料電池1に燃料ガス、
酸化剤ガスの供給を開始するとともに、同時に燃料ガス
系の分岐配管17に介装した弁17a、 17bを開放
し、燃料ガス供給ライン3から抽出した燃料ガスの一部
を酸素除去器12へ供給する、これにより、先記したガ
ス1損工程で空気の不活性化、乾燥化処理により機能の
低下した酸化触媒15.乾燥剤16が再生されるように
なる。
On the other hand, when the operation of the fuel cell is restarted, the Kishu is switched again in the same manner as in the steady operation described above, and the fuel gas is supplied to the fuel cell 1.
At the same time as starting the supply of the oxidizing gas, the valves 17a and 17b installed in the branch pipe 17 of the fuel gas system are opened, and a part of the fuel gas extracted from the fuel gas supply line 3 is supplied to the oxygen remover 12. As a result, the oxidation catalyst 15. whose function has decreased due to air inactivation and drying treatment in the gas loss step described above. The desiccant 16 is now regenerated.

すなわち、酸素除去器12.除湿器13は冷却系9を通
流する冷媒との熱交換により、燃料電池1の排熱で高温
に加熱される。この状態で、先の工程で空気との接触反
応により酸化した触媒15は、燃料ガス中の水素と反応
して次式のように還元されて再生する。
That is, the oxygen remover 12. The dehumidifier 13 is heated to a high temperature by the exhaust heat of the fuel cell 1 through heat exchange with the refrigerant flowing through the cooling system 9. In this state, the catalyst 15, which was oxidized by contact reaction with air in the previous step, reacts with hydrogen in the fuel gas and is reduced and regenerated as shown in the following equation.

CuO+  Hz  → Cu   +IbO・・・・
・・・・・・〜・・−・(2)一方、先記の工程で湿気
を含んだ乾燥剤16は、高温冷媒との熱交換で加熱され
、再び除湿機能を回復するように再生される。
CuO+ Hz → Cu +IbO・・・・
(2) On the other hand, the desiccant 16 containing moisture in the above process is heated by heat exchange with the high-temperature refrigerant, and is regenerated to restore the dehumidifying function. Ru.

なお、図示実施例では、空気ブロア11を介してパージ
ガス系の配管へ大気中より空気を押し込み導入するよう
にしているが、空気プロア11は必ずしも必要ではなく
、これを省略して実施することも可能である。すなわち
、燃料電池1の運転停止により電池本体の温度が低下す
ると、この温度低下に伴って電池内部のガススペースを
含む反応ガス系が減圧状態になる。したがって、燃料電
池の停止直後に燃料電池出口側の弁3b、 5bを閉じ
、パージガス系の弁10a、 10bを開放することに
より、大気圧と反応ガス系との差圧でパージガス供給ラ
イン10に大気側から空気が吸引され、かつ酸素除去器
12.除湿器13で不活性化された乾燥ガスが燃料電池
1に導入されるようになる。
In the illustrated embodiment, air is forced into the purge gas system piping from the atmosphere through the air blower 11, but the air blower 11 is not necessarily necessary and may be implemented without it. It is possible. That is, when the temperature of the cell main body decreases due to the stoppage of operation of the fuel cell 1, the reaction gas system including the gas space inside the cell becomes depressurized as the temperature decreases. Therefore, by closing the fuel cell outlet side valves 3b and 5b and opening the purge gas system valves 10a and 10b immediately after stopping the fuel cell, atmospheric pressure is supplied to the purge gas supply line 10 by the differential pressure between the atmospheric pressure and the reaction gas system. Air is drawn in from the side and an oxygen remover 12. Dry gas inactivated by the dehumidifier 13 is introduced into the fuel cell 1.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明のガス置換方式では、一端が大
気側に通じるパージガス系の配管に酸化触媒を充填した
酸素除去器、および乾燥剤を充填した除湿器を介装する
とともに、前記の酸素除去器、除湿器を燃料電池本体の
冷却系を通流する高温側の冷媒との間で熱交換させるよ
うに配置し、燃料電池の停止時には、前記の酸素除去器
、除湿器を経て不活性化された乾燥空気をパージガスと
して燃料電池の反応ガス系へ供給してガス置換し、燃料
電池の運転再開後には、酸素除去器、除湿器と冷却系を
通流する高温冷媒との間で熱交換させつつ、同時に酸素
除去器へ反応ガス系より抽出した燃料ガスの一部を導入
して水素による酸化触媒の還元、並びに乾燥剤の加熱再
生を行うようにしたことにより、 (1)燃料電池の停止時には、大気中より採取した空気
を原料として燃料電池の系内で不活性化、および乾燥し
たパージガスを生成し、このパージを燃料電池に供給し
てガス置換を行うことができる。
As described above, in the gas replacement method of the present invention, an oxygen remover filled with an oxidation catalyst and a dehumidifier filled with a desiccant are interposed in the purge gas system piping whose one end communicates with the atmosphere, and the above-mentioned oxygen The oxygen remover and dehumidifier are arranged to exchange heat with the high-temperature side refrigerant flowing through the cooling system of the fuel cell main body. The dried air is supplied as a purge gas to the reactant gas system of the fuel cell for gas replacement, and after the fuel cell restarts, heat is removed between the oxygen remover, dehumidifier and the high temperature refrigerant flowing through the cooling system. At the same time, a part of the fuel gas extracted from the reaction gas system is introduced into the oxygen remover to reduce the oxidation catalyst with hydrogen and heat regenerate the desiccant. (1) Fuel cell When the system is stopped, air collected from the atmosphere is used as a raw material to generate inert and dry purge gas within the fuel cell system, and this purge can be supplied to the fuel cell for gas replacement.

(2)一方、空気との接触反応、除湿処理に伴って機能
の低下した酸化触媒、乾燥剤は、運転再開後における燃
料電池の排熱による加熱、さらに酸化触媒に対する燃料
ガス中の水素による還元作用により再生して触媒機能、
除湿機能を回復させることができる。
(2) On the other hand, the oxidation catalyst and desiccant whose functions have deteriorated due to contact reaction with air and dehumidification treatment will be heated by the exhaust heat of the fuel cell after restarting operation, and furthermore, the oxidation catalyst will be reduced by hydrogen in the fuel gas. Regenerates through action to perform catalytic function,
Dehumidification function can be restored.

(3)これにより、従来方式のように不活性ガスをガス
ボンベなどに詰めて別に用意することが不要となり、ラ
ンニングコストの軽減、並びに保守管理の簡略化と併せ
て、パージガスの生成機能の安定維持を図ることができ
る。
(3) This eliminates the need for separately preparing inert gas in gas cylinders as in the conventional method, reducing running costs and simplifying maintenance management, while maintaining a stable purge gas generation function. can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例の配管系統図である1図において
、 1:燃料電池、3:燃料ガス供給ライン、5:酸化剤ガ
ス供給ライン、9:冷却系、10:パージガス供給ライ
ン、12:酸素除去器、13:除湿器、14:パージガ
ス系、15:酸化触媒、16:乾燥剤、17:燃料ガス
系の分岐配管。
FIG. 1 is a piping system diagram of an embodiment of the present invention, in which 1: fuel cell, 3: fuel gas supply line, 5: oxidant gas supply line, 9: cooling system, 10: purge gas supply line, 12 : Oxygen remover, 13: Dehumidifier, 14: Purge gas system, 15: Oxidation catalyst, 16: Desiccant, 17: Branch piping for fuel gas system.

Claims (1)

【特許請求の範囲】[Claims] 1)燃料電池の停止時に反応ガス系を不活性化したガス
でパージする燃料電池のガス置換方式であって、一端が
大気側に通じるパージガス系の配管に酸化触媒を充填し
た酸素除去器、および乾燥剤を充填した除湿器を介装す
るとともに、前記の酸素除去器、除湿器を燃料電池本体
の冷却系を通流する高温側の冷媒との間で熱交換させる
ように配置し、燃料電池の停止時には、前記の酸素除去
器、除湿器を経て不活性化された乾燥空気をパージガス
として燃料電池の反応ガス系へ供給してガス置換し、燃
料電池の運転再開後には、酸素除去器、除湿器と冷却系
を通流する高温冷媒との間で熱交換させつつ、同時に酸
素除去器へ反応ガス系より抽出した燃料ガスの一部を導
入して水素による酸化触媒の還元、並びに乾燥剤の加熱
再生を行うようにしたことを特徴とする燃料電池のガス
置換方式。
1) A fuel cell gas replacement method that purges the reaction gas system with an inert gas when the fuel cell is stopped, and includes an oxygen remover filled with an oxidation catalyst in the purge gas system piping, one end of which communicates with the atmosphere, and A dehumidifier filled with a desiccant is interposed, and the oxygen remover and dehumidifier are arranged so as to exchange heat with the refrigerant on the high temperature side flowing through the cooling system of the fuel cell main body. When the fuel cell is stopped, dry air that has been inactivated through the oxygen remover and dehumidifier is supplied as a purge gas to the reaction gas system of the fuel cell for gas replacement, and after the fuel cell restarts, the oxygen remover, While heat is exchanged between the dehumidifier and the high-temperature refrigerant flowing through the cooling system, a portion of the fuel gas extracted from the reaction gas system is simultaneously introduced into the oxygen remover to reduce the oxidation catalyst with hydrogen and remove the desiccant. A gas replacement method for a fuel cell characterized by performing heating regeneration.
JP63194909A 1988-08-04 1988-08-04 Gas replacement method for fuel cell Pending JPH0244654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63194909A JPH0244654A (en) 1988-08-04 1988-08-04 Gas replacement method for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63194909A JPH0244654A (en) 1988-08-04 1988-08-04 Gas replacement method for fuel cell

Publications (1)

Publication Number Publication Date
JPH0244654A true JPH0244654A (en) 1990-02-14

Family

ID=16332356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63194909A Pending JPH0244654A (en) 1988-08-04 1988-08-04 Gas replacement method for fuel cell

Country Status (1)

Country Link
JP (1) JPH0244654A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5677073A (en) * 1994-07-13 1997-10-14 Toyota Jidosha Kabushiki Kaisha Fuel cell generator and method of the same
JP2002246054A (en) * 2001-02-13 2002-08-30 Denso Corp Fuel cell system
FR2834586A1 (en) * 2002-01-04 2003-07-11 Peugeot Citroen Automobiles Sa Generation of electricity from a fuel cell to drive a vehicle, uses purge circuit to deliver inert gas to anode to stop fuel cell operation and prevent fuel build up, and diverts combustive material away from anode
JP2006134670A (en) * 2004-11-04 2006-05-25 Honda Motor Co Ltd Fuel cell system
JP2006286472A (en) * 2005-04-01 2006-10-19 Toshiba Fuel Cell Power Systems Corp Fuel treating device, fuel cell generator, and its starting method
KR100718105B1 (en) * 2005-08-03 2007-05-15 삼성에스디아이 주식회사 High temperature fuel cell system having cooling apparatus and operating method thereof
CN100409476C (en) * 2005-04-12 2008-08-06 三菱电机株式会社 Fuel cell power generating system
CN107731474A (en) * 2017-10-24 2018-02-23 周广新 The Novel respirator and its automatic alarm prompt system of a kind of transformer
CN113328123A (en) * 2021-05-20 2021-08-31 东风汽车集团股份有限公司 Fuel cell stack shell purging device and control method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5677073A (en) * 1994-07-13 1997-10-14 Toyota Jidosha Kabushiki Kaisha Fuel cell generator and method of the same
JP2002246054A (en) * 2001-02-13 2002-08-30 Denso Corp Fuel cell system
FR2834586A1 (en) * 2002-01-04 2003-07-11 Peugeot Citroen Automobiles Sa Generation of electricity from a fuel cell to drive a vehicle, uses purge circuit to deliver inert gas to anode to stop fuel cell operation and prevent fuel build up, and diverts combustive material away from anode
JP2006134670A (en) * 2004-11-04 2006-05-25 Honda Motor Co Ltd Fuel cell system
JP4630040B2 (en) * 2004-11-04 2011-02-09 本田技研工業株式会社 Fuel cell system
JP2006286472A (en) * 2005-04-01 2006-10-19 Toshiba Fuel Cell Power Systems Corp Fuel treating device, fuel cell generator, and its starting method
CN100409476C (en) * 2005-04-12 2008-08-06 三菱电机株式会社 Fuel cell power generating system
KR100718105B1 (en) * 2005-08-03 2007-05-15 삼성에스디아이 주식회사 High temperature fuel cell system having cooling apparatus and operating method thereof
CN107731474A (en) * 2017-10-24 2018-02-23 周广新 The Novel respirator and its automatic alarm prompt system of a kind of transformer
CN113328123A (en) * 2021-05-20 2021-08-31 东风汽车集团股份有限公司 Fuel cell stack shell purging device and control method
CN113328123B (en) * 2021-05-20 2022-08-30 东风汽车集团股份有限公司 Fuel cell stack shell purging device and control method

Similar Documents

Publication Publication Date Title
JP2008078140A (en) Dismissal (purging) method at stack stoppage
JPS6235485A (en) Stoppage and preservation of fuel battery
JPH0244654A (en) Gas replacement method for fuel cell
JP2001026401A (en) Hydrogen supply system-for equipment using hydrogen as fuel
JPS5832903B2 (en) How to stop a fuel cell
JPS6326962A (en) Stop and storing method for fuel cell
JPH07272737A (en) Stop device for fuel cell
WO2002015315A1 (en) Fuel cell system
JP2007066529A (en) Fuel cell system
JPH03105870A (en) Method for stopping operation of phosphoric fuel cell
JP2014503962A (en) Fuel cell dehumidification system and dehumidification method
JP2005044630A (en) Fuel cell system
JP2002313402A (en) Method of increasing power generating efficiency of fuel cell
JP4354756B2 (en) Oxygen removal system and fuel cell system
JPH11154529A (en) Stopping method of phosphoric acid type fuel cell and phosphoric acid type fuel cell
JPH10302824A (en) Carbon monoxide removing device
JPS6112347B2 (en)
JP2005108436A (en) Fuel cell system and power generating method of fuel cell
JP2000185901A (en) Reforming device and fuel battery system
JP4000971B2 (en) Fuel cell system
JPH0272563A (en) Purge gas replacing of fuel cell
JPH01183073A (en) Operation suspending method for fuel cell power generating system
JPH08222252A (en) Solid high polymer fuel cell system
JP2000021431A (en) Method of stopping reforming equipment for fuel cell
JP2001263726A (en) Air-conditioning system