JPH0244168A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPH0244168A
JPH0244168A JP19488288A JP19488288A JPH0244168A JP H0244168 A JPH0244168 A JP H0244168A JP 19488288 A JP19488288 A JP 19488288A JP 19488288 A JP19488288 A JP 19488288A JP H0244168 A JPH0244168 A JP H0244168A
Authority
JP
Japan
Prior art keywords
heat
cooling
heat sink
pyrolytic graphite
sink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19488288A
Other languages
Japanese (ja)
Inventor
Junji Omori
大森 順次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP19488288A priority Critical patent/JPH0244168A/en
Publication of JPH0244168A publication Critical patent/JPH0244168A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/02Constructions of heat-exchange apparatus characterised by the selection of particular materials of carbon, e.g. graphite

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To remove heat inputted at high-heat load and for a relatively long period of time while minimizing damages on a heat receiving surface by setting the direction of a built-up layer of pyrolytic graphite at right angles with the direction in which heat is introduced, junctioning metallurgically a cushioning material to the cooling surface side of the pyrolytic graphite, junctioning metallurgically a heat sink to the cooling surface side of the cushioning material and bringing the heat sink into contact with a cooling base plate. CONSTITUTION:Heat introduced into a heat receiving plate 6 is transferred in the direction 14 of a built-up layer of pyrolytic graphite i.e. in the direction of large thermal conductivity and passes through a cushioning material 9 to enter a heat sink 10. Heat transfer is improved by selecting the thickness of each of the heat receiving plate 6, the cushioning material 9 and the heat sink 10 in accordance with introduced heat flux and heat input hours and also by interposing a mesh 10a made of soft copper between the heat sink 10 and a cooling base plate 8 to be well associated with each other. The thickness of sublimation on the surface of a heat receiving area is minimized, and the heat of the heat receiving plate 6 is most rapidly transferred to the heat sink 10 to cool the heat of the heat sink 10 with cold water 5 via the cooling base plate 8 and a pipe 16. Thus, a long-life and highly efficient heat exchanger can be obtained.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、高熱負荷を受ける熱交換器の構造に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to the structure of a heat exchanger that is subjected to high heat loads.

(従来の技術) 従来、高熱負荷を受ける熱交換器の受熱板の冷却手段は
2種類あって、直接冷却と間接冷却に分類される。
(Prior Art) Conventionally, there are two types of cooling means for a heat receiving plate of a heat exchanger that is subjected to a high heat load, and they are classified into direct cooling and indirect cooling.

これらの冷却手段は、入熱量と入熱時間によってその選
択が決められる。概略の目安を第4図に示す、即ち、低
熱負荷(1に%l/aJ以下)で長時間入熱の場合、即
ち、長時間冷却領域(1)の冷却方式は。
The selection of these cooling means is determined by the amount of heat input and the heat input time. A rough guideline is shown in FIG. 4, that is, in the case of long-term heat input with low heat load (1%l/aJ or less), that is, the cooling method for long-time cooling region (1).

入熱量を連続的に冷却媒体へ伝える必要がある。It is necessary to continuously transfer heat input to the cooling medium.

また、受熱板の温度を低く抑えるために受熱面から冷却
面迄の距離を短かくする。これが直接冷却方式で、第5
図に示す文献: rJAERI−Mg2−169J日本
原子力研究所1987年lO月発行の例がある。第5図
は核融合装置の中性粒子入射装置のビームダンプで、熱
負荷は約5001/d−10秒である。材料は銅で、受
熱面から冷却面迄の距離は2■と云う短い値である。熱
負荷は矢印(4)の方向から入射し、厚さ2++w++
の銅を介して連続的に冷却水(5)に伝わる。
Furthermore, in order to keep the temperature of the heat receiving plate low, the distance from the heat receiving surface to the cooling surface is shortened. This is the direct cooling method, and the fifth
Literature shown in the figure: There is an example of rJAERI-Mg2-169J published by Japan Atomic Energy Research Institute in October 1987. Figure 5 shows a beam dump of the neutral particle injection device of the fusion device, and the heat load is approximately 5001/d-10 seconds. The material is copper, and the distance from the heat receiving surface to the cooling surface is a short value of 2 mm. The heat load is incident from the direction of arrow (4), and the thickness is 2++w++
is continuously transmitted to the cooling water (5) via the copper.

一方、高熱負荷(lkw/aJ以上)で短時間入熱の場
合、即ち1間接冷却領域(2)の冷却方式は、入熱量を
一旦受熱板に蓄熱し、入熱のない時間に徐々に冷却する
。これは間接冷却方式と呼ばれ、受熱板は、入熱量を蓄
熱する必要から一般に厚くなる。
On the other hand, in the case of high heat load (more than LKW/aJ) and short-time heat input, that is, the cooling method of 1 indirect cooling area (2), the heat input is temporarily stored in the heat receiving plate, and then gradually cooled during the time when there is no heat input. do. This is called an indirect cooling method, and the heat receiving plate is generally thick because it is necessary to store the amount of heat input.

この例を第6図、第7図に示す、これは核融合装置のリ
ミタと呼ばれるもので、(4)の入熱方向から入射した
熱はモリブデン製の受熱板(6)に蓄熱され、入熱のな
い時間に取付座(7)を介して冷却基板(8)へ伝わる
Examples of this are shown in Figures 6 and 7. This is called a limiter for a nuclear fusion device, and the heat that enters from the heat input direction (4) is stored in the heat receiving plate (6) made of molybdenum. During times when there is no heat, the heat is transmitted to the cooling board (8) via the mounting seat (7).

本発明の対象とする熱負荷領域(3)を第4図に示すが
、入熱時間については間接冷却領域(2)より長く、熱
流束については直接冷却領域(1)より大きい領域で、
具体的な実施例は未だ発表されていない。
The heat load region (3) targeted by the present invention is shown in FIG. 4, and the heat input time is longer than the indirect cooling region (2), and the heat flux is larger than the direct cooling region (1).
Specific examples have not yet been announced.

(発明が解決しようとする課題) 本発明が対象とする領域の熱負荷に直接冷却方式の熱交
換器を用いると、熱が冷却媒体に伝わりきらず、受熱面
が温度上昇し焼損の恐れがある。
(Problems to be Solved by the Invention) If a direct cooling type heat exchanger is used for the heat load in the area targeted by the present invention, the heat will not be completely transferred to the cooling medium, and the temperature of the heat receiving surface will rise, leading to the risk of burnout. .

又、従来の間接冷却方式の熱交換器でも、受熱面表面が
溶融・蒸発する恐れがある。
Furthermore, even in conventional indirect cooling type heat exchangers, there is a risk that the heat receiving surface may melt or evaporate.

本発明の目的は、高熱負荷(約1〜8kW/cd以上)
で比較的長時間(約1〜8秒)の入熱を受熱面の損傷を
少なくして除熱する熱交換器を提供することにある。
The purpose of the present invention is to provide high heat loads (approximately 1 to 8 kW/cd or more)
An object of the present invention is to provide a heat exchanger that removes heat by reducing heat input for a relatively long time (about 1 to 8 seconds) while minimizing damage to a heat receiving surface.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 上記目的を達成するために、本発明においては、熱流束
を受ける受熱面を熱分解黒鉛で形成し、その熱分解黒鉛
の堆積方向を熱入射方向に直角にし。
(Means for Solving the Problems) In order to achieve the above object, in the present invention, the heat receiving surface receiving heat flux is formed of pyrolytic graphite, and the direction of deposition of the pyrolytic graphite is set perpendicular to the direction of heat incidence. .

熱分解黒鉛の冷却面側にモリブデン製の緩衝材を冶金的
に接合し、tIi衝材の冷却面側に銅製のヒートシンク
を冶金的に接合し、ヒートシンク又はヒートシンクと緩
衝材を冷却媒体で冷却する冷却基板に接触させたことを
特徴とする熱交換器を提供する。
A molybdenum buffer material is metallurgically bonded to the cooling surface side of the pyrolytic graphite, a copper heat sink is metallurgically bonded to the cooling surface side of the tIi shock material, and the heat sink or the heat sink and buffer material are cooled with a cooling medium. Provided is a heat exchanger characterized in that it is brought into contact with a cooling substrate.

(作 用) このように構成されたものにおいては、熱分解黒鉛から
銅製のヒートシンクへの熱伝達が良好であるから、高熱
負荷で比較的長時間の入熱を、受熱面の損傷を少なくし
て除熱することができる。
(Function) With this structure, heat transfer from the pyrolytic graphite to the copper heat sink is good, so heat input can be performed for a relatively long time under high heat load with less damage to the heat receiving surface. Heat can be removed by

(実施例) 本発明の一実施例を第1図および第2図に示す。(Example) An embodiment of the invention is shown in FIGS. 1 and 2.

第1図において入熱の方向は(4)である。受熱板(6
)は熱分解黒鉛で構成する。熱分解黒鉛の堆積した層の
方向(14)と入熱方向(4)とは一致させる。
In FIG. 1, the direction of heat input is (4). Heat receiving plate (6
) is composed of pyrolytic graphite. The direction (14) of the layer in which pyrolytic graphite is deposited is made to coincide with the direction of heat input (4).

熱分解黒鉛の冷却面側にはモリブデンから成る緩衝材(
9)を冶金的に接合する。さらにam材(9)の冷却面
側に銅から成るヒートシンク(10)を冶金的に接合し
て除熱器(15)を形成する。
A buffer material made of molybdenum (
9) are metallurgically joined. Further, a heat sink (10) made of copper is metallurgically joined to the cooling surface side of the AM material (9) to form a heat remover (15).

この除熱器(15)を有する熱交換器の組立ては、ヒー
トシンク(10)と冷却基板(8)との間に鋼のメツシ
ュ(10a)を介在させ、ヒートシンク(10)内に取
付板(12)を挿入し、ばね座金(13)を介して冷却
基板(8)にボルト締めする。冷却基板(8)には冷却
水(5)(必ずしも水に限らず他の冷媒でもよい)を流
すパイプ(16)を、ろう付は又は溶接で取付ける。
Assembling the heat exchanger with the heat remover (15) involves interposing a steel mesh (10a) between the heat sink (10) and the cooling board (8), and placing the mounting plate (12) inside the heat sink (10). ) and bolt it to the cooling board (8) via the spring washer (13). A pipe (16) through which cooling water (5) (not necessarily water but other refrigerant may be used) is attached to the cooling board (8) by brazing or welding.

第2図は第1図の平面図で、取付ボルト(11)は受熱
板(6)の中央に位置し、受熱板(6)の上方から取付
ボルト(11)を締める構造である。
FIG. 2 is a plan view of FIG. 1, and the mounting bolt (11) is located at the center of the heat receiving plate (6), and has a structure in which the mounting bolt (11) is tightened from above the heat receiving plate (6).

次にこの実施例の作用を説明する。Next, the operation of this embodiment will be explained.

高熱負荷で、かつ、数秒間の入熱量を除去するためには
゛、受熱面表面に入射した熱量を、できるだけ速かに受
熱板から除く必要がある。このためには熱伝導が望まし
い、水の沸騰熱伝達でさえ、熱の通過率は51のモリブ
デンより1桁小さい。
In order to remove the amount of heat input for several seconds under a high heat load, it is necessary to remove the amount of heat that has entered the heat receiving surface from the heat receiving plate as quickly as possible. For this purpose, heat conduction is desirable, and even in water boiling heat transfer, the heat transfer rate is an order of magnitude lower than that of 51 molybdenum.

熱分解黒鉛は、基材黒鉛を加熱し、メタン、プロパンな
どの炭化水素ガスをその高温域に導入して、それらを基
材表面で熱分解し、堆積させる事により生成するもので
、堆積方向とそれに垂直方向とで熱・機械的性質に大き
な異方性がある。特徴は稠密で1強度が大きく、特に堆
積層に平行な方向の熱伝導率が良好で、銅と同等である
。従って、入熱の方向と層方向を平行にすれば受熱面表
面の熱を速かに除くことができる。表面に黒鉛を用いる
のは、全屈材料では溶融が起こるためである。黒鉛でも
高温では昇華が起こるが、昇華熱は59100J/gと
高融点金属の融解熱(モリブデン290Jug 、タン
グステン191J/g)に比べて桁違いに大きい。高融
点金属材料を用いて溶融した場合を考えると、溶融した
部分は最悪の場合失なわれることになるので、昇華によ
る損耗量は溶融による損耗量に比べて格段に小さくなる
Pyrolytic graphite is produced by heating base material graphite, introducing hydrocarbon gases such as methane and propane into the high temperature region, and pyrolyzing and depositing them on the surface of the base material. There is a large anisotropy in the thermal and mechanical properties in the direction perpendicular to it. It is characterized by dense density, high strength, and particularly good thermal conductivity in the direction parallel to the deposited layer, which is equivalent to copper. Therefore, by making the direction of heat input parallel to the layer direction, the heat on the heat receiving surface can be quickly removed. The reason why graphite is used on the surface is that melting occurs in fully flexural materials. Even graphite sublimates at high temperatures, but the heat of sublimation is 59,100 J/g, which is an order of magnitude larger than the heat of fusion of high-melting point metals (290 J/g of molybdenum, 191 J/g of tungsten). Considering the case of melting using a high melting point metal material, the melted portion will be lost in the worst case, so the amount of loss due to sublimation will be much smaller than the amount of loss due to melting.

受熱面から流入する熱を蓄積するヒートシンクには、熱
容量の大きいこと、熱拡散速度の大きいこと等の性質が
必要とされる。これには工業用材料では銅が最も適して
いる。ヒートシンクの容積は、除熱という点からは大き
い程望ましいが、−般に入熱量、及び熱交換器の空間的
制約から決められる。
A heat sink that accumulates heat flowing in from a heat receiving surface is required to have properties such as a large heat capacity and a high heat diffusion rate. Copper is the most suitable industrial material for this purpose. The volume of the heat sink is desirably larger from the standpoint of heat removal, but it is generally determined by the amount of heat input and spatial constraints of the heat exchanger.

受熱板である熱分解性黒鉛は2000〜3000℃に加
熱され、ヒートシンクである銅の融点は1080℃であ
るから、その間には緩衝材が必要である。これは、高温
での強度を有し、かつ熱伝導率が良く。
Pyrolytic graphite, which is the heat receiving plate, is heated to 2000 to 3000°C, and copper, which is the heat sink, has a melting point of 1080°C, so a buffer material is required between them. It has strength at high temperatures and good thermal conductivity.

冶金的接合が容易であることが望ましい。工業用材料と
してはモリブデンが最も適している。また、モリブデン
は、その線膨張係数が熱分解黒鉛と銅の線膨張係数の間
に位置し、冶金的接続を容易にするという作用も有する
It is desirable that metallurgical bonding be easy. Molybdenum is the most suitable industrial material. Furthermore, molybdenum has a coefficient of linear expansion between that of pyrolytic graphite and copper, and has the effect of facilitating metallurgical connection.

受熱板(6)に入射した熱は、熱分解黒鉛の堆積した層
の方向(14)、即ち熱伝導率の大きい方向に伝わり、
緩衝材(9)を通過してヒートシンク(10)に流入す
る。入射熱流束と入熱時間に応じて受熱板(6)の厚さ
、緩衝材(9)の厚さ、ヒートシンク(10)の厚さを
選ぶことにより、またヒートシンク(10)と冷却基板
(8)との間に軟らかな銅のメツシュ(10a)を介在
させたことにより両者の馴染を良くして熱伝達を良好に
し、受熱面表面の昇華厚さを最も小さく、かつ受熱板(
6)の熱を最も速やかにヒートシンク(10)に伝え、
ヒートシンク(lO)から冷却基板(8)、パイプ(1
6)を介して冷却水(5)で冷却される長寿命、高効率
の熱交換器が得られる。
The heat incident on the heat receiving plate (6) is transmitted in the direction of the deposited layer of pyrolytic graphite (14), that is, in the direction of high thermal conductivity,
It passes through the buffer material (9) and flows into the heat sink (10). By selecting the thickness of the heat receiving plate (6), the thickness of the buffer material (9), and the thickness of the heat sink (10) according to the incident heat flux and heat input time, ) by interposing a soft copper mesh (10a) between the heat receiving plate (
Transfer the heat of 6) to the heat sink (10) most quickly,
From the heat sink (lO) to the cooling board (8) and the pipe (1
A long-life, high-efficiency heat exchanger cooled by the cooling water (5) via the cooling water (5) can be obtained.

次にこの実施例の効果を説明する。Next, the effects of this embodiment will be explained.

受熱板(6)に用いている熱分解黒鉛は、堆積層に平行
な方向の熱伝導率は銅と同程度であって。
The thermal conductivity of the pyrolytic graphite used in the heat receiving plate (6) in the direction parallel to the deposited layer is comparable to that of copper.

入射した熱を速やかにモリブデン製の緩衝材(9)に伝
えることができる。従って、受熱板表面の温度上昇を抑
えることができ1表面の昇華による損失量を少なくする
ことができる。また、緩衝材(9)として用いるモリブ
デンはその線膨張係数が熱分解黒鉛と銅の間にあって、
それぞれの材料との冶金的接続を容易にしている。さら
に、この実施例では受熱板(6)、緩衝材(9)、ヒー
トシンク(lO)から成る除熱器(15)をセクタに細
分化することができるので、受熱面が損傷した場合損傷
部のセクタのみを交換できる利点がある。
The incident heat can be quickly transferred to the molybdenum buffer material (9). Therefore, the temperature rise on the surface of the heat receiving plate can be suppressed, and the amount of loss due to sublimation on one surface can be reduced. In addition, the linear expansion coefficient of molybdenum used as the buffer material (9) is between that of pyrolytic graphite and copper.
Facilitates metallurgical connections with respective materials. Furthermore, in this embodiment, the heat remover (15) consisting of the heat receiving plate (6), the buffer material (9), and the heat sink (1O) can be subdivided into sectors, so if the heat receiving surface is damaged, the damaged part can be removed. It has the advantage that only sectors can be replaced.

第3図は本発明の他の実施例で、熱交換器の冷却基板(
8)との取付は部をモリブデン製の緩衝材(9)で構成
し、緩衝材(9)の冷却面側を凹状として、その凹部内
に銅製のヒートシンク(10)を冶金的に接合したもの
である。この実施例によれば、冷却基板(8)との取付
は部をモリブデンで構成しているため、高温域において
も強度の高い取付は構造となっている。又、ヒートシン
ク(10)としての銅は、機械的強度を必要としない構
造であるから、銅を高い温度領域で使用することができ
、それだけ多くの熱を蓄えることができる。
FIG. 3 shows another embodiment of the present invention, in which the cooling board of the heat exchanger (
8) consists of a molybdenum buffer material (9), the cooling surface side of the buffer material (9) is made concave, and a copper heat sink (10) is metallurgically bonded within the concave part. It is. According to this embodiment, since the mounting portion to the cooling board (8) is made of molybdenum, the mounting structure has high strength even in a high temperature range. Further, since the copper used as the heat sink (10) has a structure that does not require mechanical strength, copper can be used in a high temperature range, and that much heat can be stored.

〔発明の効果〕〔Effect of the invention〕

本発明は、直接冷却で冷却することのできない高熱流束
に対して、熱伝達よりも熱通過の良い熱伝導を用いて、
受熱板の入熱を可能な限り速やかにヒートシンクに伝え
、受熱面表面の温度上昇を抑え、表面の昇華による損失
量の少ない熱交換器を得ることができる。
The present invention uses heat conduction, which has better heat passage than heat transfer, for high heat fluxes that cannot be cooled by direct cooling.
It is possible to obtain a heat exchanger in which the heat input from the heat receiving plate is transmitted to the heat sink as quickly as possible, the temperature rise on the heat receiving surface is suppressed, and the amount of loss due to surface sublimation is small.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す横断面図、第2図は第
1図の上面図、第3図は本発明の他の実施例を示す横断
面図、第4図は本発明の熱負荷範囲の分布図、第5図は
従来例を示す斜視図、第6図および第7図は第5図とは
異なる従来例を示す要部断面立面図および要部断面側面
図である。 1・・・直接冷却の領域    2・・・間接冷却の領
域3・・・本発明の対象領域   4・・・入熱方向5
・・・冷却水        6・・・受熱板7・・・
取付座        8・・・冷却基板9・・・緩衝
材       10・・・ヒートシンク10a・・・
メツシュ      11・・・取付ボルト12・・・
取付板       13・・・ばね座金14・・・堆
積した層の方向  15・・・除熱器16・・・パイプ 代理人 弁理士 大 胡 典 夫 著又5jf5bヒII 6莞魯抜 第 図 第 図 f直蓚玲郡領エペ 第 図
FIG. 1 is a cross-sectional view showing one embodiment of the present invention, FIG. 2 is a top view of FIG. 1, FIG. 3 is a cross-sectional view showing another embodiment of the present invention, and FIG. 4 is a cross-sectional view of the invention. Fig. 5 is a perspective view showing a conventional example, and Figs. 6 and 7 are a cross-sectional elevational view and a cross-sectional side view of a main part showing a conventional example different from Fig. 5. be. 1...Direct cooling area 2...Indirect cooling area 3...Target area of the present invention 4...Heat input direction 5
...Cooling water 6...Heat receiving plate 7...
Mounting seat 8...Cooling board 9...Buffer material 10...Heat sink 10a...
Mesh 11...Mounting bolt 12...
Mounting plate 13...Spring washer 14...Direction of deposited layer 15...Heat remover 16...Pipe agent Patent attorney Norifu Ogo f.

Claims (1)

【特許請求の範囲】[Claims] 熱流束を受ける受熱面を熱分解黒鉛で形成し、その熱分
解黒鉛の堆積層の方向を熱入射方向に合せ、熱分解黒鉛
の冷却面側にモリブデン製の緩衝材を冶金的に接合し、
緩衝材の冷却面側に銅製のヒートシンクを冶金的に接合
し、ヒートシンク又はヒートシンクと緩衝材を冷却媒体
で冷却する冷却基板に接触させたことを特徴とする熱交
換器。
The heat receiving surface that receives the heat flux is formed of pyrolytic graphite, the direction of the deposited layer of pyrolytic graphite is aligned with the direction of heat incidence, and a molybdenum buffer material is metallurgically bonded to the cooling surface side of the pyrolytic graphite.
A heat exchanger characterized in that a copper heat sink is metallurgically bonded to the cooling surface side of a buffer material, and the heat sink or the heat sink and the buffer material are brought into contact with a cooling substrate that is cooled with a cooling medium.
JP19488288A 1988-08-04 1988-08-04 Heat exchanger Pending JPH0244168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19488288A JPH0244168A (en) 1988-08-04 1988-08-04 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19488288A JPH0244168A (en) 1988-08-04 1988-08-04 Heat exchanger

Publications (1)

Publication Number Publication Date
JPH0244168A true JPH0244168A (en) 1990-02-14

Family

ID=16331890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19488288A Pending JPH0244168A (en) 1988-08-04 1988-08-04 Heat exchanger

Country Status (1)

Country Link
JP (1) JPH0244168A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7159873B2 (en) 2002-09-10 2007-01-09 United Technologies Corporation Shaft seal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7159873B2 (en) 2002-09-10 2007-01-09 United Technologies Corporation Shaft seal

Similar Documents

Publication Publication Date Title
US8249210B2 (en) Monobloc cooling device component
JP5275555B2 (en) Composite member with structured tungsten element
JPH0244168A (en) Heat exchanger
Nygren et al. High heat flux tests on heat sinks armored with tungsten rods
JP4647746B2 (en) Structural members that can be thermally loaded
JP4124589B2 (en) Wafer holding device
JPH069906B2 (en) Composite material consisting of graphite and copper or copper alloy
JPS63275987A (en) Diverter board
JP2000216310A (en) Heat sink and its manufacture
JPH07167972A (en) First wall for nuclear fusion device
JPS62204936A (en) Composite material consisting of graphite and metal
JP3307760B2 (en) High heat flux heat receiving plate
JPH02251366A (en) Manufacture using constraining jig
JP3036890B2 (en) Divertor board structure
Yang et al. Development of brazing technologies for bonding of graphite and CuCrZr joints applying for the first wall of the EAST device
JPS6250073A (en) Joined graphite-metal structural body
JP2000079467A (en) Brazing method and manufacture of target
JPS62184388A (en) Heat-receiving plate for nuclear fusion device
KR101719177B1 (en) Method for manufacturing steam condensation heat transfer pipe
Watts et al. Joint attachment of carbon-carbon aircraft HX core
JPS60187494A (en) Joined high melting metal-copper material
JPS60256787A (en) Ceramics lined furnace wall body and manufacture thereof
JPS63109391A (en) Heat receiving plate for nuclear fusion device
Kearns et al. Brazing of carbon-carbon for an aircraft heat exchanger
JPS60162591A (en) Cushion body for joining tungsten and copper