JPH0244076A - Production of parts having ceramic layer - Google Patents

Production of parts having ceramic layer

Info

Publication number
JPH0244076A
JPH0244076A JP19325688A JP19325688A JPH0244076A JP H0244076 A JPH0244076 A JP H0244076A JP 19325688 A JP19325688 A JP 19325688A JP 19325688 A JP19325688 A JP 19325688A JP H0244076 A JPH0244076 A JP H0244076A
Authority
JP
Japan
Prior art keywords
base material
metal
ceramic layer
metal base
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19325688A
Other languages
Japanese (ja)
Inventor
Akihide Takami
明秀 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP19325688A priority Critical patent/JPH0244076A/en
Publication of JPH0244076A publication Critical patent/JPH0244076A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To prevent deformation of a product and to improve joining strength by forming a molded ceramic body wherein silicon nitride-based material is sintered to a joining side and also setting a low-m.p. material on a base material made of metal and then joining the sintered body to the base material made of metal. CONSTITUTION:Metallic ceramic material 3 is filled on the base plate 2 of a press-molding machine 1 and furthermore the prescribed amount of a base ceramic material 4 is filled thereon and both materials are press-molded. Then a molded body S for sintering is sintered to form a discoid ceramic layer 5. Separately a base material 6 made of metal is set on a jig 8 in a hot press and a low-m.p. material 7 is applied on the bonding side of the upper surface. The ceramic layer 5 is placed on the base material 6 made of metal while directing the ceramic layer 3 downward and thereafter heating and pressurization are performed under the prescribed conditions. Low-m.p. alloy 9 is formed from the material 7 and the base plate 6 and the wear resistant parts P1 is obtained. Since joining is performed at low-m.p., deformation of the product is prevented and joining strength is improved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、金属性基(オ」−にセラミック層か形成され
ろ耐摩耗性部品の製造方法に関するしのであって、とく
に、エントミルヂノブ、ソール材、摺動部材等、高温安
定性を佇4゛ろ摺動性と、侵れた耐摩耗性とが要求され
ろ部品の製造方法に関4−るらのである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing wear-resistant parts in which a ceramic layer is formed on a metallic base, and particularly relates to a method for manufacturing wear-resistant parts such as entomil di knobs and soles. Materials, sliding members, etc., are required to have high temperature stability, sliding properties, and abrasion resistance.

[従来の技術] 従来、エンドミル等の切削工具、摺動部材、ソール材等
、優れた耐摩耗性が要求さイ1ろ耐摩耗性部品は焼結金
属等の金属材tトで形成されていたか、大きな負荷(P
V値)がかかる乙のでは、金属同士の接触により、とく
に高温時に凝着摩耗を起こす場合があり、このような場
合には、」二足部品の機能が損なわれるといった問題か
あった。
[Conventional technology] Conventionally, cutting tools such as end mills, sliding members, sole materials, etc. have been required to have excellent wear resistance, and wear-resistant parts have been made of metal materials such as sintered metal. Or a large load (P
In cases where the V value is high, metal-to-metal contact may cause adhesive wear, especially at high temperatures, and in such cases, the function of the two-legged parts may be impaired.

このため、耐摩耗性に優れ、かつ耐熱性及び高温安定性
に優れたセラミック1才科で形成された耐摩耗性部品が
提案されている。ところか、このようなセラミック材料
は、優れた耐熱性及び高温安定性を有するものの、衝撃
強度等の機械的強度が低いといった欠点があるので、応
力が集中的に発生するような部材、あるいは激しい衝撃
力が加えられるような部材には+lI用できず、実用化
できる分野が限られるといった問題があった。上記欠点
を数件すべく、セラミックの機械的強度を高める努力か
なされ、最近では機械的強度がかなり向−1−し、応用
範囲が広がりつつあり、例えば断続切削等の繰り返し応
力かかかるような部材にも適用できろようになっている
。しかし、応力の加わる方向か一定てなかつたり、ある
いは摺動速度・切削速度か変化するような部材に関して
は、また十分な信頼性か得られるには至っていない。
For this reason, wear-resistant parts made of ceramic materials that have excellent wear resistance, heat resistance, and high temperature stability have been proposed. However, although such ceramic materials have excellent heat resistance and high-temperature stability, they have the disadvantage of low mechanical strength such as impact strength. There is a problem in that +lI cannot be used for members to which impact force is applied, and the fields in which it can be put to practical use are limited. Efforts have been made to improve the mechanical strength of ceramics in order to overcome some of the above drawbacks.Recently, the mechanical strength has improved considerably and the range of applications is expanding. It can also be applied to parts. However, sufficient reliability has not yet been achieved for members in which the direction of stress is not constant, or the sliding speed or cutting speed changes.

そこで、応力が集中するJ、I;材部を金属材料で形成
し、耐摩耗性が要求される部分をセラミック層で形成し
に2層構造の耐摩耗性部品が提案されている(例えば、
特開昭60166275号公報参照)。
Therefore, a wear-resistant component with a two-layer structure has been proposed in which the J and I parts where stress is concentrated are made of a metal material, and the parts that require wear resistance are made of a ceramic layer (for example,
(Refer to Japanese Patent Application Laid-Open No. 60166275).

[発明が解決しようとする課題〕 ところが、このような2層構造の耐摩耗性部品では、金
属製基材とセラミック層とを接合しなければならないが
、金属とセラミックとでは化学的性質、あるいは熱膨張
率等の物理的性質が大きく異なるので、金属製基材とセ
ラミック層とを強固に接合するのはなかなかむずかしい
といった問題がある。
[Problems to be Solved by the Invention] However, in such a wear-resistant component with a two-layer structure, the metal base material and the ceramic layer must be bonded, but the metal and ceramic have different chemical properties or Since the physical properties such as the coefficient of thermal expansion differ greatly, there is a problem in that it is difficult to firmly bond the metal base material and the ceramic layer.

例えば、鉄−ニッケル合金等で形成される金属製基材と
Si3N+を主成分とするセラミック層とを低融点材料
でロウ付接合した場合は、低温で接合できるので金属製
基(4の熱劣化か発生しないという利点があるが、接合
強度が、最大でし20〜30 kgf/ n+m2程度
なので、構造部品としての上のな信頼性を得ることがで
きないといった問題かある。
For example, when a metal base material made of an iron-nickel alloy or the like and a ceramic layer mainly composed of Si3N+ are joined by brazing with a low-melting point material, the metal base material (4) can be joined at low temperatures. However, since the maximum bonding strength is about 20 to 30 kgf/n+m2, there is a problem that high reliability as a structural component cannot be obtained.

一方、タングステンカーバイド、コバルトなとの高融点
材料で金属製基材とセラミック層とを接合する場合は、
接合強度は十分に高まる乙のの、接合温度が高くなるの
で、大きな熱応力が発生し、金属製基材とセラミック層
とがバイメタル変形を起こし、部品として正常な働きを
しないばかりか、境界部から破壊されろ場合があるとい
った問題かあり、さらに、高温により鉄−ニッケル合金
等で形成される金属製基材が熱劣化を起こし、その組成
が粗大化して強度が低下するので、低い応力でも破壊さ
れる場合があるといった問題がある。
On the other hand, when bonding a metal base material and a ceramic layer with a high melting point material such as tungsten carbide or cobalt,
Although the bonding strength is sufficiently increased, the high bonding temperature generates large thermal stress, causing bimetallic deformation between the metal base material and the ceramic layer, which not only does not function properly as a component, but also causes damage to the interface. In addition, high temperatures cause thermal deterioration of the metal base material made of iron-nickel alloy, etc., and its composition becomes coarser, reducing its strength. There is a problem that it may be destroyed.

本発明は上記従来の問題点に鑑みてなされたものであっ
て、金属製基材上にセラミック層か形成される耐摩耗性
部品において、金属製基材とセラミック層との結合強度
を高めろことができ、かつ金属製基材の熱変形、あるい
は熱劣化による強度特性の低下を何効に防止できる、セ
ラミック層を有する耐摩耗性部品の製造方法を提供する
ことを目的とする。
The present invention has been made in view of the above-mentioned conventional problems, and aims to increase the bonding strength between the metal base material and the ceramic layer in wear-resistant parts in which a ceramic layer is formed on a metal base material. It is an object of the present invention to provide a method for manufacturing a wear-resistant component having a ceramic layer, which can effectively prevent thermal deformation of a metal base material or deterioration of strength characteristics due to thermal deterioration.

[課題を解決するための手段] 本発明は」二足の目的を達するため、金属製基材上にセ
ラミック層を有する部品の製造方法において、少なくと
乙金属製基材との接合側に、焼結時に溶出しないC−C
o系、TiC−Co系、WC−C。
[Means for Solving the Problems] In order to achieve two objects, the present invention provides a method for manufacturing a component having a ceramic layer on a metal base material, at least on the side to be bonded to the metal base material. C-C that does not elute during sintering
o series, TiC-Co series, WC-C.

−Ni系、T iCN −Go系金属化合物材のいずれ
か1、又は2以−Lを加えた窒化珪素系材料を焼結して
セラミック焼結体を形成し、次に所定の金属製基材」二
に、該金属製基材と接合時に反応して低融点合金を形成
ずろ低融点化材料をセットした後、該低融点化材料がセ
ットされた側の金属製基材表面上に、上記セラミック焼
結体を、金属化合物材を含む側が金属製基材と対向する
ようにしてセットし、この後セラミック焼結体と金属製
基材とを接合することを特徴とする、セラミック層を何
する部品の製造方法を提供する。
A silicon nitride-based material to which one or two or more of -L is added to -Ni-based, TiCN-Go-based metal compound materials is sintered to form a ceramic sintered body, and then a predetermined metal base material is formed. "Secondly, after setting the low-melting point material that reacts with the metal base material during bonding to form a low-melting point alloy, the above-mentioned What is a ceramic layer that is characterized by setting a ceramic sintered body so that the side containing the metal compound material faces a metal base material, and then bonding the ceramic sintered body and the metal base material? Provides a method for manufacturing parts that

[発明の作用・効果コ 本発明によれば、金属製基材とセラミック層の接合時、
金属製基材とセラミック層との間にセットされた低融点
化材料か金属製基材と反応して低融点合金が生成される
。そして、このようにして生成された低融点合金は比較
的低温で融解して金属製基材とセラミック層内の金属化
合物材とを冶金的に強力に接合させる。一方、上記金属
化合物材はセラミック層本体と一体的に形成されている
ので、金属製基材とセラミック層とは上記低融点合金と
金属化合物材とを介して強固に接合される。
[Operations and Effects of the Invention] According to the present invention, when joining the metal base material and the ceramic layer,
The low melting point material set between the metal base material and the ceramic layer reacts with the metal base material to produce a low melting point alloy. The low melting point alloy produced in this manner melts at a relatively low temperature and provides a strong metallurgical bond between the metal base material and the metal compound material in the ceramic layer. On the other hand, since the metal compound material is formed integrally with the ceramic layer body, the metal base material and the ceramic layer are firmly joined via the low melting point alloy and the metal compound material.

また、接合温度を低くできるので、熱応力が小さくなり
バイメタル変形の発生を有効に防止できる。
Furthermore, since the bonding temperature can be lowered, thermal stress is reduced and bimetal deformation can be effectively prevented.

かつ、金属製基(オの熱劣化による組成の粗大化を防止
することができるので、金属製基材の機械的強度の低下
を有効に防止することができろ。
In addition, since it is possible to prevent the composition from becoming coarse due to thermal deterioration of the metal base material, it is possible to effectively prevent a decrease in the mechanical strength of the metal base material.

[実施例] 以下、本発明の実施例を具体的に説明する。[Example] Examples of the present invention will be specifically described below.

ます、セラミック層の材料の調製方法について説明4−
る。
First, we will explain the method for preparing the material for the ceramic layer 4-
Ru.

焼結助剤としてY2O3を5wt%、A l 203を
5wt%含み、残部かα化率90%かつ平均粒径07μ
mの5iJNaであるような材料を混合・粉砕した後、
乾燥してベースセラミック材料を調製する。
Contains 5 wt% Y2O3 and 5 wt% Al 203 as sintering aids, and the remainder has a gelatinization rate of 90% and an average particle size of 07μ.
After mixing and crushing materials such as 5iJNa of m,
Dry to prepare the base ceramic material.

なお、焼結助剤の種類、含amはこれに限られものでは
なく、一般に用いられろ種類・合資用であればよいのは
らちろんである。
Incidentally, the type and am content of the sintering aid are not limited to these, and it goes without saying that any commonly used type or joint use type may be used.

次に、WC(タングステンカーバイド)とCOの重量配
合比を928にセットした材料を十分に混合・粉砕して
金属化合物材を調製する。なお、金属化合物材は、上記
組成に限られろものではなく、WC−Co系TiC−C
o系、WC−Co−Ni系、TiCN−Co系のいずれ
か11又は2以上混合したものであればよい。
Next, a metal compound material is prepared by sufficiently mixing and pulverizing materials in which the weight mixing ratio of WC (tungsten carbide) and CO is set to 928. Note that the metal compound material is not limited to the above composition, but may include WC-Co based TiC-C.
It may be a mixture of 11 or 2 or more of O type, WC-Co-Ni type, and TiCN-Co type.

そして、上記ベースセラミック材料と上記金属化合物材
とを重量配合比70:30で混合してメタルセラミック
材料を調製する。
Then, the base ceramic material and the metal compound material are mixed at a weight mixing ratio of 70:30 to prepare a metal ceramic material.

以下、セラミック層(焼結体)の製作方法について説明
する。
The method for manufacturing the ceramic layer (sintered body) will be described below.

第1図(a)に示すように、プレス成型機1の底板2上
に、上記メタルセラミック材料3を所定量充填し、その
上にさらに上記ベースセラミック(4料4を所定m充填
する。
As shown in FIG. 1(a), a predetermined amount of the metal ceramic material 3 is filled on the bottom plate 2 of the press molding machine 1, and a predetermined m of the base ceramic material 4 is further filled thereon.

次に、第1図(b)に示すように、ピストン等(図示せ
ず)を用いて、上記メタルセラミック(材料3とベース
セラミック材料4とを一体的に所定のプレス圧(例えば
、0 、5 ton/ am2)てプレス成形して、焼
結用成形体Sを製作する。
Next, as shown in FIG. 1(b), using a piston or the like (not shown), the metal ceramic (material 3) and base ceramic material 4 are integrally pressed under a predetermined pressing pressure (for example, 0, 5 ton/am2) to produce a molded body S for sintering.

この後、焼結用成形体Sを、ホットプレス(図示せず)
を用いて、1気圧のN2ガス雰囲気下、焼結温度170
0℃、加圧力50kg/cm2て1時間焼結し、第1図
(c)に示すようなメタルセラミック層3とベースセラ
ミック層4とからなる、2層構造の円板状セラミック層
5を製作する。
After this, the molded body S for sintering is hot pressed (not shown).
using a sintering temperature of 170 in a N2 gas atmosphere of 1 atm.
Sintering was carried out for 1 hour at 0° C. and a pressure of 50 kg/cm 2 to produce a disc-shaped ceramic layer 5 with a two-layer structure consisting of a metal ceramic layer 3 and a base ceramic layer 4 as shown in FIG. 1(c). do.

次に、第1図(d)に示すように、上記セラミック層5
と同形の円形対向面を有する円板状に形成され、Ni含
(T率36wt%のFe−Ni合金からなる金属製基材
6を用αする。
Next, as shown in FIG. 1(d), the ceramic layer 5
A metal base material 6 made of a Fe--Ni alloy containing Ni (T ratio of 36 wt%) is used, which is formed in a disk shape with circular opposing surfaces having the same shape as the above.

続いて、第1図(e)に示すように、金属製基材6を、
十分に離型剤を塗布した71;ソトプレス(図示仕4゛
)内の治具8にセラ[・する。そして、金1萬製基(4
6の」二面、すなわちセラミック層5とχ↑向する側の
表面に、炭素粉末を所定の溶媒に分散さU”て調製した
低融点化材料7を薄く塗布する。
Subsequently, as shown in FIG. 1(e), the metal base material 6 is
The mold release agent is sufficiently applied 71; the jig 8 in the sotopress (4'' in the illustration) is heated. And 10,000 pieces of gold (4
A low melting point material 7 prepared by dispersing carbon powder in a predetermined solvent is thinly applied to the two surfaces of 6, that is, the surface facing χ↑ to the ceramic layer 5.

この後、第1図(f)に示すように、金嘱製基÷46の
上に、セラミック層5をメタルセラミック層3(第1図
(d)参照)が金属製基材6に対向ずろようにして載置
する。そして、このような金属製基材6とセラミック層
5の集合体を、10kg/cm2て加圧しながら、昇温
速度IO℃/分で加熱する。
After this, as shown in FIG. 1(f), the ceramic layer 5 is placed on the metal base ÷46 so that the metal-ceramic layer 3 (see FIG. 1(d)) faces the metal base 6. Place it like this. Then, such an assembly of the metal base material 6 and the ceramic layer 5 is heated at a temperature increase rate of 10° C./min while being pressurized at 10 kg/cm 2 .

以下、上記の方法で実際に加熱を行った結果を1説明す
る。
Hereinafter, the results of actual heating using the above method will be explained.

加熱を続けたところ、1200℃で変位計(図示せず)
に変化があられれた。これは、低融点化材料7と金属製
基材6とから厚さdの低融点合金部9が形成され、金属
製基材6とセラミック層5の接合が開始されたことを示
している。そこで、10分間だけ1200℃を保持し、
ごの後加圧を停止して冷却速度2℃/分で800℃まで
徐々に冷却したところ、第1図(g)に示すような耐摩
耗性部品P、が得られた。
When heating continued, the displacement meter (not shown) reached 1200℃.
There was a change. This indicates that a low melting point alloy portion 9 with a thickness of d has been formed from the low melting point material 7 and the metal base material 6, and that bonding between the metal base material 6 and the ceramic layer 5 has started. Therefore, we held the temperature at 1200℃ for 10 minutes,
After that, the pressurization was stopped and the mixture was gradually cooled down to 800° C. at a cooling rate of 2° C./min. As a result, a wear-resistant part P as shown in FIG. 1(g) was obtained.

上記耐摩耗性部品P1は、金属製基オ6とセラミック層
5との接合面近傍に軟化がみられfコか、その池の部分
は全く軟化していなかった。そして、金属製基材6とセ
ラミック5が強固に結合され、剪断テストの結果も良好
であった。
In the above-mentioned wear-resistant component P1, softening was observed in the vicinity of the bonding surface between the metal base layer 6 and the ceramic layer 5, but there was no softening at all in the pool area. The metal base material 6 and the ceramic 5 were firmly bonded, and the results of the shear test were also good.

なお、比較のため、第1図(h)に示すように、低融点
化材料を使用せず、その他は上記実施例と同一の製造方
法で耐摩耗性部品を製作したところ、1250℃になる
まで変位計に変化があられれなかった。すなわち、接合
温度が上記実施例より50°Cたけ高くなった。この温
度は金属製基材6の材料であるN1含有率36wt%の
Fe−Ni合金の融点よりやや低いらのの、Fe−Ni
合金の軟化がかなり強く起こる温度である。そして、第
1図(i)に示すように、このようにして得られた耐摩
耗性部品P2は、金属製屑材6の全体が熱劣化により変
形していた。また、組成は加熱前に比べて粗大化してい
た。また、剪断テストの結果は上記本発明にかかる耐摩
耗性部品P1よりかなり劣っていた。
For comparison, as shown in Figure 1 (h), a wear-resistant part was manufactured using the same manufacturing method as in the above example without using the low melting point material, and the temperature reached 1250°C. Until then, there was no change in the displacement meter. That is, the bonding temperature was 50° C. higher than in the above example. This temperature is slightly lower than the melting point of the Fe-Ni alloy with an N1 content of 36 wt%, which is the material of the metal base material 6.
This is the temperature at which the softening of the alloy occurs considerably. As shown in FIG. 1(i), in the thus obtained wear-resistant component P2, the entire metal scrap 6 was deformed due to thermal deterioration. In addition, the composition was coarser than before heating. Moreover, the results of the shear test were considerably inferior to the wear-resistant part P1 according to the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(g)は、夫々、本発明の実施例を示す
、耐摩耗性部品の製造方法を示す工程図である。 第1図(h)、(i)は、夫々、本発明との比較を行う
ため、低融点化材料を用いず耐摩耗性部品を製作した場
合の、接合方法と耐摩耗性部品の形状とを示七図である
。 P、、P、・・耐摩耗性部品、S・・・焼結用成形体、
プレス成型機、2・・・底板、3・メタルセラミック層
、4・ベースセラミック層、5・・・セラミック層(焼
結体)、6 金属製基け、7・・・低融点化材料、8・
・・治具、 低融点合金。
FIGS. 1(a) to 1(g) are process diagrams illustrating a method of manufacturing a wear-resistant component, each of which represents an embodiment of the present invention. Figures 1 (h) and (i) respectively show the joining method and the shape of the wear-resistant part when the wear-resistant part is manufactured without using a low-melting-point material for comparison with the present invention. Fig. 7 shows the diagram. P,,P...wear-resistant parts, S...molded body for sintering,
Press molding machine, 2... Bottom plate, 3. Metal ceramic layer, 4. Base ceramic layer, 5... Ceramic layer (sintered body), 6 Metal base, 7... Low melting point material, 8・
...Jig, low melting point alloy.

Claims (1)

【特許請求の範囲】[Claims] (1)金属製基材上にセラミック層を有する部品の製造
方法において、 少なくとも金属製基材との接合側に、焼結時に溶出しな
いC−Co系、TiC−Co系、WC−Co−Ni系、
TiCN−Co系金属化合物材のいずれか1、又は2以
上を加えた窒化珪素系材料を焼結してセラミック焼結体
を形成し、次に所定の金属製基材上に、該金属製基材と
接合時に反応して低融点合金を形成する低融点化材料を
セットした後、該低融点化材料がセットされた側の金属
製基材表面上に、上記セラミック焼結体を、金属化合物
材を含む側が金属製基材と対向するようにしてセットし
、この後セラミック焼結体と金属製基材とを接合するこ
とを特徴とする、セラミック層を有する部品の製造方法
(1) In a method for manufacturing a component having a ceramic layer on a metal base material, at least on the side to be bonded to the metal base material, C-Co, TiC-Co, or WC-Co-Ni that does not elute during sintering is used. system,
A silicon nitride-based material to which one or more of TiCN-Co-based metal compound materials is added is sintered to form a ceramic sintered body, and then the metal base is placed on a predetermined metal base material. After setting the low-melting point material that reacts with the material to form a low-melting point alloy during bonding, the ceramic sintered body is placed on the surface of the metal base material on the side where the low-melting point material is set, and the metal compound A method for producing a component having a ceramic layer, the method comprising: setting the ceramic sintered body so that the side containing the material faces a metal base material; and then joining the ceramic sintered body and the metal base material.
JP19325688A 1988-07-30 1988-07-30 Production of parts having ceramic layer Pending JPH0244076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19325688A JPH0244076A (en) 1988-07-30 1988-07-30 Production of parts having ceramic layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19325688A JPH0244076A (en) 1988-07-30 1988-07-30 Production of parts having ceramic layer

Publications (1)

Publication Number Publication Date
JPH0244076A true JPH0244076A (en) 1990-02-14

Family

ID=16304925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19325688A Pending JPH0244076A (en) 1988-07-30 1988-07-30 Production of parts having ceramic layer

Country Status (1)

Country Link
JP (1) JPH0244076A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010083747A (en) * 2008-10-01 2010-04-15 Tatung Co Improved process for producing piezoelectric ceramic device
US11906846B2 (en) 2020-09-16 2024-02-20 Samsung Electronics Co., Ltd. Display device and manufacturing method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010083747A (en) * 2008-10-01 2010-04-15 Tatung Co Improved process for producing piezoelectric ceramic device
US11906846B2 (en) 2020-09-16 2024-02-20 Samsung Electronics Co., Ltd. Display device and manufacturing method therefor

Similar Documents

Publication Publication Date Title
US6756009B2 (en) Method of producing hardmetal-bonded metal component
EP0418078B1 (en) Composite abrasive compacts
US20110182682A1 (en) Cutting insert and cutting tool
JPS62253704A (en) Production of metal, ceramic or metal/ceramic parts by powdery substance
JP3548991B2 (en) Heat dissipating substrate and manufacturing method thereof
JPH0244076A (en) Production of parts having ceramic layer
JP2601284B2 (en) Sintered diamond composite and manufacturing method thereof
JPH07300375A (en) Cemented carbide abrasion-resistant material and method for producing the same
JPH075932B2 (en) Method for manufacturing contact material for vacuum valve
US4303570A (en) Composition for fabricating superplastically formed/diffusion bonded structures
JP2506330B2 (en) Method for producing composite material composed of metal and ceramics
CN113084717B (en) Porous Cu-Sn-based ultrathin grinding wheel for cutting chip and preparation method thereof
JPH073306A (en) High-strength sintered hard alloy composite material and production thereof
JPH05163078A (en) Joint form made up of ceramic and metal
US6821313B2 (en) Reduced temperature and pressure powder metallurgy process for consolidating rhenium alloys
JPS61136605A (en) Joining method of sintered hard material and metallic material
JPH09315873A (en) Sintered hard alloy based wear resistant material and its production
JP2512495B2 (en) Bonded body of silicon nitride ceramics and metal
JPH0798964B2 (en) Cubic boron nitride cemented carbide composite sintered body
JP2807874B2 (en) WC-based cemented carbide-based wear-resistant material and method for producing the same
JPH10100309A (en) Sintered hard alloy composite material
US7270782B2 (en) Reduced temperature and pressure powder metallurgy process for consolidating rhenium alloys
JPH08233005A (en) Manufacture of metallic system friction member
JPH0499805A (en) Complex hard sintered material having excellent wear resistance and melt-welding resistance and manufacture thereof
JPS6256502A (en) Hard facing method for integrally forming sintered hard layer on ferrous metallic plate