JPH0243732B2 - SHINKINA ARUDEHIDOKAGOBUTSUOYOBISONOSEIZOHOHO - Google Patents

SHINKINA ARUDEHIDOKAGOBUTSUOYOBISONOSEIZOHOHO

Info

Publication number
JPH0243732B2
JPH0243732B2 JP8563680A JP8563680A JPH0243732B2 JP H0243732 B2 JPH0243732 B2 JP H0243732B2 JP 8563680 A JP8563680 A JP 8563680A JP 8563680 A JP8563680 A JP 8563680A JP H0243732 B2 JPH0243732 B2 JP H0243732B2
Authority
JP
Japan
Prior art keywords
formula
general formula
compound represented
compound
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8563680A
Other languages
Japanese (ja)
Other versions
JPS5711957A (en
Inventor
Aritsune Kaji
Noboru Ono
Akira Tanabe
Noritada Matsuo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP8563680A priority Critical patent/JPH0243732B2/en
Publication of JPS5711957A publication Critical patent/JPS5711957A/en
Publication of JPH0243732B2 publication Critical patent/JPH0243732B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は新規なアルデヒド化合物およびその製
造方法に関する。さらに詳しくは、農薬の有用な
中間体である下記一般式()で示される新規な
アルデヒド化合物およびその製造方法に関する。 〔式中、R1は式
The present invention relates to a novel aldehyde compound and a method for producing the same. More specifically, the present invention relates to a novel aldehyde compound represented by the following general formula (), which is a useful intermediate for agricultural chemicals, and a method for producing the same. [In the formula, R 1 is the formula

【式】で示される基 (ここにR2は水素原子またはメチル基を表わす。)
を表わす。〕 有用な農薬として知られているアレスリンは、
1949年にM.S.Schechterにより発明され、そのす
ぐれた殺虫活性と低毒性のゆえに広く全世界で使
用されており、その合成法についても種々の検討
がなされている。 その中で、アレスリンのアルコール成分の合成
法についても種々の提案がなされており、その一
部は実際の製造に取り入れられているものもあ
る。しかしこれらは収率、操作それに環境問題等
の点で必ずしも工業的に満足できるものではな
い。 例えば今日工業的に実施されているアレスロロ
ンの合成方法は、M.S.Schechterらによつて初め
て行なわれた方法を若干改良したもので以下の工
程よりなる。 しかし、該方法においては、化合物(4)からアレ
スロロン(5)に至る最終工程が低収率であること、
化合物(3)から化合物(4)を合成する際に用いるメチ
ルグリオサザール(6)の合成が容易でなく、かつ高
価である事などの欠点があげられ工業的には、必
ずしも満足いく方法ではない。 また、マイケル反応を利用したアレスロロンの
合成法としては、R.H.Schlessingerらの方法があ
げられ本方法は、メチルチオアセトン(7)とケテン
チオアセタールモノオキシド(8)を原料としたもの
で以下の工程よりなる。 しかしこのSchlessingerらの方法も工業的方法
としては次の様な大きな問題点を有している。 マイケル反応の後に、立体的に混み入つたケ
トンのα位にアリル基を導入するため、反応性
が高く、かつ高価なアリルアイオダイドを用い
ている。(化合物(9)→(10)の工程) 化合物(11)からアレスロロン(5)に至る反応で、
工業的に使用するには、危険度が大きくかつ取
扱いが容易でないt−ブトキシカリウムを用い
ている。 従つて、本方法も工業的な製法としては、必ず
しも満足できる方法ではない。 このような背景の下に本発明者らは、殺虫化合
物の中間体として使用されるシクロペンテノロン
類、特に式() で示されるシクロペンテノロン化合物の製法につ
き鋭意検討した結果、新規でしかも極めて有利に
これを製造し得る方法を見い出し、これに基づき
その重要な中間体、およびその製造方法に種々の
検討を加え本発明を完成した。 即ち、本発明は前記一般式()で示される新
規なアルデヒド化合物およびその製造方法として
一般式() (式中、R1は前述と同じ意味を表わし、R3
炭素数3以下のアルキル基を表わす。) で示されるアセタール化合物を水の存在下、酸と
反応させることを特徴とする前記一般式()で
示される新規なアルデヒド化合物の製造方法を提
供するものである。 一般式()で示される本発明化合物は、塩基
で処理することにより、容易に且つ収率よく農薬
の有用な中間体である前記式()で示されるシ
クロペンテノロン化合物に導くことができ、極め
て有用な中間体である。 また一般式()で示されるアセタール化合物
は新規物であり、例えば一般式() (式中、R1は前述と同じ意味を有する。)で示
される化合物を塩基の存在下、式() CH3−CH=CH−NO2 () で示されるニトロオレフインと反応させ、一般式
() で示されるニトロ化合物に導き、次いでこれを塩
基で処理後、炭素数3以下の低級アルコール中で
酸と処理することにより、容易に得ることができ
る。 一般式()で示される本発明化合物におい
て、R1の具体例としては、例えばフエニル基、
p−トリル基などが挙げられる。 一般式()で示される本発明化合物の製造に
際しては一般式()で示されるアセタール化合
物を水の存在下で、塩酸、硫酸などの鉱酸類ある
いは酢酸などの低級脂肪酸などのような酸と反応
させ水解することにより収率よく目的のアルデヒ
ド化合物を得ることができる。 溶媒は特に必要としないが、ベンゼン、トルエ
ン、ヘキサン、テトラヒドロフラン、メタノー
ル、エタノールなどの溶媒を混合して用いること
ができる。 反応温度は特に限定されるものではないが−60
℃〜60℃の範囲、好ましくは−30℃〜30℃の範囲
で行なうことができる。反応時間は用いる溶媒、
反応温度、酸などによつて異なるが多くは5分〜
3時間で行なうことができる。 一般式()で示される本発明化合物を経て前
述のような方法によりシクロペンテノロン化合物
へ導く方法においては、マイケル反応の前にプロ
パルギル基を導入することができるため、プロパ
ルギル基の導入が極めて容易に行なえるという利
点を有している。 さらに一般式()で示される化合物を塩基で
処理して最終目的物である式()で示されるシ
クロペンテノロン化合物を合成する工程では、ナ
トリウムエチラートのような汎用な塩基でも収率
よく目的物が得られ、R.H.Schlessingerらの方法
に比し、工業的な製法として有利であり、また該
閉環反応工程の収率がよいこと、およびメチルグ
リオキザールを用いないこと等、今日工業的に行
なわれているM.S.Schechterらの方法と比べても
優れた点が多い。 以上述べたように本発明は、農薬の製造に極め
て有用な新規な中間体、およびその製造方法に関
するものであり、これらの工業生産にとつて、工
程数の削減、操作の容易さ、収率の良さなど、そ
の寄与するところは非常に大きい。 次に、本発明をより明確にするために、以下の
実施例で詳細に説明するが、本発明がこれらに限
定されるものではないことはいうまでもない。 実施例 3−アセチル−1,1−ジメトキシ−2−メチ
ル−3−p−トルエンスホニルヘキサ−5−イン
1.38gを1N−HCl水20mlに仕込み、55℃で1時
間かきまぜた。エーテル抽出後、エーテル層を水
洗い、食塩水洗いを行なつて硫酸マグネシウムで
乾燥した。 溶媒留去後、シリカゲルカラムクロマトグラフ
イーを行ない、3−アセチル−2−メチル−3−
p−トルエンスルホニル−ヘキサ−5−イル−1
−アール0.57gを得た。収率47.4% NMRデータ(δ値、TMS標準、CCl4) 1.10,1.30(dd,J=7Hz,3H);2.30(s,
3H)、2.34(s,3H);3〜3.3(m,2H);3.3
〜3.5(m,1H);7.3〜7.7(4H);9.4(d,
1H)
Group represented by [Formula] (where R 2 represents a hydrogen atom or a methyl group)
represents. ] Allethrin is known as a useful pesticide.
Invented by MS Schechter in 1949, it is widely used throughout the world due to its excellent insecticidal activity and low toxicity, and various studies have been conducted on its synthesis methods. Among these, various proposals have been made regarding methods for synthesizing the alcohol component of allethrin, some of which have been incorporated into actual production. However, these methods are not necessarily industrially satisfactory in terms of yield, operation, environmental problems, etc. For example, the method for synthesizing allethrone that is currently practiced industrially is a slight improvement on the method first carried out by MS Schechter et al., and consists of the following steps. However, in this method, the final step from compound (4) to arethrolone (5) has a low yield;
There are drawbacks such as the difficulty and high cost of synthesizing methylglyosazar (6) used in the synthesis of compound (4) from compound (3), and this method is not necessarily satisfactory industrially. do not have. In addition, as a method for synthesizing arethrolone using the Michael reaction, there is a method by RH Schlessinger et al. This method uses methylthioacetone (7) and ketene thioacetal monooxide (8) as raw materials and consists of the following steps. . However, the method of Schlessinger et al. also has the following major problems as an industrial method. After the Michael reaction, allyl iodide, which is highly reactive and expensive, is used to introduce an allyl group into the α-position of the sterically crowded ketone. (Process of compound (9) → (10)) In the reaction from compound (11) to arethrolone (5),
For industrial use, potassium t-butoxy is used, which is highly dangerous and difficult to handle. Therefore, this method is not necessarily satisfactory as an industrial manufacturing method. Against this background, the present inventors investigated cyclopentenolones used as intermediates for insecticidal compounds, particularly those of the formula () As a result of intensive research into the method for producing the cyclopentenolone compound shown in Completed the invention. That is, the present invention provides a novel aldehyde compound represented by the general formula () and a method for producing the same. (In the formula, R 1 represents the same meaning as above, and R 3 represents an alkyl group having 3 or less carbon atoms.) The present invention provides a method for producing a novel aldehyde compound represented by formula (). The compound of the present invention represented by the general formula () can be easily and efficiently converted into a cyclopentenolone compound represented by the formula (), which is a useful intermediate for agricultural chemicals, by treatment with a base, It is an extremely useful intermediate. Furthermore, the acetal compound represented by the general formula () is a new product, for example, the acetal compound represented by the general formula () (wherein, R 1 has the same meaning as above) is reacted with a nitroolefin represented by the formula () CH 3 −CH=CH−NO 2 () in the presence of a base, and the compound represented by the general formula () It can be easily obtained by leading to a nitro compound represented by , then treating this with a base, and then treating it with an acid in a lower alcohol having 3 or less carbon atoms. In the compound of the present invention represented by the general formula (), specific examples of R 1 include, for example, a phenyl group,
Examples include p-tolyl group. When producing the compound of the present invention represented by the general formula (), an acetal compound represented by the general formula () is reacted with an acid such as a mineral acid such as hydrochloric acid or sulfuric acid or a lower fatty acid such as acetic acid in the presence of water. The desired aldehyde compound can be obtained in good yield by hydrolysis. Although a solvent is not particularly required, a mixture of solvents such as benzene, toluene, hexane, tetrahydrofuran, methanol, and ethanol can be used. The reaction temperature is not particularly limited, but −60
It can be carried out in the range of .degree. C. to 60.degree. C., preferably in the range of -30.degree. C. to 30.degree. The reaction time depends on the solvent used,
It varies depending on the reaction temperature, acid, etc., but in most cases it takes 5 minutes or more.
It can be done in 3 hours. In the method of leading to a cyclopentenolone compound by the method described above via the compound of the present invention represented by the general formula (), a propargyl group can be introduced before the Michael reaction, so it is extremely easy to introduce a propargyl group. It has the advantage of being able to be used in many ways. Furthermore, in the process of treating the compound represented by the general formula () with a base to synthesize the final target compound, a cyclopentenolone compound represented by the formula (), a general-purpose base such as sodium ethylate can be used with good yield. It is advantageous as an industrial production method compared to the method of RH Schlessinger et al., and it is not used industrially today because the yield of the ring-closing reaction step is good and methylglyoxal is not used. It has many advantages compared to the method of MSSchechter et al. As described above, the present invention relates to a novel intermediate extremely useful in the production of agricultural chemicals, and a method for producing the same, and is useful for the industrial production of these products by reducing the number of steps, ease of operation, and yield. Its contribution, such as the merits of this technology, is enormous. EXAMPLES Next, in order to make the present invention more clear, the present invention will be explained in detail using the following examples, but it goes without saying that the present invention is not limited thereto. Example 3-acetyl-1,1-dimethoxy-2-methyl-3-p-toluenesphonylhex-5-yne
1.38g was added to 20ml of 1N-HCl water and stirred at 55°C for 1 hour. After the ether extraction, the ether layer was washed with water, brine, and dried over magnesium sulfate. After distilling off the solvent, silica gel column chromatography was performed to obtain 3-acetyl-2-methyl-3-
p-Toluenesulfonyl-hex-5-yl-1
-0.57g of Earl was obtained. Yield 47.4% NMR data (δ value, TMS standard, CCl 4 ) 1.10, 1.30 (dd, J=7Hz, 3H); 2.30 (s,
3H), 2.34 (s, 3H); 3-3.3 (m, 2H); 3.3
~3.5 (m, 1H); 7.3 ~ 7.7 (4H); 9.4 (d,
1H)

Claims (1)

【特許請求の範囲】 1 一般式 〔式中、R1は式【式】で示される基 (ここにR2は水素原子またはメチル基を表わす。)
を表わす。〕 で示されるアルデヒド化合物。 2 一般式 〔式中、R1は式【式】で示される基 (ここにR2は水素原子またはメチル基を表わす。)
を表わし、R3は炭素数3以下のアルキル基を表
わす。〕で示されるアセタール化合物を水の存在
下酸と反応させることを特徴とする一般式 〔式中、R1は前述と同じ意味を有する。〕 で示されるアルデヒド化合物の製造方法。
[Claims] 1. General formula [Wherein, R 1 is a group represented by the formula [Formula] (R 2 represents a hydrogen atom or a methyl group.)
represents. ] An aldehyde compound represented by 2 General formula [Wherein, R 1 is a group represented by the formula [Formula] (R 2 represents a hydrogen atom or a methyl group.)
, and R 3 represents an alkyl group having 3 or less carbon atoms. A general formula characterized by reacting an acetal compound represented by ] with an acid in the presence of water. [In the formula, R 1 has the same meaning as above. ] A method for producing an aldehyde compound represented by
JP8563680A 1980-06-23 1980-06-23 SHINKINA ARUDEHIDOKAGOBUTSUOYOBISONOSEIZOHOHO Expired - Lifetime JPH0243732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8563680A JPH0243732B2 (en) 1980-06-23 1980-06-23 SHINKINA ARUDEHIDOKAGOBUTSUOYOBISONOSEIZOHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8563680A JPH0243732B2 (en) 1980-06-23 1980-06-23 SHINKINA ARUDEHIDOKAGOBUTSUOYOBISONOSEIZOHOHO

Publications (2)

Publication Number Publication Date
JPS5711957A JPS5711957A (en) 1982-01-21
JPH0243732B2 true JPH0243732B2 (en) 1990-10-01

Family

ID=13864312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8563680A Expired - Lifetime JPH0243732B2 (en) 1980-06-23 1980-06-23 SHINKINA ARUDEHIDOKAGOBUTSUOYOBISONOSEIZOHOHO

Country Status (1)

Country Link
JP (1) JPH0243732B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0665091U (en) * 1993-02-23 1994-09-13 火 明 葉 Automatic vehicle stop sign device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6887619B2 (en) 2002-04-22 2005-05-03 Quallion Llc Cross-linked polysiloxanes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0665091U (en) * 1993-02-23 1994-09-13 火 明 葉 Automatic vehicle stop sign device

Also Published As

Publication number Publication date
JPS5711957A (en) 1982-01-21

Similar Documents

Publication Publication Date Title
JPH0243732B2 (en) SHINKINA ARUDEHIDOKAGOBUTSUOYOBISONOSEIZOHOHO
Zhang et al. The cleavage of p-nitrophenylhydrazones and semicarbazones with ammonium chlorochromate adsorbed on alumina under non-aqueous conditions
US3910958A (en) Process for preparing arylacetic acids and esters thereof
Youn et al. Highly diastereoselective additions of methoxyallene and acetylenes to chiral α-keto amidesElectronic supplementary information (ESI) available: synthesis and spectroscopic data for 4b, 5g, 6b and 7b. See http://www. rsc. org/suppdata/cc/b1/b100355k
JP2867847B2 (en) Method for producing 5-methylene-1,3-dioxolan-4-ones
JPH0243733B2 (en) SHINKINANITOROKAGOBUTSUOYOBISONOSEIZOHOHO
JPH05286902A (en) Production of alpha-chloro-beta-ketoester derivative
JPS6314696B2 (en)
JP3497876B2 (en) Method for producing 9Z-β-ionylidene acetate and intermediate compound useful for the method
JP3254746B2 (en) Terminal acetylene compound and method for producing the same
JPS588372B2 (en) Method for producing optically active β-substituted aldehyde compound
JP3254745B2 (en) Diol compound and method for producing the same
JP2545289B2 (en) Method for producing γ-ionones
JP3634874B2 (en) Trifluoromethylacetylene derivative, method for producing the same, and method for producing the intermediate
JPS63222164A (en) Production of alpha,beta-unsaturated delta-lactones
JPS6228781B2 (en)
JPS6234025B2 (en)
JPH10245354A (en) Production of acetal compound
JP4294130B2 (en) Method for producing α, β-unsaturated ketone compound
JP2002212149A (en) METHOD FOR PRODUCING TETRAALKYLAMMONIUM FLUORIDE AND METHOD FOR PRODUCING beta-HYDROXYKETONE BY USING THE SAME
JP2542843B2 (en) Novel norbornane derivative and method for producing the same
JPS632251B2 (en)
JPH0243731B2 (en) SHINKINAASETAARUKAGOBUTSUOYOBISONOSEIZOHOHO
JPH1149719A (en) Omega-phenyl-(omega, omega-2)-dieno-fatty acids, their production and production of omega-phenyl straight-chain fatty acids
JPS62895B2 (en)