JPH0243375B2 - - Google Patents

Info

Publication number
JPH0243375B2
JPH0243375B2 JP24577584A JP24577584A JPH0243375B2 JP H0243375 B2 JPH0243375 B2 JP H0243375B2 JP 24577584 A JP24577584 A JP 24577584A JP 24577584 A JP24577584 A JP 24577584A JP H0243375 B2 JPH0243375 B2 JP H0243375B2
Authority
JP
Japan
Prior art keywords
input
output
adder
quantizer
digit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP24577584A
Other languages
Japanese (ja)
Other versions
JPS61125233A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP59245775A priority Critical patent/JPS61125233A/en
Priority to DE8585110978T priority patent/DE3586932T2/en
Priority to EP85110978A priority patent/EP0173983B1/en
Priority to KR1019850006333A priority patent/KR890004441B1/en
Priority to CA000489802A priority patent/CA1338767C/en
Publication of JPS61125233A publication Critical patent/JPS61125233A/en
Priority to US07/049,048 priority patent/US4771439A/en
Publication of JPH0243375B2 publication Critical patent/JPH0243375B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Transmission Systems Not Characterized By The Medium Used For Transmission (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、画像帯域圧縮装置に用いられる
DPCM回路特に差分信号出力手段として、3入
力2出力デイジタル・デイジタル変換器(以下3
入力2出力D/D変換器と称す)及びこの2出力
を加算する加算器を用いた高速DPCM回路に係
り、予測の為の演算速度を向上させる高速
DPCM回路に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is used in an image band compression device.
A DPCM circuit, especially a 3-input 2-output digital-to-digital converter (hereinafter referred to as 3), is used as a differential signal output means.
This is a high-speed DPCM circuit that uses an input/two-output D/D converter) and an adder that adds these two outputs, and is a high-speed DPCM circuit that improves the calculation speed for prediction.
Regarding DPCM circuit.

上記高速DPCM回路を用い帯域圧縮を行う場
合予測の為の演算速度が速いことが望ましい。
When performing band compression using the above-mentioned high-speed DPCM circuit, it is desirable that the calculation speed for prediction be fast.

〔従来の技術〕[Conventional technology]

第2図は従来例の予測係数が1/2の場合の高速
DPCM回路のブロツク図である。
Figure 2 shows high speed when the prediction coefficient of the conventional example is 1/2.
FIG. 3 is a block diagram of a DPCM circuit.

図中1は3入力2出力D/D変換器、2,5は
加算器、3,7は遅延素子であるFF、4は量子
化器、6,8,9は予測係数1/2を乗算する乗算
器を示す。
In the figure, 1 is a 3-input 2-output D/D converter, 2 and 5 are adders, 3 and 7 are FF delay elements, 4 is a quantizer, and 6, 8, and 9 are multiplied by 1/2 prediction coefficient. shows a multiplier that

予測の為に2入力の減算器を用いるDPCM回
路の代わりに、3入力2出力D/D変換器と加算
器を用い高速化を実現したものとして、本出願人
が昭和59年8月30日特願昭59―181061で特許出願
した高速DPCM符号器がある。
On August 30, 1980, the applicant proposed a system that realized high speed by using a 3-input 2-output D/D converter and an adder instead of the DPCM circuit that uses a 2-input subtractor for prediction. There is a high-speed DPCM encoder for which a patent was applied for in Japanese Patent Application No. 181061.

この実施例を示したものが今日従来例とした第
2図である。
This embodiment is shown in FIG. 2, which is considered as a conventional example today.

第2図の場合は、量子化器4の出力のDPCM
信号は乗算器8にて予測係数1/2が乗算され、3
入力2出力D/D変換器1に反転して入力し、又
FF7の出力である1標本化周期前の値は乗算器
9にて予測係数1/2が乗算され、3入力2出力
D/D変換器1に反転して入力し、3入力2出力
D/D変換器1では入力しているPCM信号と反
転して入力した信号との加算を各桁毎に求め、桁
上げと加算結果の2出力とし、加算器2に入力す
る。
In the case of Figure 2, the DPCM of the output of quantizer 4 is
The signal is multiplied by the prediction coefficient 1/2 in multiplier 8, and
Input 2 Input to output D/D converter 1 inverted, and
The value one sampling period before, which is the output of the FF7, is multiplied by a prediction coefficient 1/2 in the multiplier 9, and is inverted and input to the 3-input 2-output D/D converter 1. The D converter 1 calculates the addition of the input PCM signal and the inverted input signal for each digit, produces two outputs: a carry and an addition result, and inputs them to the adder 2.

加算器2では、各桁毎の加算結果の出力は、各
桁毎の全加算器に入力させ、桁上げ出力は1桁上
の全加算器に入力させ、3入力2出力D/D変換
器1と加算器2により、入力するPCM信号に、
乗算器8,9の出力を反転して入力して加算し、
FF3を介して量子化器4に入力し、量子化され
たDPCM信号を出力するようにして、予測の為
に2入力の減算器を用いるDPCM回路より高速
なDPCM回路を実現している。
In the adder 2, the output of the addition result for each digit is input to the full adder for each digit, the carry output is input to the full adder one digit above, and the output is input to the full adder for each digit, and the output is input to the full adder for one digit above, and the output is input to the full adder for each digit, and the output is input to the full adder for one digit above, and the output is input to the full adder for each digit. 1 and adder 2, the input PCM signal is
The outputs of multipliers 8 and 9 are inverted and inputted and added.
The signal is input to the quantizer 4 via the FF 3 and the quantized DPCM signal is output, thereby realizing a DPCM circuit that is faster than a DPCM circuit that uses a two-input subtracter for prediction.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、この場合処理速度を決定するク
リテイカルパスとしては、3入力2出力D/D変
換器1,加算器2,FF3,量子化器4,乗算器
8のループとなり、乗算器8の動作速度が遅い場
合予測の為の演算速度が遅い問題点がある。
However, in this case, the critical path that determines the processing speed is a loop of 3-input 2-output D/D converter 1, adder 2, FF 3, quantizer 4, and multiplier 8, and the operating speed of multiplier 8 is If it is slow, there is a problem that the calculation speed for prediction is slow.

〔課題を解決するための手段〕[Means to solve the problem]

上記問題点は、出力側に、予測係数を乗算した
後量子化DPCM信号を発生する機能を一体化し
た量子化器を備え、又第1の加算器及び第1の乗
算器及び第1の遅延素子を有し、且つ該第1の乗
算器で該第1の加算器の出力に予測係数を乗算
し、この出力を該第1の遅延素子にて遅延させ、
該量子化器の出力とともに該第1の加算器に入力
し、該第1の遅延素子の出力で予測値を検出する
予測値検出ループと、 入力するPCM信号に予測係数の逆数を乗算し
た信号を第1の入力に入力し、第2の入力に該量
子化器の出力を、第3の入力に該第1の遅延素子
の出力を各々反転して入力し、該第1〜第3の入
力に入力する入力信号の各桁毎の全加算を行い、
各桁毎の、桁上げ出力と加算結果の2出力とする
3入力2出力デイジタル・デイジタル変換器を備
え、該3入力2出力D/D変換器の各桁毎の2出
力を各桁毎に加算する第2の加算器に入力し、該
3入力2出力D/D変換器と該第2の加算器によ
り、該第1の入力に入力する信号に対し、該第
2,第3の入力に入力する信号は反転して入力し
加算を行わせ、該第2の加算器の出力を第2の遅
延素子にて遅延させ、又該第2の遅延素子の出力
を該量子化器に入力するようにした本発明の高速
DPCM回路により解決される。
The above problem is that the output side is equipped with a quantizer that integrates the function of generating a quantized DPCM signal after multiplying by a prediction coefficient, and the first adder, the first multiplier, and the first delay the first multiplier multiplies the output of the first adder by a prediction coefficient, the output is delayed by the first delay element,
a predicted value detection loop that inputs the output of the quantizer to the first adder and detects a predicted value using the output of the first delay element; and a signal obtained by multiplying the input PCM signal by the reciprocal of the prediction coefficient. is inputted to the first input, the output of the quantizer is inputted to the second input, the output of the first delay element is inverted and inputted to the third input, and the output of the first to third delay elements is inputted to the second input. Performs full addition for each digit of the input signal input to the input,
Equipped with a 3-input 2-output digital-to-digital converter that outputs 2 outputs for each digit, a carry output and an addition result, and 2 outputs for each digit of the 3-input 2-output D/D converter. The signals input to the first input are input to the second and third inputs by the three-input two-output D/D converter and the second adder. The input signal is inverted and input to perform addition, the output of the second adder is delayed by a second delay element, and the output of the second delay element is input to the quantizer. The high speed of the present invention
Solved by DPCM circuit.

〔作 用〕[Effect]

本発明では、従来の高速DPCM回路の第2の
遅延素子(第2図のFF3)の出力に、第2図の
量子化器4の代りに、予測係数を乗算した後量子
化DPCM信号を発生する機能を一体化した量子
化器を設置し、第2図の乗算器8の分だけ動作速
度を速くし、その代りに、量子化器の出力及び1
標本化周期前の値(第2図のFF7の出力)に予
測係数を乗算せず、又入力するPCM信号に予測
係数の逆数を乗算して、3入力2出力D/D変換
器に入力し、第1図の乗算器6の動作速度が3入
力2出力D/D変換器の動作速度より早い場合に
クリテイカルパスは第2図の乗算器8の遅延分だ
け予測の為の演算速度を向上している。
In the present invention, instead of the quantizer 4 in FIG. 2, the output of the second delay element (FF3 in FIG. 2) of the conventional high-speed DPCM circuit is multiplied by a prediction coefficient and then a quantized DPCM signal is generated. A quantizer that integrates the function of
The value before the sampling period (output of FF7 in Figure 2) is not multiplied by the prediction coefficient, and the input PCM signal is multiplied by the reciprocal of the prediction coefficient and input to the 3-input 2-output D/D converter. , when the operating speed of the multiplier 6 in FIG. 1 is faster than the operating speed of the 3-input 2-output D/D converter, the critical path increases the calculation speed for prediction by the delay of the multiplier 8 in FIG. 2. It's improving.

〔実施例〕〔Example〕

第1図は本発明の実施例の予測係数1/2の場合
の、高速DPCM回路のブロツク図、第3図は3
入力2出力D/D変換器及び加算器及びフリツプ
フロツプ(FF)の接続を示す図である。
Fig. 1 is a block diagram of a high-speed DPCM circuit in the case of a prediction coefficient of 1/2 according to an embodiment of the present invention, and Fig. 3 is a block diagram of a high-speed DPCM circuit with a prediction coefficient of 1/2.
FIG. 2 is a diagram showing connections between an input-two-output D/D converter, an adder, and a flip-flop (FF).

図中、10は予測係数1/2の逆数2を乗算する
乗算器、11は予測係数1/2を乗算した後量子化
DPCM信号を発する機能を一体化した量子化器
を示しており、尚全図を通じ同一符号は同一機能
のものを示す。
In the figure, 10 is a multiplier that multiplies the reciprocal 2 of the prediction coefficient 1/2, and 11 is quantized after multiplying the prediction coefficient 1/2.
This figure shows a quantizer with an integrated function of emitting a DPCM signal, and the same reference numerals throughout the figures indicate the same functions.

第1図で第2図と異なる点は、FF3の出力に
量子化器11を設け、ここで1/2が乗算されるの
で、その代わりに、第2図の量子化器4の出力及
びFF7の出力には1/2を乗算せず、又入力の
PCM信号は乗算器10にて予測係数1/2の逆数2
を乗算し3入力2出力D/D変換器1に入力する
ようにした点である。
The difference between FIG. 1 and FIG. 2 is that the output of FF3 is provided with a quantizer 11, where it is multiplied by 1/2. The output of is not multiplied by 1/2, and the input
The PCM signal is the reciprocal of 1/2 of the prediction coefficient 2 in the multiplier 10.
The difference is that the multiplier is multiplied by 2 and input to the 3-input 2-output D/D converter 1.

このようにすれば、乗算器6の動作速度が3入
力2出力D/D変換器1の動作速度より早い場合
にクリテイカルパスは3入力2出力D/D変換器
1,加算器2,FF3,量子化器11よりなるル
ープとなるため第2図に示す従来例に比し第2図
の乗算器8による遅延分だけ予測の為の演算速度
を向上出来るのは勿論である。
In this way, if the operating speed of the multiplier 6 is faster than the operating speed of the 3-input 2-output D/D converter 1, the critical path will be the 3-input 2-output D/D converter 1, the adder 2, and the FF3. , quantizer 11, it goes without saying that the calculation speed for prediction can be improved by the delay caused by the multiplier 8 in FIG. 2 compared to the conventional example shown in FIG.

又入力PCM信号に予測係数(第1図では1/2)
の逆数を乗算し、量子化器11の出力及び1標本
化前の予測値には予測係数を乗算せず、3入力2
出力D/D変換器1に反転して入力し、3入力2
出力D/D変換器1及び加算器2にて加算を行つ
ているので、各信号のビツト数は従来に比し増加
し演算精度を向上出来る。
Also, a prediction coefficient (1/2 in Figure 1) is added to the input PCM signal.
The output of the quantizer 11 and the predicted value before one sampling are not multiplied by the prediction coefficient, and the 3-input 2
Invert and input to output D/D converter 1, 3 input 2
Since the addition is performed by the output D/D converter 1 and the adder 2, the number of bits of each signal is increased compared to the conventional case, and the calculation accuracy can be improved.

又FF3と量子化器11の位置を逆にすると乗
算器6の遅延が3入力2出力D/D変換器1と量
子化器11の遅延を加え合わせたものより小の時
従来例に比し第2図の乗算器8の遅延分だけ予測
の為の演算速度を向上出来る。
Also, when the positions of the FF 3 and the quantizer 11 are reversed, when the delay of the multiplier 6 is smaller than the sum of the delays of the 3-input 2-output D/D converter 1 and the quantizer 11, compared to the conventional example. The calculation speed for prediction can be improved by the delay of the multiplier 8 shown in FIG.

あるいは、FF7と乗算器6の位置を逆にする
と乗算器6の遅延が量子化器11の遅延より小の
時は、従来例に比し第2図の乗算器8の遅延分だ
け予測の為の演算速度を向上出来る。
Alternatively, if the positions of FF 7 and multiplier 6 are reversed, when the delay of multiplier 6 is smaller than the delay of quantizer 11, prediction is made by the delay of multiplier 8 in FIG. 2 compared to the conventional example. The calculation speed can be improved.

次に、第3図を用い、第1図の3入力D/D変
換器1及び加算器2とFF3の詳細につき説明す
る。
Next, details of the three-input D/D converter 1, adder 2, and FF 3 shown in FIG. 1 will be explained using FIG. 3.

2進数を表す符号として2の補数を用い、入力
PCM信号を8ビツトとし、乗算器10にて予測
係数1/2の逆数を乗算することによりA8〜A0
の9ビツトとなり、量子化器11の出力はC7〜
C0の8ビツト、FF7の出力はB8〜B0の9
ビツトとして以下説明する。
Using two's complement as the code representing the binary number, input
By setting the PCM signal to 8 bits and multiplying it by the reciprocal of the prediction coefficient 1/2 in the multiplier 10, A8 to A0
The output of the quantizer 11 is C7~
8 bits of C0, FF7 output is B8 to 9 of B0
This will be explained below as a bit.

3入力D/D変換器1の各桁の全加算器1―1
〜1―9の、キヤリー入力にはA0〜A8の信号
が入力し、2入力にはB0〜B8,C0〜C7の
信号が各々反転して入力し(但しMSBの全加算
器1―9にはA8,B8,C7の信号が入力す
る)、全加算器1―1〜1―9の加算結果の出力
は、加算器2の各桁の全加算器2―1〜2―9に
入力し、桁上げ出力は1桁上の全加算器2―2〜
2―10に入力する。
Full adder 1-1 for each digit of 3-input D/D converter 1
~1-9, the signals A0-A8 are input to the carry input, and the signals B0-B8, C0-C7 are inverted and input to the 2nd input (however, the MSB full adder 1-9 is input (signals of A8, B8, and C7 are input), and the outputs of the addition results of full adders 1-1 to 1-9 are input to full adders 2-1 to 2-9 of each digit of adder 2. , the carry output is from the full adder 2-2 ~
Enter in 2-10.

この場合、LSBの全加算器2―1の1入力及
びキヤリー入力にはHレベルが加えられている。
又全加算器及びFFは3入力2出力D/D変換器
1の入力が9ビツト,9ビツト,8ビツト時、演
算結果が最大11ビツトになることがある為に11ケ
設けられている。
In this case, an H level is applied to the 1 input and carry input of the LSB full adder 2-1.
In addition, 11 full adders and FFs are provided because when the input of the 3-input 2-output D/D converter 1 is 9 bits, 9 bits, or 8 bits, the operation result may be a maximum of 11 bits.

全加算器2―10には全加算器1―9の加算結
果出力が加えられており、又全加算器2―11に
は全加算器1―9の加算結果出力及び桁上げ出力
が加えられており、全加算器2―1〜2―10の
桁上げ出力は全加算器2―2〜2―11に入力し
て演算が行われ、全加算器2―1〜2―11の各
桁の出力はFF3―1〜3―11に入力し遅延さ
れて量子化器11に入力する。
The addition result output of the full adder 1-9 is added to the full adder 2-10, and the addition result output and carry output of the full adder 1-9 is added to the full adder 2-11. The carry outputs of full adders 2-1 to 2-10 are input to full adders 2-2 to 2-11 for calculation, and each digit of full adders 2-1 to 2-11 is The outputs are input to the FFs 3-1 to 3-11, delayed, and input to the quantizer 11.

第3図に示す如く、3入力D/D変換器1は、
入力信号の各桁毎の全加算を行い、桁上げ出力と
加算結果の出力の2出力とし、この2出力の内加
算結果の出力は加算器2の対応桁の全加算器に入
力し、桁上げ出力は1桁上の全加算器に入力す
る。
As shown in FIG. 3, the 3-input D/D converter 1 is
Full addition is performed for each digit of the input signal, resulting in two outputs: a carry output and an output of the addition result. Out of these two outputs, the output of the addition result is input to the full adder of the corresponding digit of adder 2, and the digit The raised output is input to the full adder one digit higher.

従つて、3入力D/D変換器1では全桁を通し
ての演算は行わないので、桁上げ処理を含み全桁
の演算を行う加算器,減算器に比し動作速度が速
くなる。
Therefore, since the three-input D/D converter 1 does not perform calculations on all digits, its operation speed is faster than that of adders and subtracters that perform calculations on all digits including carry processing.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明せる如く本発明によれば、予測
の為の演算速度を向上出来る効果がある。
As explained in detail above, according to the present invention, there is an effect that the calculation speed for prediction can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の高速DPCM回路の
ブロツク図、第2図は従来例の高速DPCM回路
のブロツク図、第3図は3入力2出力デイジタ
ル・デイジタル変換器及び加算器及びフリツプフ
ロツプの接続を示す図である。 図において、1は、3入力2出力デイジタル・
デイジタル変換器、2,5は加算器、3,7は
FF、4,11は量子化器、6,8,9,10は
乗算器を示す。
FIG. 1 is a block diagram of a high-speed DPCM circuit according to an embodiment of the present invention, FIG. 2 is a block diagram of a conventional high-speed DPCM circuit, and FIG. It is a diagram showing connections. In the figure, 1 is a 3-input, 2-output digital
Digital converter, 2 and 5 are adders, 3 and 7 are
FF, 4, and 11 are quantizers, and 6, 8, 9, and 10 are multipliers.

Claims (1)

【特許請求の範囲】 1 出力側に、予測係数を乗算した後量子化
DPCM信号を発生する機能を一体化した量子化
器を備え、又第1の加算器及び第1の乗算器及び
第1の遅延素子を有し、且つ該第1の乗算器で該
第1の加算器の出力に予測係数を乗算し、この出
力を該第1の遅延素子にて遅延させ、該量子化器
の出力とともに該第1の加算器に入力し、該第1
の遅延素子の出力で予測値を検出する予測値検出
ループと、 入力するPCM信号に予測係数の逆数を乗算し
た信号を第1の入力に入力し、第2の入力に該量
子化器の出力を、第3の入力に該第1の遅延素子
の出力を各々反転して入力し、該第1〜第3の入
力に入力する入力信号の各桁毎の全加算を行い、
各桁毎の、桁上げ出力と加算結果の2出力とする
3入力2出力デイジタル・デイジタル変換器を備
え、該3入力2出力デイジタル・デイジタル変換
器の各桁毎の2出力を各桁毎に加算する第2の加
算器に入力し、該3入力2出力デイジタル・デイ
ジタル変換器と該第2の加算器により、該第1の
入力に入力する信号に対し、該第2,第3の入力
に入力する信号は反転して入力し加算を行わせ、
該第2の加算器の出力を第2の遅延素子にて遅延
させ、又該第2の遅延素子の出力を該量子化器に
入力するようにしたことを特徴とする高速
DPCM回路。
[Claims] 1. Quantization after multiplying the output side by a prediction coefficient
The quantizer has a quantizer integrated with a function of generating a DPCM signal, and also has a first adder, a first multiplier, and a first delay element, and the first multiplier The output of the adder is multiplied by a prediction coefficient, this output is delayed by the first delay element, and is input to the first adder together with the output of the quantizer.
A predicted value detection loop that detects a predicted value using the output of a delay element, a signal obtained by multiplying the input PCM signal by the reciprocal of the predicted coefficient is input to the first input, and the output of the quantizer is input to the second input. Input each inverted output of the first delay element to the third input, perform full addition for each digit of the input signal input to the first to third inputs,
A 3-input, 2-output digital-to-digital converter with two outputs, a carry output and an addition result, is provided for each digit, and two outputs for each digit of the three-input, two-output digital-to-digital converter are provided for each digit. The 3-input 2-output digital-to-digital converter and the second adder add the second and third inputs to the signal input to the first input. The input signal is inverted and added,
A high speed device characterized in that the output of the second adder is delayed by a second delay element, and the output of the second delay element is input to the quantizer.
DPCM circuit.
JP59245775A 1984-08-30 1984-11-20 High-speed dpcm circuit Granted JPS61125233A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP59245775A JPS61125233A (en) 1984-11-20 1984-11-20 High-speed dpcm circuit
DE8585110978T DE3586932T2 (en) 1984-08-30 1985-08-30 DIFFERENTIAL CODING CIRCUIT.
EP85110978A EP0173983B1 (en) 1984-08-30 1985-08-30 Differential coding circuit
KR1019850006333A KR890004441B1 (en) 1984-08-30 1985-08-30 Automatic cording circuit
CA000489802A CA1338767C (en) 1984-08-30 1985-08-30 Differential coding circuit
US07/049,048 US4771439A (en) 1984-08-30 1987-05-12 Differential coding circuit with reduced critical path applicable to DPCM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59245775A JPS61125233A (en) 1984-11-20 1984-11-20 High-speed dpcm circuit

Publications (2)

Publication Number Publication Date
JPS61125233A JPS61125233A (en) 1986-06-12
JPH0243375B2 true JPH0243375B2 (en) 1990-09-28

Family

ID=17138628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59245775A Granted JPS61125233A (en) 1984-08-30 1984-11-20 High-speed dpcm circuit

Country Status (1)

Country Link
JP (1) JPS61125233A (en)

Also Published As

Publication number Publication date
JPS61125233A (en) 1986-06-12

Similar Documents

Publication Publication Date Title
US6055555A (en) Interface for performing parallel arithmetic and round operations
US6408102B1 (en) Encoding/decoding device
US4771439A (en) Differential coding circuit with reduced critical path applicable to DPCM
JPH0243375B2 (en)
US5991784A (en) Signal processing circuit
JPH0715281A (en) Noise shaping device
JPH0239138B2 (en) SABUNFUGOKI
JPH0981541A (en) Accumulator
JPH0156577B2 (en)
JPH046288B2 (en)
JPH0156578B2 (en)
JPS6251830A (en) Parallel processing type plane forecasting circuit
KR0163904B1 (en) D/a converter using digital signal delta
JPH0784755A (en) Digital signal processor
JP2890412B2 (en) Code conversion circuit
JPH0654874B2 (en) Predictive coding device
JPS60129832A (en) Arithmetic device
KR970003798B1 (en) Ntsc-type video signal range coder and decoder
JPS61121619A (en) High speed dpcm circuit
JPS6232533A (en) Decimal data exception detecting system in decimal adding/subtracting circuit
JPH04369123A (en) Dpcm coder
JPH0619681A (en) Redundant binary/binary conversion circuit including rounding processing
JPS61292424A (en) Differential coder
JPS5927144B2 (en) Differential encoding device for color television signals
JPH04225694A (en) Dpcm encoder