JPH0242710B2 - - Google Patents

Info

Publication number
JPH0242710B2
JPH0242710B2 JP57162983A JP16298382A JPH0242710B2 JP H0242710 B2 JPH0242710 B2 JP H0242710B2 JP 57162983 A JP57162983 A JP 57162983A JP 16298382 A JP16298382 A JP 16298382A JP H0242710 B2 JPH0242710 B2 JP H0242710B2
Authority
JP
Japan
Prior art keywords
pressure
valve
chamber
pressure reducing
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57162983A
Other languages
Japanese (ja)
Other versions
JPS5953261A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP16298382A priority Critical patent/JPS5953261A/en
Publication of JPS5953261A publication Critical patent/JPS5953261A/en
Publication of JPH0242710B2 publication Critical patent/JPH0242710B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/18Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to vehicle weight or load, e.g. load distribution
    • B60T8/1837Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to vehicle weight or load, e.g. load distribution characterised by the load-detecting arrangements
    • B60T8/1843Arrangements for detecting air spring pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Hydraulic Control Valves For Brake Systems (AREA)

Description

【発明の詳細な説明】 本発明は、車両、特に四輪自動車において前、
後輪ブレーキの油圧回路を互いに独立した2系統
に構成した場合の、上記後輪ブレーキの作動油圧
を要求制動力に応じて自動調節するようにした、
ブレーキ油圧制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a vehicle, particularly a four-wheeled vehicle, with a
When the rear wheel brake hydraulic circuit is configured into two independent systems, the working oil pressure of the rear wheel brake is automatically adjusted according to the required braking force,
The present invention relates to a brake hydraulic control device.

従来、この種制御装置として、マスタシリンダ
の出力ポートと後輪ブレーキとを接続する油路
に、上記マスタシリンダの出力油圧を後輪ブレー
キに比例的に減圧して伝達し得る減圧弁を設けた
もの、または上記油路に、車両の設定値以上の減
速度を感知すると上記油路を遮断する重錘弁を設
けたものがあるが、前者の場合、制動力配分曲線
における折曲点が一定であるため、トラツクのよ
うな空車と積車状態によつて車両重量、さらに
前、後輪の荷重配分が著しく変わるものには適切
でなく、また後者の場合も積載重量の変化に十分
対応することができないという問題がある。
Conventionally, this type of control device has provided a pressure reducing valve in the oil passage connecting the output port of the master cylinder and the rear wheel brake, which can proportionally reduce the output hydraulic pressure of the master cylinder and transmit it to the rear wheel brake. In some cases, the oil passage is equipped with a weight valve that shuts off the oil passage when deceleration exceeding a set value of the vehicle is detected, but in the former case, the bending point in the braking force distribution curve is constant. Therefore, it is not suitable for vehicles such as trucks, where the weight of the vehicle and the load distribution between the front and rear wheels change significantly depending on whether the vehicle is empty or loaded, and even in the latter case, it does not adequately respond to changes in the loaded weight. The problem is that I can't.

本発明は上記従来の問題点に鑑みて提案された
もので、懸架装置に用いられる空気ばねを利用し
て、減圧弁による折曲点を車両の積載重量の変化
に応じて変位させ、制動を理想制動に近似させ得
るようにした、誤動作の極めて少ない車両用ブレ
ーキ油圧制御装置を提供することを目的とする。
The present invention was proposed in view of the above-mentioned conventional problems, and utilizes an air spring used in a suspension system to displace the bending point of a pressure reducing valve according to changes in the vehicle's loaded weight, thereby improving braking. It is an object of the present invention to provide a brake hydraulic control device for a vehicle that can approximate ideal braking and has extremely few malfunctions.

そしてこの目的を達成するために本考案は、マ
スタシリンダの出力ポートと後輪ブレーキとの間
を接続する油路に、前記出力ポートの出力油圧を
前記後輪ブレーキに比例的に減圧して伝達し得る
減圧弁を介装し、その減圧弁には、該弁の減圧作
用開始圧力を決定するばねを設け、前記減圧弁に
付設されるシリンダ内に通常は該減圧弁を開弁状
態に保持する制御ピストンを摺動自在に嵌合する
と共に、該制御ピストンと前記シリンダ端壁内面
との間に圧力室を画成し、車両の積載荷重の増加
に応じて前記制御ピストンが前記減圧弁の閉弁時
期を遅らせ得るように、前記圧力室に懸架装置の
空気ばねの空気室を連通させ、その連通路にオリ
フイスを介装したことを特徴とする。
In order to achieve this objective, the present invention reduces the output hydraulic pressure of the output port proportionally to the rear wheel brake and transmits it to the oil path connecting between the output port of the master cylinder and the rear wheel brake. The pressure reducing valve is provided with a spring that determines the pressure at which the pressure reducing action of the valve starts, and the pressure reducing valve is normally held in an open state within a cylinder attached to the pressure reducing valve. A control piston is slidably fitted into the pressure reducing valve, and a pressure chamber is defined between the control piston and the inner surface of the end wall of the cylinder, and as the load of the vehicle increases, the control piston increases the pressure of the pressure reducing valve. In order to delay the valve closing timing, the air chamber of the air spring of the suspension device is communicated with the pressure chamber, and an orifice is interposed in the communication path.

以下図面により本発明の一実施例について説明
する。
An embodiment of the present invention will be described below with reference to the drawings.

第1図において、Mはブレーキペダル1により
操作される公知のタンデム型マスタシリンダ、
Bfは左右の前輪ブレーキ、Brは左右の後輪ブレ
ーキをそれぞれ示す。マスタシリンダMの第1出
力ポートP1は油路L1を介して左右の前輪ブレ
ーキBfに接続され、またその第2出力ポートP
2は油路L2、本発明制御装置Vおよび油路L3
を介して後輪ブレーキBrに接続されている。
In FIG. 1, M is a known tandem master cylinder operated by a brake pedal 1;
Bf indicates the left and right front wheel brakes, and Br indicates the left and right rear wheel brakes. The first output port P1 of the master cylinder M is connected to the left and right front wheel brakes Bf via the oil passage L1, and the second output port P1 of the master cylinder M is
2 is an oil passage L2, the present invention control device V and an oil passage L3
is connected to the rear wheel brake Br via.

上記制御装置Vの弁函2の外側には油路L2に
連なる入口3と、油路L3に連なる出口5とが開
口し、入口3と出口5間の連通を制御する減圧弁
6が弁函2内に設けられている。
An inlet 3 connected to the oil path L2 and an outlet 5 connected to the oil path L3 are opened on the outside of the valve box 2 of the control device V, and a pressure reducing valve 6 for controlling communication between the inlet 3 and the outlet 5 is installed in the valve case. It is located within 2.

上記減圧弁6は弁函2内に摺動可能に収容され
た受圧ピストン7と、その一側に形成されて入口
3と連通する入力油圧室8と、受圧ピストン7の
他側に形成されて出口5と連通する出力油圧室9
と、上記入力油圧室8内に設けられて両室8,9
の連通油路10を開閉する球状弁体11を有す
る。符号14は弁体11と協働する弁座を示す。
上記弁函2には、その一側面から弁蓋を兼ねる、
受圧ピストン7のガイド軸部材12が嵌合され、
その先端部は受圧ピストン7に油密に挿入されて
上記入力油圧室8の固定壁を形成する。上記部材
12の端面と弁体11との間に弁体11を閉じ方
向に偏倚する弁ばね13が介在する。上記受圧ピ
ストン7の入力油圧室8の受圧面Aは、出力油圧
室9の受圧面Bよりも面積を狭くしてある(即ち
A<B)。
The pressure reducing valve 6 includes a pressure receiving piston 7 slidably housed in the valve case 2, an input hydraulic pressure chamber 8 formed on one side thereof and communicating with the inlet 3, and an input hydraulic pressure chamber 8 formed on the other side of the pressure receiving piston 7. Output hydraulic chamber 9 communicating with outlet 5
and both chambers 8 and 9 provided in the input hydraulic chamber 8.
It has a spherical valve body 11 that opens and closes a communicating oil passage 10. Reference numeral 14 indicates a valve seat that cooperates with the valve body 11.
The valve box 2 has one side that also serves as a valve lid.
The guide shaft member 12 of the pressure receiving piston 7 is fitted,
The tip end thereof is oil-tightly inserted into the pressure receiving piston 7 and forms a fixed wall of the input hydraulic pressure chamber 8. A valve spring 13 is interposed between the end face of the member 12 and the valve body 11 to bias the valve body 11 in the closing direction. The pressure receiving surface A of the input hydraulic pressure chamber 8 of the pressure receiving piston 7 has a smaller area than the pressure receiving surface B of the output hydraulic chamber 9 (ie, A<B).

また弁函2はその一端側、図で左側に上記ガイ
ド軸部材12に貫通されるばね室15を有し、そ
のばね室15内には、ガイド軸部材12の蓋部1
2aと受圧ピストン7との間にあつて空車時にお
ける減圧弁6の減圧作用開始圧力を決定する第1
コイルばね16と、その第1コイルばね16と協働
して積車時における同減圧作用開始圧力を決定す
る第2コイルばね17が内外二重に設けられてい
る。上記第1コイルばね16の一端は座板18を
介して常時受圧ピストン7の端面に当接し、第2
コイルばね17の一端は座板19を介して弁函2
内面に当接し、そして座板19は、受圧ビストン
7が距離S1以上に図で左方へ摺動したとき、受
圧ピストン7によつて左方へ押動されるようにな
つている。
Further, the valve case 2 has a spring chamber 15 penetrated by the guide shaft member 12 on one end side, on the left side in the figure, and inside the spring chamber 15, the lid portion 1 of the guide shaft member 12 is disposed.
2a and the pressure-receiving piston 7, and determines the pressure at which the pressure-reducing action of the pressure-reducing valve 6 starts when the vehicle is empty.
A coil spring 16 and a second coil spring 17, which cooperates with the first coil spring 16 to determine the pressure at which the depressurization action starts when the vehicle is loaded, are provided both inside and outside. One end of the first coil spring 16 is always in contact with the end surface of the pressure receiving piston 7 via the seat plate 18, and the second
One end of the coil spring 17 is connected to the valve case 2 via the seat plate 19.
The seat plate 19 is in contact with the inner surface and is pushed leftward by the pressure receiving piston 7 when the pressure receiving piston 7 slides leftward in the figure by a distance S1 or more.

さらに弁函2はその他端側、図で右側にシリン
ダ20を付設されており、そのシリンダ20内に
制御ピストン21が摺動可能に設けられ、制御ピ
ストン21とシリンダ20の端壁内面との間に圧
力室24が画成されている。その制御ピストン2
1の左端面からは小経部22aおよび大径部22
bからなる長い軸部22が突出しており、その小
径部22aの先端は弁函2の仕切り壁23および
受圧ピストン7の連通油路10を貫通して弁体1
1に当接し、通常は制御ピストン21が弁体11
を弁座14から距離S1だけ離し、連通油路10
を開放している。上記軸部22の段部22cと仕
切り壁23との距離S2が制御ピストン21の作
動ストロークの範囲である。上記仕切り壁23と
制御ピストン21の間にはそのピストン21の戻
しばね26が介在する。
Further, the valve case 2 is attached with a cylinder 20 on the other end side, the right side in the figure, and a control piston 21 is slidably provided in the cylinder 20, and between the control piston 21 and the inner surface of the end wall of the cylinder 20. A pressure chamber 24 is defined therein. Its control piston 2
From the left end surface of 1, there is a small diameter part 22a and a large diameter part 22.
A long shaft portion 22 consisting of a shaft portion 22b protrudes, and the tip of its small diameter portion 22a passes through the partition wall 23 of the valve case 2 and the communication oil passage 10 of the pressure receiving piston 7 to connect the valve body 1.
1, and normally the control piston 21 is in contact with the valve body 11
is separated from the valve seat 14 by a distance S1, and the communicating oil passage 10
is open to the public. The distance S2 between the stepped portion 22c of the shaft portion 22 and the partition wall 23 is the range of the operating stroke of the control piston 21. A return spring 26 for the piston 21 is interposed between the partition wall 23 and the control piston 21.

シリンダ20の圧力室24には懸架装置の空気
ばね式車高調整機構25の構成要素である空気ば
ね27の空気室28が接続される。その車高調整
機構25は空気圧縮機29と、圧縮空気を蓄える
蓄圧タンク30と、空気ばね27と、蓄圧タンク
30より圧縮空気を空気ばね27の空気室28に
導入し、またそれから排出し得る制御弁31と、
コイルばね32とを有する。コイルばね32は空
車重量分のみを分担し、積載重量分は空気ばね2
7が分担するようになつている。即ち、積載重量
に応じて制御弁31により規制された圧縮空気が
空気ばね27の空気室28に導入され、これによ
り車高を一定に保つもので、したがつて積載重量
が重ければ空気室28内の圧力が高く、積載重量
が軽ければ空気室28内の圧力が低くなる。
An air chamber 28 of an air spring 27 that is a component of an air spring type vehicle height adjustment mechanism 25 of the suspension system is connected to the pressure chamber 24 of the cylinder 20. The vehicle height adjustment mechanism 25 includes an air compressor 29, a pressure storage tank 30 for storing compressed air, an air spring 27, and a pressure storage tank 30 that introduces compressed air into the air chamber 28 of the air spring 27 and discharges it from there. a control valve 31;
It has a coil spring 32. The coil spring 32 only shares the weight of the empty car, and the air spring 2 takes care of the loaded weight.
7 are starting to share the burden. That is, compressed air regulated by the control valve 31 according to the loaded weight is introduced into the air chamber 28 of the air spring 27, thereby keeping the vehicle height constant. Therefore, if the loaded weight is heavy, the air chamber 28 If the pressure inside the air chamber 28 is high and the loaded weight is light, the pressure inside the air chamber 28 will be low.

シリンダ20の圧力室24には空車以外は空気
ばね27の空気室28と同一の圧力、即ち積載重
量に応じた圧力が導入され、これにより制御ピス
トン21が所定距離左方へ摺動して弁体11を弁
座14より離間させ、それらの間に積載重量に応
じた距離が存することになる。33はシリンダ2
0の端壁に形成されたオリフイスで、空気ばね2
7側の圧力が変動した場合、これを減衰してシリ
ンダ20の圧力室24内の圧力の急激な変動を防
止するものである。
The same pressure as the air chamber 28 of the air spring 27 is introduced into the pressure chamber 24 of the cylinder 20 unless the car is empty, that is, the pressure corresponding to the loaded weight, and this causes the control piston 21 to slide a predetermined distance to the left, causing the valve to open. The body 11 is spaced apart from the valve seat 14, and a distance corresponding to the loaded weight exists between them. 33 is cylinder 2
An orifice formed in the end wall of air spring 2
When the pressure on the pressure chamber 24 of the cylinder 20 fluctuates, this is attenuated to prevent the pressure within the pressure chamber 24 of the cylinder 20 from rapidly fluctuating.

次にこの実施例の作用について説明する。 Next, the operation of this embodiment will be explained.

車両の走行中にブレーキペダル1を踏んでマス
タシリンダMを作動し、その第1および第2出力
ポートP1,P2から油圧が出力されれば、第1
出力ポートP1の出力油圧は油路L1を介して左
右の前輪ブレーキBfに伝達され、それらを作動
する。また第2出力ポートP2の出力油圧は油路
L2、減圧弁6、油路L3を介して左右の後輪ブ
レーキBrに伝達され、それらを作動する。
When the master cylinder M is actuated by depressing the brake pedal 1 while the vehicle is running, and hydraulic pressure is output from the first and second output ports P1 and P2, the first
The output oil pressure of the output port P1 is transmitted to the left and right front wheel brakes Bf via the oil path L1, and operates them. Further, the output oil pressure of the second output port P2 is transmitted to the left and right rear wheel brakes Br via the oil passage L2, the pressure reducing valve 6, and the oil passage L3, and operates them.

そしてマスタシリンダMの第2の出力ポートP
2の出力油圧が所定値以上に上昇すると、減圧弁
6が後輪ブレーキBrの作動油圧を制御し始める。
and the second output port P of the master cylinder M
When the output oil pressure of No. 2 rises above a predetermined value, the pressure reducing valve 6 starts to control the working oil pressure of the rear wheel brake Br.

上記作動油圧制御作用は空車時と、積車時とで
は異なるので以下第2図も参照しながら別々に説
明する。
The above-mentioned hydraulic pressure control action differs between when the vehicle is empty and when the vehicle is loaded, so they will be explained separately below with reference to FIG. 2 as well.

(a) 空車時における作動油圧制御〔第2図参
照〕 空車時においては、上記のように第1コイル
ばね16が減圧弁6の減圧作用開始圧力を決定
する。また空車時には空気ばね27の空気室2
8は大気圧下にあり、したがつてシリンダ20
の圧力室24も同圧となり、制御ピストン21
は戻しばね26の弾発力により図で右方へ摺動
してシリンダ20の端壁内面に衝合し、弁体1
1と弁座14間の距離S1は受圧ピストン7が
左動するまでは一定である。
(a) Hydraulic pressure control when the vehicle is empty [see FIG. 2] When the vehicle is empty, the first coil spring 16 determines the pressure at which the pressure reducing valve 6 starts to reduce the pressure as described above. Also, when the car is empty, the air chamber 2 of the air spring 27
8 is under atmospheric pressure and therefore the cylinder 20
The pressure chamber 24 of is also at the same pressure, and the control piston 21
The valve body 1 slides to the right in the figure due to the elastic force of the return spring 26 and abuts against the inner surface of the end wall of the cylinder 20.
1 and the valve seat 14 is constant until the pressure receiving piston 7 moves to the left.

この状態において上記マスタシリンダMの第
2出力ポートP2の出力油圧の上昇により入力
油圧室8の油圧が所定値に達すると、入、出力
油圧室8,9の両受圧面A,Bの前述のような
面積差に起因して受圧ピストン7に働く図で左
向きの、油圧による押圧力が第1コイルばね1
6のセツト荷重に打勝つて受圧ピストン7を図
で左方へ距離S1だけ摺動させ、弁座14を弁
体11に係合させて入、出力油圧室8,9間の
油路10を閉じる(第2図Y1点)。その後、更
に第2出力ポートP2の出力油圧が上昇すれ
ば、入力油圧室8の油圧も上昇するので、その
油圧により受圧ピストン7を図で右方へ押返し
て弁座14を弁体11から離間させ、連通油路
10を開いて出力油圧室9を昇圧させるが、そ
の昇圧に伴ない受圧ピストン7の両受圧面A,
Bの面積差に起因した油圧による左方押圧力が
直ちに増大して受圧ピストン7を再び図で左方
へ摺動させて弁座14を弁体11に係合させ、
以後第2出力ポートP2の出力油圧の上昇に伴
い同様の作動が繰返される。その結果、受圧ピ
ストン7が一旦作動してからは、入力油圧室8
の油圧を出力油圧室9に、したがつて後輪ブレ
ーキBrに比例的に減圧して伝達することがで
きる。
In this state, when the hydraulic pressure in the input hydraulic chamber 8 reaches a predetermined value due to an increase in the output hydraulic pressure of the second output port P2 of the master cylinder M, the pressure receiving surfaces A and B of the input and output hydraulic chambers 8 and 9 Due to the difference in area, the pressing force due to the hydraulic pressure acting on the pressure receiving piston 7 in the left direction in the figure is applied to the first coil spring 1.
6, the pressure receiving piston 7 is slid to the left in the figure by a distance S1, the valve seat 14 is engaged with the valve body 11, and the oil passage 10 between the output hydraulic chambers 8 and 9 is opened. Close (Fig. 2 Y1 point). After that, if the output oil pressure of the second output port P2 further increases, the oil pressure of the input oil pressure chamber 8 also increases, and the pressure receiving piston 7 is pushed back to the right in the figure by the oil pressure, and the valve seat 14 is moved away from the valve body 11. The communication oil passage 10 is opened to increase the pressure in the output hydraulic chamber 9, but as the pressure increases, both pressure receiving surfaces A of the pressure receiving piston 7,
The leftward pressing force due to the hydraulic pressure caused by the area difference of B immediately increases, causing the pressure receiving piston 7 to again slide to the left in the figure and engaging the valve seat 14 with the valve body 11.
Thereafter, similar operations are repeated as the output oil pressure of the second output port P2 increases. As a result, once the pressure receiving piston 7 is activated, the input hydraulic pressure chamber 8
The hydraulic pressure can be proportionally reduced and transmitted to the output hydraulic chamber 9, and therefore to the rear wheel brake Br.

(b) 積車時における作動油圧制御〔第2図〕 積車時においては、上記のように第1、第2
コイルばね16,17の協働により減圧弁6の
減圧作用開始圧力が決定される。
(b) Hydraulic pressure control when loading vehicles [Figure 2] When loading vehicles, the first and second
The pressure at which the pressure reducing valve 6 starts to reduce the pressure is determined by the cooperation of the coil springs 16 and 17.

積車時には、空気ばね27の空気室28に制
御弁31により規制された積載重量に応じた圧
縮空気が導入される。したがつてシリンダ20
の圧力室24が空気室28と同圧となり、制御
ピストン21が図で左方へ所定距離摺動して戻
しばね26の弾発力と圧力室24の制御ピスト
ン21に与える押圧力が釣合つた位置で停止
し、これにより弁体11と弁座14との間に空
車時よりも長い距離が形成されるので弁体11
の閉じ時期が空車時よりも遅くなる。
When the vehicle is loaded, compressed air corresponding to the loaded weight regulated by the control valve 31 is introduced into the air chamber 28 of the air spring 27 . Therefore, the cylinder 20
The pressure chamber 24 has the same pressure as the air chamber 28, and the control piston 21 slides a predetermined distance to the left in the figure, and the elastic force of the return spring 26 and the pressing force exerted on the control piston 21 by the pressure chamber 24 are balanced. The valve stops at the cradle position, and as a result, a longer distance is formed between the valve body 11 and the valve seat 14 than when the valve is empty, so the valve body 11
The closing time is later than when the car is empty.

弁体11の移動距離は車両の積載重量に依存
するが、最大移動距離は軸部22によつて規制
される制御ピストン21の最大作動ストローク
S2に限定される。
Although the moving distance of the valve body 11 depends on the loaded weight of the vehicle, the maximum moving distance is limited to the maximum operating stroke S2 of the control piston 21 regulated by the shaft portion 22.

便宜上、制御ピストン21が最大作動ストロ
ークS2移動したとすると、弁体11は弁座1
4からS1+S2の距離だけ離れた位置にある。
For convenience, it is assumed that the control piston 21 has moved by the maximum operating stroke S2, and the valve body 11 has moved to the valve seat 1.
It is located at a distance of S1 + S2 from 4.

この状態において、マスタシリンダMの第2
出力ポートP2の出力油圧は連通油路10を経
て後輪ブレーキBrに伝達され、その制動力は
前輪ブレーキBfに作用する制動力に対し1対
1の関係で増大する。一方、入、出力油圧室
8,9の受圧面A,Bの面積差に起因した油圧
による図で左向きの押圧力が受圧ピストン7に
作用し、受圧ピストン7を第1コイルばね16
のセツト荷重に打勝つて距離S1だけ摺動さ
せ、その端面を第2コイルばね17の座板19
に当接させる。この状態においては未だ弁体1
1は連通油路10を閉じるには至らないから後
輪ブレーキBrに作用する制動力は上記同様に
増大し続ける。
In this state, the second
The output oil pressure of the output port P2 is transmitted to the rear wheel brake Br via the communication oil passage 10, and its braking force increases in a one-to-one relationship with the braking force acting on the front wheel brake Bf. On the other hand, a leftward pressing force in the diagram due to the hydraulic pressure caused by the area difference between the pressure receiving surfaces A and B of the input and output hydraulic chambers 8 and 9 acts on the pressure receiving piston 7, and the pressure receiving piston 7 is moved by the first coil spring 16.
overcoming the set load of the coil spring 17 and sliding it by a distance S1, the end surface of which is attached to the seat plate 19 of the second coil spring 17.
bring it into contact with. In this state, the valve body 1 is still
1 does not close the communicating oil passage 10, so the braking force acting on the rear wheel brake Br continues to increase as described above.

第2出力ポートP2の出力油圧がさらに上昇
して入力油圧室8の油圧が所定値に達すると、
上記のように受圧ピストン7に働く油圧による
図で左向きの押圧力が第1および第2コイルば
ね16,17のセツト荷重に打勝つて受圧ピス
トン7を図で左方へ距離S2でけ摺動させ、こ
の時点で漸く弁座14を弁体11に係合させて
入、出力油圧室8,9間の連通油路10を閉じ
(第2図Y2点)、前記(a)と同様の動作を繰返し、
入力油圧室8の油圧を後輪ブレーキBrに比例
的に減圧して伝達するものであり、かくして減
圧弁6の減圧作用開始圧力は最大に自動調節さ
れる。
When the output oil pressure of the second output port P2 further increases and the oil pressure of the input oil pressure chamber 8 reaches a predetermined value,
As mentioned above, the leftward pressing force in the figure due to the hydraulic pressure acting on the pressure receiving piston 7 overcomes the set loads of the first and second coil springs 16 and 17, causing the pressure receiving piston 7 to slide to the left in the figure by a distance S2. At this point, the valve seat 14 is finally engaged with the valve body 11, and the communication oil passage 10 between the output hydraulic chambers 8 and 9 is closed (point Y2 in Fig. 2), and the same operation as in (a) is performed. Repeat,
The hydraulic pressure in the input hydraulic pressure chamber 8 is proportionally reduced and transmitted to the rear wheel brake Br, and thus the pressure at which the pressure reducing action of the pressure reducing valve 6 starts is automatically adjusted to the maximum.

以上のように本発明によれば、マスタシリンダ
の出力ポートと後輪ブレーキとの間を接続する油
路に、出力ポートの出力油圧を後輪ブレーキに比
例的に減圧して伝達し得る減圧弁を介装し、その
減圧弁にはそれの減圧作用開始圧力を決定するば
ねを設け、減圧弁に付設されるシリンダ内に通常
は減圧弁を開弁状態に保持する制御ピストンを摺
合すると共にその制御ピストンとシリンダ端壁内
面との間に圧力室を画成し、車両の積載重量の増
加に応じて制御ピストンが減圧弁の閉弁時期を遅
らせ得るように、圧力室に懸架装置の空気ばねの
空気室を連通させたので、減圧弁の減圧作用開始
圧力を上記空気ばねの空気室の圧力増加、即ち車
両の積載重量増加に応じて自動的に増加調節する
ことができ、その積載重量の大小に応じて制動を
常に的確に行うことができる。しかも上記制御ピ
ストンを作動させるのに従来装置のようにGバル
ブを用いたものの如くシリンダの取付位置や角度
に大きな制約を受けることはないし、また坂道走
行等による車両の傾斜により制御ピストンが誤動
作するような虞れもない。
As described above, according to the present invention, the pressure reducing valve is provided in the oil passage connecting between the output port of the master cylinder and the rear wheel brake, and is capable of proportionally reducing and transmitting the output hydraulic pressure of the output port to the rear wheel brake. The pressure reducing valve is equipped with a spring that determines the pressure at which it starts its pressure reducing action, and a control piston that normally holds the pressure reducing valve in an open state is slid into the cylinder attached to the pressure reducing valve. A pressure chamber is defined between the control piston and the inner surface of the cylinder end wall, and an air spring of a suspension device is installed in the pressure chamber so that the control piston can delay the closing timing of the pressure reducing valve as the loaded weight of the vehicle increases. Since the air chambers of the vehicle are connected to each other, the pressure at which the pressure reducing valve starts to reduce the pressure can be automatically increased in accordance with the increase in pressure in the air chamber of the air spring, that is, the increase in the loaded weight of the vehicle. Braking can always be performed accurately depending on the size. Moreover, there are no major restrictions on the mounting position or angle of the cylinder as in conventional systems that use a G valve to operate the control piston, and the control piston may malfunction due to tilting of the vehicle such as when driving on a slope. There is no danger of that happening.

また特に上記空気ばねの空気室と上記圧力室と
の連通路にオリフイスを介装したので、路面の凹
凸により空気室の圧力が瞬間的に上昇或いは下降
したような場合でも、該オリフイスの圧力減衰作
用により圧力室内の急激な圧力変動を抑えること
ができ、その圧力変動に起因した制御ピストンの
誤動作を効果的に防止することができ、従つて前
述の如く車両の傾斜によつても制御ピストンが誤
動作しないようにした効果と相埃つて、制御ピス
トンの作動精度向上に大いに寄与することができ
るものである。
In addition, since an orifice is interposed in the communication path between the air chamber of the air spring and the pressure chamber, even if the pressure in the air chamber momentarily increases or decreases due to unevenness of the road surface, the pressure at the orifice will not attenuate. This action can suppress sudden pressure fluctuations in the pressure chamber, effectively preventing malfunctions of the control piston caused by such pressure fluctuations, and therefore preventing the control piston from operating even when the vehicle is tilted as described above. Coupled with the effect of preventing malfunctions, this can greatly contribute to improving the operating accuracy of the control piston.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の縦断側面図、第2
図は前後輪に対する制動力配分を示すグラフ。 Br……後輪ブレーキ、L2,L3……油路、
M……マスタシリンダ、P2……第2出力ポー
ト、V……制御装置、6……減圧弁、7……受圧
ピストン、16……第1コイルばね、17……第
2コイルばね、20……シリンダ、21……制御
ピストン、24……圧力室、27……空気ばね、
28……空気室、33……オリフイス。
Fig. 1 is a longitudinal cross-sectional side view of one embodiment of the present invention;
The figure is a graph showing braking force distribution between front and rear wheels. Br...Rear brake, L2, L3...Oil path,
M... Master cylinder, P2... Second output port, V... Control device, 6... Pressure reducing valve, 7... Pressure receiving piston, 16... First coil spring, 17... Second coil spring, 20... ... Cylinder, 21 ... Control piston, 24 ... Pressure chamber, 27 ... Air spring,
28...air chamber, 33...orifice.

Claims (1)

【特許請求の範囲】[Claims] 1 マスタシリンダMの出力ポートP1と後輪ブ
レーキBrとの間を接続する油路に、前記出力ポ
ートP1の出力油圧を前記後輪ブレーキBrに比
例的に減圧して伝達し得る減圧弁6を介装し、そ
の減圧弁6には、該弁の減圧作用開始圧力を決定
するばね16,17を設け、前記減圧弁6に付設
されるシリンダ20内に通常は該減圧弁6を開弁
状態に保持する制御ピストン21を摺動自在に嵌
合すると共に、該制御ピストン21と前記シリン
ダ20端壁内面との間に圧力室24を画成し、車
両の積載荷重の増加に応じて前記制御ピストン2
1が前記減圧弁6の閉弁時期を遅らせ得るよう
に、前記圧力室24に懸架装置の空気ばね27の
空気室28を連通させ、その連通路にオリフイス
33を介装したことを特徴とする、車両用ブレー
キ油圧制御装置。
1. A pressure reducing valve 6 is provided in the oil passage connecting between the output port P1 of the master cylinder M and the rear wheel brake Br, which can proportionally reduce and transmit the output hydraulic pressure of the output port P1 to the rear wheel brake Br. The pressure reducing valve 6 is provided with springs 16 and 17 that determine the pressure at which the pressure reducing action of the valve starts, and the pressure reducing valve 6 is normally placed in an open state within a cylinder 20 attached to the pressure reducing valve 6. A pressure chamber 24 is defined between the control piston 21 and the inner surface of the end wall of the cylinder 20, and the control piston 21 is slidably fitted in the control piston 21 to be held in the cylinder. piston 2
1 is characterized in that the air chamber 28 of the air spring 27 of the suspension device is communicated with the pressure chamber 24 so that the closing timing of the pressure reducing valve 6 can be delayed, and an orifice 33 is interposed in the communication path. , brake hydraulic control device for vehicles.
JP16298382A 1982-09-18 1982-09-18 Brake oil pressure controller for car Granted JPS5953261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16298382A JPS5953261A (en) 1982-09-18 1982-09-18 Brake oil pressure controller for car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16298382A JPS5953261A (en) 1982-09-18 1982-09-18 Brake oil pressure controller for car

Publications (2)

Publication Number Publication Date
JPS5953261A JPS5953261A (en) 1984-03-27
JPH0242710B2 true JPH0242710B2 (en) 1990-09-25

Family

ID=15764981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16298382A Granted JPS5953261A (en) 1982-09-18 1982-09-18 Brake oil pressure controller for car

Country Status (1)

Country Link
JP (1) JPS5953261A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138661U (en) * 1985-02-19 1986-08-28

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51105578A (en) * 1975-03-14 1976-09-18 Aisin Seiki SHARYOYOSEKISAIKAJUOTOGATASEIDOYUATSUSEIGYOSOCHI
JPS55123553A (en) * 1979-03-12 1980-09-24 Nissin Kogyo Kk Hydraulic brake pressure controlling valve for vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51105578A (en) * 1975-03-14 1976-09-18 Aisin Seiki SHARYOYOSEKISAIKAJUOTOGATASEIDOYUATSUSEIGYOSOCHI
JPS55123553A (en) * 1979-03-12 1980-09-24 Nissin Kogyo Kk Hydraulic brake pressure controlling valve for vehicle

Also Published As

Publication number Publication date
JPS5953261A (en) 1984-03-27

Similar Documents

Publication Publication Date Title
EP0687621B1 (en) Brake system for motorcycles
EP0353506B1 (en) Hydraulic braking system for an automotive vehicle
US4261623A (en) Vehicle brake oil-pressure control valve device
US4462641A (en) Deceleration sensing valve assembly for vehicle brake
US5081841A (en) Hydraulic braking system with second booster chamber
US4887869A (en) Hydraulic braking system
US4750329A (en) Hydraulic pressure source device for hydraulic boosters
JPH09507186A (en) Valve device for controlling braking pressure in hydraulic power braking device for road vehicle
JPH0134818B2 (en)
US5364176A (en) Braking pressure control apparatus in a wheel slip control system
JPH0242710B2 (en)
WO1993022173A1 (en) Pilot relay valve with load piston
US5024492A (en) Hydraulic braking system for an automotive vehicle
US4720150A (en) Brake-pressure control system
US4444436A (en) Hydraulic pressure control valve
US4346941A (en) Hydraulic pressure control valve device of hydraulic brake system for vehicles
JPH025620B2 (en)
JP2674771B2 (en) Aquiumulator for vehicle antilock system
JPS5946817B2 (en) Vehicle brake hydraulic control device
US5921637A (en) Antilock brake liquid-pressure control apparatus
JPS6330597Y2 (en)
JPS5946818B2 (en) Brake hydraulic control valve device for vehicles
JPH0220463B2 (en)
JPS6140614Y2 (en)
JPH0137964Y2 (en)