JPH0242289B2 - - Google Patents

Info

Publication number
JPH0242289B2
JPH0242289B2 JP13160386A JP13160386A JPH0242289B2 JP H0242289 B2 JPH0242289 B2 JP H0242289B2 JP 13160386 A JP13160386 A JP 13160386A JP 13160386 A JP13160386 A JP 13160386A JP H0242289 B2 JPH0242289 B2 JP H0242289B2
Authority
JP
Japan
Prior art keywords
heat sink
blade
blades
mold
seat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13160386A
Other languages
Japanese (ja)
Other versions
JPS62286657A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13160386A priority Critical patent/JPS62286657A/en
Publication of JPS62286657A publication Critical patent/JPS62286657A/en
Publication of JPH0242289B2 publication Critical patent/JPH0242289B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 この発明はヒートシンク例えば電子回路用プリ
ント基板等に搭載する集積回路或いはパワートラ
ンジスタ等の電子デバイス冷却用ヒートシンクに
係る。ヒートシンクは一般に熱伝導良好のアルミ
ニウム合金等を使つて作る。高い放熱効果を得る
には、表面積の大きい設計を行うのは周知であ
る。
DETAILED DESCRIPTION OF THE INVENTION (A) Field of Industrial Application The present invention relates to a heat sink for cooling electronic devices such as integrated circuits or power transistors mounted on a printed circuit board for electronic circuits. Heat sinks are generally made using materials such as aluminum alloys, which have good thermal conductivity. It is well known that in order to obtain a high heat dissipation effect, a design with a large surface area is used.

(ロ) 従来の技術 従来よく見受ける第10、図のヒートシンク
1′はこの表面積を大きくする方法として、一概
に大形にしてあるかと云えばそうではなく、基板
上の電子回路布線設計の都合によつて決る各電子
部品の配置の影響を受けた、被冷却電子部品(多
くはパワートランジスタ)の基板上での散逸位置
に合せて、一枚の板にこれ等を取付けてヒートシ
ンク1′の形を決めているから大きくなつている。
大形になつて、冷却は良好になつているものの過
剰の冷却機能を持つている。つまり材料ぜい肉を
与えてしまつている。このように大形にすればす
るほど後に現われる歪みを防ぐためと、電子部品
を取付ける座14の機械切削を行う時、工作機械
台に取付けた時に起る撓みの対策に、梁を設けな
ければならなくなる。冷却機能は梁の追加によつ
て余計に過剰になるし重量増加にもなつている。
多くのヒートシンク1′の梁は、その面積に見合
つた高さと厚みを全ての梁について同じにして剛
性を分担させて冷却羽根2と併用してある。中に
は冷却羽根2とは別の強度補充梁を、これ等の間
に適当数を分布したものも見る。いづれにせよ被
冷却電子部品を点在する間をつないで一枚の板に
なつたヒートシンク1′の表面積は、これだけで
十分か、十分に近い冷却機能をすでにもつている
ので上述した羽根2間のピツチを小さくしたり薄
くして枚数を、多くする等の表面積拡大策の必要
はなかつた。一つのヒートシンク1′をこうして
形状設計すると冷却は良く、しかも一個だから加
工単価も安いと考え勝であるし、一見合理的の方
法に見える。この思考形態は実に現存するヒート
シンクの大半を占めている。大形は一方で作る側
にとつても金型鋳造とロストワツクス法或いはダ
イスを使う押し出し成形が容易であるためにこの
形状に頼つてしまつている。金型鋳造法による
と、ヒートシンク1′を機械フレーム等に取り付
けるための柱状の足を一体に設けたり、機械フレ
ームに足を設けてあるときは、座15を設けるに
は金型を使うと容易である上に前述した電子部品
の取付け座14をも容易に一体成形出来るので、
全て合理的と考えてしまつている。又、鋳造の基
本の型離しにおいても、前述した厚みのある羽根
2、端面7を突き出しピンで押すので、変形とか
欠壊することはなかつた。又、基台3部分も羽根
2間寸法が大きいのでここを使つても突き出せ
る。同時に金型内に仕込む突き出しピン案内穴の
工作は容易である。必然的に穴径は大きいので穴
内壁の粗さの改善は容易であるし、太いピン径な
ので繰り返しの熱サイクル疲労強度も大きくとれ
る。その上、案内穴とピンの間に入つてしまう湯
カスによる摺動の抵抗に対しても太いので折れな
い。
(b) Prior art The heat sink 1' shown in the figure 10, which is often seen in the past, is not necessarily made large as a way to increase the surface area, but rather due to the convenience of the electronic circuit wiring design on the board. These are mounted on a single board to form the heat sink 1' according to the dissipation position of the electronic components to be cooled (mostly power transistors) on the board, which is affected by the arrangement of each electronic component determined by the It's getting bigger because it has a shape.
Although it is larger and has better cooling, it still has excessive cooling capacity. In other words, we are giving too much material. In this way, the larger the size, the more it is necessary to provide a beam to prevent distortion that appears later, and also to prevent bending that occurs when the seat 14 on which the electronic parts are mounted is machined and when it is mounted on a machine tool stand. It will stop happening. The addition of beams makes the cooling function unnecessary and increases the weight.
Most of the beams of the heat sink 1' are used together with the cooling blades 2 by making all the beams have the same height and thickness commensurate with their area, sharing the rigidity. In some cases, a suitable number of reinforcement beams separate from the cooling vanes 2 are distributed between them. In any case, the surface area of the heat sink 1', which connects the scattered electronic components to be cooled and becomes a single plate, is sufficient by itself, or since it already has a nearly sufficient cooling function, the space between the two blades mentioned above is sufficient. There was no need to take measures to expand the surface area, such as increasing the number of sheets by making the pitch smaller or thinner. Designing the shape of one heat sink 1' in this way provides good cooling, and since there is only one heat sink, the processing cost is low, so it seems like a reasonable method at first glance. This form of thought actually accounts for the majority of existing heat sinks. On the other hand, manufacturers rely on large shapes because they are easy to perform die casting, lost wax method, or extrusion using dies. According to the mold casting method, when the heat sink 1' is integrally provided with columnar feet for attaching it to a machine frame, etc., or when the feet are provided on the machine frame, it is easy to use a mold to provide the seat 15. In addition, the above-mentioned mounting seat 14 for the electronic components can be easily integrally molded.
I think everything is rational. Also, in the basic mold release process of casting, the thick blades 2 and end faces 7 described above were pushed with ejector pins, so there was no deformation or breakage. Also, since the base 3 part has a large space between the two blades, it can also be used to protrude. At the same time, it is easy to create a guide hole for the ejector pin that is inserted into the mold. Since the hole diameter is naturally large, it is easy to improve the roughness of the hole inner wall, and the large pin diameter allows for high repeated thermal cycle fatigue strength. In addition, it is thick enough to resist sliding resistance caused by hot water scum that gets between the guide hole and the pin, so it will not break.

押し出し成形においても、前述した梁と羽根2
を併用した全体の断面は、捩りに対する剛性は非
常に大きくなつて棒状に長く押し出すに、捩れの
防止につながつて得策になつて、小さい捩れに止
まるので修正は簡単になる。ここでも、鋳造法の
ように取付足とか座15は一体に作れないから部
品数は増えてしまうが、一個にまとめたヒートシ
ンク1′に安価を求め過剰の冷却機能とぜい肉に
目をつむつている。
In extrusion molding, the beams and blades 2 mentioned above are also used.
The overall cross-section that is used in conjunction with this will have a very high rigidity against torsion, and if it is extruded into a long rod shape, it will be a good idea to prevent twisting, and since the twisting will be kept to a small amount, correction will be easy. Here, too, the number of parts increases because the mounting legs and seats 15 cannot be made in one piece as in the case of casting, but we sought a low cost for the integrated heat sink 1' and ignored excessive cooling function and extra bulk. There is.

(ハ) 発明が解決しようとする問題点 一般的にパワートランジスタは機械系駆動回路
或は、この電源系統に使う。これ等駆動回路系基
板はヒートシンク1′に取付けた後に、機械フレ
ームか、シヤーシに取りつける。又他の図示して
いない従来のヒートシンクとして、平面積的に制
約を受けてこれを小としたために、基台3の両面
に羽根2を設けた例がある。これは放熱効果を増
す表面積の拡大の目的を片面だけに羽根2のピツ
チと厚さを小さくして設け得る方策のない事情に
よつて前述した作り易さに偏つている。いずれに
しても羽根2の高さと大形化のヒートシンク1′
は空間容積を大きく占めて機器の小形化の妨げに
なる。他の電子デバイスの超LSIをはじめとする
集積回路は大規模回路の小形化と高速演算の発達
はめざましく、このために温度上昇は著しくなつ
ているので効率良いヒートシンクの必要性は増し
ている。ここに使う場合、上述のトランジスタの
冷却設計思想は計算機の演算回路の小形化を一つ
の目標にしている大規模集積回路の考えに反して
演算部の小形化を行えなくする。つまり大形プリ
ント基板上の個々の場所で単独の冷却は最も望し
い。それは重量の増加になるばかりか、最近は電
子部品を基板の両面に搭載するようになつている
ので、これに羽根2を当らないよう間隔をとる
か、切除しておく等しなければ隣りの基板への障
害になるからである。このような目的のヒートシ
ンクにおいて限られた空間容積内に、最も効果的
な放熱設計を行うとすれば、それは基台3と一体
の羽根(フイン)2の厚さを薄くし枚数を多くし
て、上述した容積内で高さも限度に一杯にとるの
で、羽根2間は勢い狭くなつて金型を使つての鋳
造は出来ない。理由は、凝固する収縮力を利用し
て可動型に製品を抱き込んで型離しを行うが第
1,2図の完成形状で金型鋳造を行うと、羽根2
の上端7の巾は上述したように薄いので可動型内
のこの端面7を押す、突き出しピン(図はない)
径は細くなりすぎ鋳造中の熱疲労と、上述ピンと
この案内穴のスキマへの湯カス喰い込みによつて
抵抗が増加して折れてしまう。側面5と側面5の
間の基台3の底面を突いて型離しを行うときも間
隔は同じように小さくピン径は細くなつて折れ易
くなつてしまう。
(c) Problems to be solved by the invention Generally, power transistors are used in mechanical drive circuits or power supply systems. After these drive circuit boards are attached to the heat sink 1', they are attached to the machine frame or chassis. In addition, as another conventional heat sink (not shown), there is an example in which blades 2 are provided on both sides of a base 3 in order to reduce the size of the heat sink due to constraints in terms of planar area. This is due to the fact that there is no way to reduce the pitch and thickness of the blades 2 on only one side for the purpose of increasing the surface area to increase the heat dissipation effect, and as a result, the above-mentioned ease of manufacturing is biased. In any case, the height of the blade 2 and the larger heat sink 1'
This occupies a large amount of space and hinders miniaturization of equipment. The miniaturization of large-scale circuits and the development of high-speed calculations in integrated circuits such as ultra-LSIs in other electronic devices have been remarkable, and as a result, temperatures have risen significantly, increasing the need for efficient heat sinks. When used here, the above-mentioned transistor cooling design concept makes it impossible to downsize the arithmetic unit, contrary to the idea of large-scale integrated circuits, which aims to downsize the arithmetic circuit of a computer. In other words, individual cooling at individual locations on a large printed circuit board is most desirable. Not only does this increase the weight, but recently, electronic components have been mounted on both sides of the board, so if you do not leave a space between them or cut them out so that they do not hit the blades 2, it will cause damage to the neighboring parts. This is because it becomes a hindrance to the board. The most effective heat dissipation design within the limited spatial volume of a heat sink for this purpose would be to reduce the thickness and increase the number of fins 2 that are integrated with the base 3. Since the height is set to the maximum within the above-mentioned volume, the space between the blades 2 becomes extremely narrow, making it impossible to cast using a mold. The reason is that the contraction force of solidification is used to enclose the product in a movable mold and release it from the mold, but when mold casting is performed with the completed shape shown in Figures 1 and 2, the blades 2
As the width of the upper end 7 is thin as mentioned above, an ejector pin (not shown) is used to press this end surface 7 inside the movable mold.
If the diameter becomes too small, resistance will increase due to thermal fatigue during casting and molten metal biting into the gap between the pin and this guide hole, resulting in breakage. When releasing the mold by hitting the bottom of the base 3 between the side surfaces 5, the gap is similarly small and the pin diameter becomes thinner, making it easier to break.

角形ボス4の側からの突き出しは冷却中の収縮
を利用して可動型に抱き込んで突き出すダイガス
ト法の原則上出来るものではない。他に安く作る
鍛造法は羽根2の薄さと、高さとに成形に程度が
あつて前述したデバイスの発熱の放散効率を下げ
る。合金粉末焼結法は現状では、原料高と焼結技
術からの設備経費は莫大であつて製品価格を押し
上げてしまい不経済になつてしまう。現存してい
る鋳鍛両法によるとヒートシンク1の羽根2の薄
いものでさえせいぜい平均肉厚で2.5mm位まであ
る。以上説明した事情から高効率の冷却機能をも
たせたヒートシンク1は全面切削成形か、押し出
し成形に一部に切削加工を施した方法しか使えな
い。これは量産的製造法ではない。
Protrusion from the side of the rectangular boss 4 is not possible due to the principle of the die-gas method, which utilizes contraction during cooling to be held in a movable mold and protruded. Another cheap forging method involves forming the blades 2 depending on their thickness and height, which reduces the heat dissipation efficiency of the device described above. At present, the alloy powder sintering method requires enormous raw material costs and equipment costs due to sintering technology, which pushes up the product price and makes it uneconomical. According to the existing casting and forging methods, even the thin blades 2 of the heat sink 1 have an average wall thickness of about 2.5 mm at most. Due to the circumstances explained above, the heat sink 1 having a highly efficient cooling function can only be formed by cutting the entire surface or extrusion molding with a part cut. This is not a mass production method.

(ニ) 問題点を解決するための手段 それは金型鋳造法により、羽根2の所定部分に
肉厚状座様部(以下座状部或は肉厚部と称す)を
設け強度を増して型と羽根2の製作を容易にする
と共に、上記肉厚部を押して離型後、座状部を除
去すると云う合理的の量産手段をとる。
(d) Means to solve the problem The method is to increase the strength by providing a thick seat-like part (hereinafter referred to as seat-like part or thick part) in a predetermined part of the blade 2 using a mold casting method. In addition to facilitating the manufacture of the blade 2, a rational mass production method is adopted in which the thick portion is pressed and the seat portion is removed after the mold is released.

(ホ) 作用 角形ボス4は基台3の裏面に一体であつて、こ
の角形ボス4は冷却する電子デバイスの取付部の
形状によつては円形になる。電子デバイスにボス
の設けてあるときには、ボス4の代りに穴を設け
る。電子デバイスの穴にボス4をはめて両者は熱
伝導を良くするために面6を密着させねじ等を使
つて結合する。さて、演算部シヤーシに収納して
いるプリント基板の隣り同志の寸法は最近は10〜
30mm位が多い。この間に冷却風を通す場合、実装
密度を上げるためにこれ以上狭くなると上述した
基板上に搭載した部品によつて空気抵抗を増して
思わしくない結果をまねく。この制約のもとで表
面積を大きくしようとすると、羽根2の厚さは最
近では例えば1〜2mmを求めねばならない。ピツ
チについても同じである。例えば羽根2高さ10mm
の時、厚さ羽根2間を1mm、同様に20mmの時、
各々2mmを考えてみると、この形状は最早、前述
したように型離しの突き出しピンを型内に置こう
とすると、端面7を押すピン長は羽根2の高さの
2倍位必要で、しかもピン径は羽根2の厚さより
小さくなつているので使用中に折れる。ピンの案
内穴長は略羽根2の高さと同じになつて、この穴
の加工における内面の粗さの改良は不可能ではな
いが、非常に面倒で高価に値する。太いピンを使
つて押すために羽根2の長さ方向の適当の所に背
の高さの同じで、径の大きいボスをつけるとこの
ような小ピツチの羽根2,2同志がつながつて風
は通らない。つながらないまでも、所々にこれが
存在すると、風の通りはやはり悪くなる。ヒート
シンク1にとつて、以上述べた障害は次の事例を
もつて解決出来る。
(E) Function The square boss 4 is integral with the back surface of the base 3, and the square boss 4 may have a circular shape depending on the shape of the mounting portion of the electronic device to be cooled. When the electronic device is provided with a boss, a hole is provided in place of the boss 4. The boss 4 is fitted into the hole of the electronic device, and the surfaces 6 are brought into close contact with each other to improve heat conduction, and the two are connected using screws or the like. Nowadays, the dimensions of adjacent printed circuit boards stored in the calculation unit chassis are 10~
Most are around 30mm. If cooling air is passed through this time, if it becomes narrower than this in order to increase the packaging density, air resistance will increase due to the components mounted on the board mentioned above, leading to undesirable results. In order to increase the surface area under this restriction, the thickness of the blade 2 must be, for example, 1 to 2 mm these days. The same goes for Pituchi. For example, blade 2 height 10mm
When the thickness between the two blades is 1mm, similarly when the thickness is 20mm,
Considering that each is 2 mm, this shape is no longer suitable for placing the ejector pin for releasing the mold in the mold as described above. Moreover, since the pin diameter is smaller than the thickness of the blade 2, it will break during use. The length of the pin guide hole is approximately the same as the height of the blade 2, and although it is not impossible to improve the inner surface roughness by machining this hole, it is extremely troublesome and expensive. In order to push using a thick pin, if you attach a boss with the same height and a large diameter to an appropriate location along the length of the blade 2, the small pitch blades 2 and 2 will be connected to each other and the wind will flow. It doesn't pass. Even if they are not connected, if they are present in some places, the flow of wind will still be poor. For the heat sink 1, the above-mentioned problems can be solved by the following example.

(ヘ) 実施例 一事例は第3,4図にある。(f) Examples An example is shown in Figures 3 and 4.

矢印の方向は溶融アルミを流す方向である。導
湯路11は製品部2,3,4,5,6,7にアル
を導き入れる。羽根状の湯路10は羽根2部の1
3部コーナに、ガス溜りの結果、巣の発生をもた
らさない。ガス抜き路2は型内空気等を製品に巻
き込ませないように末端のガス溜り9へ逃がして
いる通路である。座状部8はこの発明の重要の突
き出しピンを当てるボス形の補強部であつて、一
列配列に特徴を持つている。これによつて十分の
強度のピン径に任意に設計可能であるし、どの部
分の座状部8も湯流れを促進する。羽根2の厚さ
が非常に薄く、しかもピツチも小さいヒートシン
ク1では上述した座状部8の径を大きくして、例
えば羽根2を3枚位、一つの座状部8に継いで一
体にする。この方法は金型の突き出しピンの案内
穴を太くして加工を一層易しくする。つまり長い
穴の加工での曲りも防止し、穴面の粗さの改善も
容易になる。前述したピンの折れも、穴壁の肉厚
も大きくして熱による疲労われも防止する。
The direction of the arrow is the direction in which molten aluminum flows. The hot water channel 11 introduces Al into the product parts 2, 3, 4, 5, 6, and 7. The feather-shaped water passage 10 is one of the two blade parts.
The three-part corner does not result in the formation of nests as a result of gas accumulation. The gas vent path 2 is a path that allows air inside the mold to escape to a gas reservoir 9 at the end so as not to be drawn into the product. The seat portion 8 is a boss-shaped reinforcing portion onto which the ejector pins, which are important in the present invention, are applied, and is characterized by being arranged in a single row. As a result, the pin diameter can be arbitrarily designed to have sufficient strength, and the seat portion 8 at any part promotes the flow of the molten metal. In the heat sink 1 where the thickness of the blades 2 is very thin and the pitch is also small, the diameter of the seat 8 mentioned above is increased, and for example, about three blades 2 are connected to one seat 8 and integrated. . In this method, the guide hole for the ejector pin in the mold is made thicker to make processing easier. In other words, it prevents bending when machining long holes, and it also makes it easier to improve the roughness of the hole surface. The aforementioned pin breakage and the wall thickness of the hole are increased to prevent fatigue due to heat.

実施例は、ヒートシンク1は3個を直列に配し
ているが、多くしても、或は直列3個にしておい
てこれを多数並列に配置して共用の湯口から流す
ようにすれば量産は一層容易である。
In the embodiment, three heat sinks 1 are arranged in series, but mass production can be achieved even if there are more heat sinks 1, or if there are three heat sinks in series and many of them are arranged in parallel and the heat sinks are poured from a common sprue. is even easier.

型から離れたヒートシンク1,1〜はガス溜り
9,9を切除後に座部8,8型よりも少し大きい
巾のカツタを使用して座部8の真上を切り落す。
軸上に複数枚のカツターを所用のピツチで並べた
もので同時に加工すれば、第1,2図の完成品を
能率的に製造可能である。第5図、第6図は基本
的には製作法を代えていない導湯路10の太い応
用である。同類の製造法に上述した座状部8,
8,8をその直径と同じ巾の一本の道帯状(図示
しない)に継いで適当の所定箇所を突き出しピン
を使つて押し出す方法がある。この他上述した一
例の3個直列を数を増す場合に、溶湯の廻りが悪
くなるので両端に注湯する第3図に示した湯口1
1を設ける方法がある。この方法を使つてなお湯
の廻りの悪い時は直列に継いだ長さの中ほどの所
定の上述導帯状部に上述湯口11から分岐したサ
イドゲートを一体に接続して鋳造する方法もあ
る。後者の2方法は、前述した、電子デバイスが
プリント基板上に隣接して並ぶ時、或は、長形デ
バイスの冷却用ヒートシンク1を製作する上で便
利である。一体鋳造後、基台3をカツターを使つ
て切離しないで、羽根2,2とつながつている上
述した座状部8或は道帯状部だけを切除すれば適
宜の長さを持たせた表面積の大きいヒートシンク
1を得る。第3、第4図の実施例においてヒート
シンク1の平面大きさの小さい時は、前述した可
動型に抱きつく力は羽根2,2の枚数の少いこと
から小さくなる。このような場合は上述した座状
部8,8を格別に設けないで羽根2の巾のままま
つなぐ3個程度の直列配列は湯口11の突き出し
部8とガス突き路12の突き出し部8等を押して
型離してもヒートシンク1の形状を損うことなく
成形出来る。鋳造後一体連結したヒートシンク1
の羽根2の両端16の境界を切離する。以上強度
の低い実施例はいずれも、羽根2の端16,16
間、及び羽根2の端16に補強の肉厚座状部8等
を設けている。第7、第8、第9図の実施例も第
3、第4図の製作法と同じの、唯湯口の置き方
と、この近くの導湯路11の形状の異る例であ
る。この導湯路11は先きの道帯状の座状部8を
兼ねている。分岐している湯口の右側の形は、部
分側面第8図の部分13に巣発生の可能性のある
形で、好ましくない。許されるならここは斜面に
する方がよい。左側の第9図の形は危検性のない
例である。左右の末端のガス抜き、或は湯流れの
形状は第3、第4図の形にすると良い。型離し後
の切削切断は同じである。
After removing the gas pockets 9, 9 from the heat sinks 1, 1~ which are separated from the mold, the seat parts 8, 8 are cut off right above the seat part 8 using a cutter having a width slightly larger than that of the 8 mold.
If a plurality of cutters are arranged on a shaft at the required pitch and processed simultaneously, the finished products shown in Figs. 1 and 2 can be manufactured efficiently. 5 and 6 are basically thick applications of the molten metal channel 10 without changing the manufacturing method. The seat portion 8 described above in a similar manufacturing method,
There is a method of connecting the strips 8 and 8 into a strip (not shown) having the same width as the diameter of the strip, and pushing out appropriate predetermined portions using ejection pins. In addition, when increasing the number of three sprues in series as mentioned above, the flow of the molten metal becomes poor, so pour the molten metal into both ends of the sprue shown in Figure 3.
There is a method of providing 1. If this method is used and the flow of hot water is still poor, there is also a method of casting by integrally connecting a side gate branched from the sprue 11 to the predetermined conductive strip part in the middle of the length connected in series. The latter two methods are convenient when electronic devices are arranged adjacent to each other on a printed circuit board or when manufacturing a heat sink 1 for cooling a long device, as described above. After integral casting, the surface area can be adjusted to an appropriate length by cutting out only the seat-like portion 8 or road strip-like portion connected to the blades 2, 2, without cutting off the base 3 using a cutter. Obtain a large heat sink 1. In the embodiments shown in FIGS. 3 and 4, when the planar size of the heat sink 1 is small, the force with which it clings to the movable mold described above is small because the number of blades 2, 2 is small. In such a case, the above-mentioned seats 8, 8 should not be specially provided, and about three pieces connected in series with the same width as the blade 2 should be arranged in series such as the protruding part 8 of the sprue 11 and the protruding part 8 of the gas nozzle 12. Even if the mold is released by pressing , the heat sink 1 can be molded without damaging its shape. Heat sink 1 integrally connected after casting
The boundaries of both ends 16 of the blade 2 are separated. In all of the above embodiments with low strength, the ends 16, 16 of the blade 2 are
A thick seat-like portion 8 for reinforcement is provided between the blades and at the end 16 of the blade 2. The embodiments shown in FIGS. 7, 8, and 9 are also examples in which the manufacturing method is the same as that shown in FIGS. 3 and 4, but the placement of the sprue and the shape of the molten metal channel 11 in the vicinity thereof are different. This hot water channel 11 also serves as the road strip-shaped seat portion 8 mentioned above. The shape of the branched sprue on the right side is undesirable because it may cause a cavity to form in the portion 13 of the partial side view of FIG. If it is possible, it is better to use a slope here. The shape shown in Figure 9 on the left is a non-hazardous example. The shape of the gas vent or flow of hot water at the left and right ends should be as shown in Figures 3 and 4. Cutting after demolding is the same.

(ト) 発明の効果 発明の一連の説明と従来形のヒートシンク1′
の説明から例えば、ヒートシンク1の羽根2の幾
枚かを従来の大形のそれに見た補強方法の、梁と
兼用にしてここを突き出しピンを使つて押す、或
は逆にこの個所の羽根2をなくしてピツチを大き
くして、突き出しピンを当てる方法を考え得る
が、羽根2の数及び表面積は、基台3の同一大き
さの下では、発明の方法に比べて少なくなつて放
熱効果を下げるものに他ならない。発明の方法は
限定された空間容積の内に、最も大きい表面積を
持つものを得られる。例えば側面5,5間の0.5、
1mm、羽根2の厚さ2mmのヒートシンク1を、或
は側面5,5間の2mm、羽根2の厚さ0.5、1mm
のヒートシンク等自由自在に設計出来るようにな
る。又、従来の様に基台3の両面に羽根2を設け
ないで、冷却効果を得られるので、前述したプリ
ント基板に基台3を密接させて、直接取付け機器
の小形化を計れる。仮りに両面に羽根2を設けた
としても発明の方法を使つたヒートシンクは最小
投影面積の小形設計を可能にする。以上詳述の通
り本発明は、小形軽量高効率の放熱を行う安価の
量産的ヒートシンクの製造法を提供する。
(g) Effects of the invention Series of explanations of the invention and conventional heat sink 1'
From the explanation, for example, some of the blades 2 of the heat sink 1 can be used as beams and pushed using ejector pins, or conversely, some of the blades 2 of the heat sink 1 can be reinforced using a conventional large-sized reinforcement method. It is possible to consider a method of eliminating the pitch, increasing the pitch, and applying an ejector pin, but the number and surface area of the blades 2 would be smaller compared to the method of the invention under the same size of the base 3, and the heat dissipation effect would be lower. It's nothing but something to lower. The method of the invention provides the largest surface area within a limited spatial volume. For example, 0.5 between sides 5 and 5,
Heat sink 1 with a thickness of 1 mm and blade 2 of 2 mm, or 2 mm between the sides 5 and 5, and a thickness of blade 2 of 0.5 and 1 mm.
You will be able to freely design heat sinks, etc. Further, since the cooling effect can be obtained without providing the blades 2 on both sides of the base 3 as in the conventional case, the base 3 can be brought into close contact with the aforementioned printed circuit board, and the size of the directly attached equipment can be reduced. Even if the blades 2 are provided on both sides, the heat sink using the method of the invention allows for a compact design with a minimum projected area. As described in detail above, the present invention provides a method for manufacturing an inexpensive, mass-produced heat sink that is small, lightweight, and performs heat dissipation with high efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はヒートシンク1の平面図である。第2
図は第1図の側面図。第3図はこの発明の製作方
法を説明する平面図で、第4図は第3図の側面図
である。第5、第6図は第3、第4図の他の一実
施例の各部分図。第7図は、発明の他の応用例を
説明する主部分の平面図で、第8、第9図は第7
図の部分側面図であり、導湯路を中心に表わして
いる。第10図は代表的の現存するヒートシンク
1′の平面図である。 1……ヒートシンク、1′……ヒートシンク、
2……羽根、3……基台、4……ボス、5……側
面、6……面、7……端面、8……座状部、9…
…ガス溜り、10……羽根状湯路、11……導湯
路、12……ガス抜き路、13……部分、14…
…部品取付座、15……足座、16……羽根端。
FIG. 1 is a plan view of the heat sink 1. FIG. Second
The figure is a side view of Figure 1. FIG. 3 is a plan view illustrating the manufacturing method of the present invention, and FIG. 4 is a side view of FIG. 3. 5 and 6 are partial views of the other embodiment shown in FIGS. 3 and 4. FIG. 7 is a plan view of the main part for explaining another application example of the invention, and FIGS.
This is a partial side view of the figure, mainly showing the molten metal channel. FIG. 10 is a plan view of a typical existing heat sink 1'. 1...Heat sink, 1'...Heat sink,
2...Blade, 3...Base, 4...Boss, 5...Side surface, 6...Face, 7...End face, 8...Seat-shaped portion, 9...
... Gas reservoir, 10 ... Feather-shaped channel, 11 ... Leading water path, 12 ... Gas venting path, 13 ... Part, 14 ...
...Parts mounting seat, 15...Foot seat, 16...Blade end.

Claims (1)

【特許請求の範囲】 1 金型鋳造によつてヒートシンクを製造する方
法において、前記ヒートシンクの基台に一体で複
数略並列様に設けた羽根の所定部分に肉厚部を設
けて鋳造し、次いで前記肉厚部を金型体内に設け
た突き出しピンをもつて加圧して離型した後、前
記肉厚部を除去して所定長のヒートシンクに形成
することを特徴とするヒートシンクの製造法。 2 肉厚部は所定の羽根に独立して設けることと
した、特許請求の範囲第1項記載のヒートシンク
の製造法。 3 肉厚部は各羽根を連結させて設けることとし
た、特許請求の範囲第1項記載のヒートシンクの
製造法。
[Scope of Claims] 1. In a method of manufacturing a heat sink by die casting, a plurality of blades are integrally provided on the base of the heat sink in a substantially parallel manner, and a thick portion is provided at a predetermined portion of the blade, and then the blade is cast. A method for manufacturing a heat sink, characterized in that the thick part is pressurized with an ejector pin provided in a mold body to release the mold, and then the thick part is removed to form a heat sink of a predetermined length. 2. The method of manufacturing a heat sink according to claim 1, wherein the thick portion is provided independently on a predetermined blade. 3. The method of manufacturing a heat sink according to claim 1, wherein the thick portion is provided by connecting each blade.
JP13160386A 1986-06-05 1986-06-05 Production of heat sink Granted JPS62286657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13160386A JPS62286657A (en) 1986-06-05 1986-06-05 Production of heat sink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13160386A JPS62286657A (en) 1986-06-05 1986-06-05 Production of heat sink

Publications (2)

Publication Number Publication Date
JPS62286657A JPS62286657A (en) 1987-12-12
JPH0242289B2 true JPH0242289B2 (en) 1990-09-21

Family

ID=15061921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13160386A Granted JPS62286657A (en) 1986-06-05 1986-06-05 Production of heat sink

Country Status (1)

Country Link
JP (1) JPS62286657A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000024768A (en) * 1998-07-10 2000-01-25 Ndc:Kk Manufacture of aluminum die-cast article

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9310993D0 (en) * 1993-05-27 1993-07-14 Redpoint Limited A process and an apparatus for forming a profiled element
KR100772381B1 (en) 2005-09-29 2007-11-01 삼성전자주식회사 Heat sink
US8366383B2 (en) * 2007-11-13 2013-02-05 United Technologies Corporation Air sealing element
JP2015167072A (en) * 2014-03-03 2015-09-24 市光工業株式会社 Vehicular lighting fixture and manufacturing method for heat sink
CN107570688B (en) * 2017-07-23 2019-03-19 西南电子技术研究所(中国电子科技集团公司第十研究所) The method for preparing the anti-corrosion liquid cold plate of microwave power frequency shift
CN111036877A (en) * 2019-12-12 2020-04-21 胡利丽 Anti-blocking device for exhaust pipe of die casting die

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000024768A (en) * 1998-07-10 2000-01-25 Ndc:Kk Manufacture of aluminum die-cast article

Also Published As

Publication number Publication date
JPS62286657A (en) 1987-12-12

Similar Documents

Publication Publication Date Title
CN101209490B (en) Die casting die for shaping cooling component and method for manufacturing cooling component by the same
US20060249872A1 (en) Compound mold tooling for controlled heat transfer
CN101712115B (en) Method for preparing gradient-structure copper radiating rib for electronic element
JP7263029B2 (en) Reusable mold and molding method for injection molding
JPH0242289B2 (en)
US5215140A (en) Method of making a heat sink
US20120018112A1 (en) Method and apparatus for forming a liquid-forged article
JPH06224335A (en) Method and apparatus for fabricating fin type heat sink
JP2020049540A (en) Chill vent and mold device
JP3668304B2 (en) Manufacturing method of heat sink
JPH04307207A (en) Mold
US11472083B2 (en) Injection mold master unit die back plate cooling with metal backfilled plastic mold
JP3952622B2 (en) Common mold
JPH0890196A (en) Metal mold for molding fin radiator and fin radiator molding method
JP3893494B2 (en) Case for semiconductor module
CN215745563U (en) Extrusion device for forming aluminum alloy radiating fins
KR100236376B1 (en) Plastic mold with reinforcing metal bars and method of preparing the same
JPH1147903A (en) Gas-vent structure of die-casting die
JP3087083B2 (en) Graphite mold for plastic molding
JPH1065073A (en) Heat sink manufacturing device and method
CN216609872U (en) Precision mold with cooling device
JP3760065B2 (en) Manufacturing method of heat sink with cooling fan
JPWO2012176312A1 (en) Injection mold apparatus and injection molding machine
CN207476076U (en) A kind of teeth radiator
JP3908396B2 (en) Resin mold equipment