JPH0242079Y2 - - Google Patents

Info

Publication number
JPH0242079Y2
JPH0242079Y2 JP5267780U JP5267780U JPH0242079Y2 JP H0242079 Y2 JPH0242079 Y2 JP H0242079Y2 JP 5267780 U JP5267780 U JP 5267780U JP 5267780 U JP5267780 U JP 5267780U JP H0242079 Y2 JPH0242079 Y2 JP H0242079Y2
Authority
JP
Japan
Prior art keywords
switching
voltage
frequency
switching elements
high frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5267780U
Other languages
Japanese (ja)
Other versions
JPS5761977U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP5267780U priority Critical patent/JPH0242079Y2/ja
Publication of JPS5761977U publication Critical patent/JPS5761977U/ja
Application granted granted Critical
Publication of JPH0242079Y2 publication Critical patent/JPH0242079Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Control Of Electrical Variables (AREA)
  • Ac-Ac Conversion (AREA)

Description

【考案の詳細な説明】 本考案は交流電源電圧に対し、高周波スイツチ
ング変復調作用の過程を制御することにより、交
流電圧制御回路の小型、軽量、高効率、高速応性
化を図かつたものである。
[Detailed description of the invention] This invention aims to make an AC voltage control circuit smaller, lighter, more efficient, and faster responsive by controlling the process of high-frequency switching modulation and demodulation for AC power supply voltage. .

交流電源に要求される仕様としては、直流電源
のそれに比して安定化電源としての精度、応答性
および効率の他に出力電圧波形、入力力率さらに
は周波数、位相等種々の要件があり、かつ容量が
大きいため、これら全てを満すことは一般に困難
であり、従来から開発されている種々の方式の中
から特に要求される仕様に適したものが選ばれて
いる。
Compared to DC power supplies, the specifications required for AC power supplies include accuracy, responsiveness, and efficiency as a stabilized power supply, as well as various requirements such as output voltage waveform, input power factor, frequency, and phase. Since it is generally difficult to satisfy all of these requirements because of the large capacity, a method that is particularly suited to the required specifications is selected from among the various methods that have been developed in the past.

最近のサイリスタを用いた位相制御方式は鉄共
振、磁気増幅器形等と比べて精度、応答性、周波
数等に関してはかなり改善され、かつ軽量化が図
かられたが、波形ひずみ、力率の点で問題があ
る。比較的小容量電源に適した高精度、高速応性
のものとして、リニアアンプ方式、PWMスイツ
チング制御方式等も開発されているが、効率に問
題があると共に装置が容量の割に大形化する難点
がある。
Recent phase control methods using thyristors have considerably improved accuracy, response, frequency, etc., and are lighter in weight than fero-resonant, magnetic amplifier, etc., but they suffer from problems such as waveform distortion and power factor. There is a problem. Linear amplifier systems, PWM switching control systems, etc. have been developed as highly accurate, high-speed response systems suitable for relatively small capacity power supplies, but they have problems with efficiency and have the disadvantage that the equipment is large in proportion to its capacity. There is.

本制御回路も比較的小容量電源に適したもの
で、スイツチング制御出力波形は上述のPWM制
御方式と同じであるが、従来のものは電源電圧波
形を直接PWMスイツチング制御することによ
り、その基本成分の大きさを制御しているためト
ランスは商用周波数成分を通す低周波用のものを
必要とするから小型、軽量化が困難であり、スイ
ツチング周波数を高めると大きな鉄損を生じるた
めスイツチング周波数も制限され高効率化にも問
題を生じる。
This control circuit is also suitable for relatively small capacity power supplies, and the switching control output waveform is the same as the above-mentioned PWM control method, but the conventional one performs PWM switching control directly on the power supply voltage waveform to control its basic components. Since the size of the transformer is controlled, the transformer must be a low-frequency one that passes commercial frequency components, making it difficult to make it smaller and lighter.Increasing the switching frequency also causes large iron loss, so the switching frequency is also limited. This also causes problems in achieving high efficiency.

一方、近年スイツチング素子、コア材料さらに
制御用ICの発達により高効率、小型、軽量、安
価な高周波スイツチングレギユレータが開発され
各方面で用いられるようになつて来ている。本制
御回路はこの高周波スイツチング制御手法を交流
電圧制御回路に取り入れたものである。以下にそ
の基本回路、動作原理およびその応用例について
述べる。
On the other hand, in recent years, with the development of switching elements, core materials, and control ICs, highly efficient, compact, lightweight, and inexpensive high-frequency switching regulators have been developed and are being used in various fields. This control circuit incorporates this high frequency switching control method into an AC voltage control circuit. The basic circuit, operating principle, and application examples are described below.

第1図が本制御方式の基本原理図であり、第2
がその動作波形である。制御される交流電源1の
電圧eiに対し、スイツチング変調のための双方向
スイツチ2−1,2−2により高周波のスイツチ
ングパルスP1とその論理反転させた1で半周期毎
に交互に導通、非導通のスイツチング制御をか
け、この高周波スイツチング変調された電圧eS
高周波トランス3を介して適当な変圧比で二次に
伝達される。この変調電圧に対し双方向性スイツ
チ4−1,4−2により変調波と同じ周波数で、
ある位相差を有する高周波パルスp2とその論理反
転された2の信号で半周期毎に交互に導通、非導
通のスイツチング制御をかけ、復調された出力e2
をこれらスイツチング調波除去用フイルタを介し
て負荷に導びき負荷端に制御された交流出力を得
るものである。このように変調用パルスp1に対す
る復調用パルスp2の位相を制御することにより、
平均的な出力電圧波形として、入力電圧と一致す
る同相電圧波形から、入力電圧と逆位相の電圧波
形に至るまで連続的に制御することができる。す
なわち、復調出力電圧e2は電源電圧e1に対し、変
圧比をNとしスイツチング調波成分を除いた平均
電圧2がフイルタ後の交流出力電圧e0として得ら
れ、e02=(1−4Tφs/Ts)Ne1で与えられ、
任意の電圧が復調パルス位相Tφsを変えることに
より連続的に制御することができる。同図では復
調パルス位相が一定(Tφs=Ts/6)の場合を
示しているが、これを時間的に制御をかけると上
述した範囲内で出力電圧波形も任意に制御するこ
とができるため交流電源にひずみ波が含まれてい
る場合なども、この波形ひずみを補正することが
でき低波形ひずみの電圧制御された交流出力電圧
を得ることができる。
Figure 1 shows the basic principle of this control method, and Figure 2 shows the basic principle of this control method.
is its operating waveform. For the voltage e i of the AC power supply 1 to be controlled, bidirectional switches 2-1 and 2-2 for switching modulation alternately generate a high-frequency switching pulse P 1 and its logically inverted version 1 every half cycle. Conductive/non-conductive switching control is applied, and this high frequency switching modulated voltage e S is transmitted to the secondary device via the high frequency transformer 3 at an appropriate transformation ratio. For this modulated voltage, the bidirectional switches 4-1 and 4-2 generate the same frequency as the modulated wave.
A high-frequency pulse p 2 with a certain phase difference and its logically inverted signal 2 are used to perform switching control of conduction and non-conduction alternately every half cycle, and the demodulated output e 2
is guided to the load through these switching harmonic removal filters to obtain a controlled AC output at the load end. By controlling the phase of demodulation pulse p 2 with respect to modulation pulse p 1 in this way,
The average output voltage waveform can be continuously controlled from an in-phase voltage waveform that matches the input voltage to a voltage waveform that is in opposite phase to the input voltage. That is, the demodulated output voltage e 2 is the average voltage 2 obtained by removing the switching harmonic component with respect to the power supply voltage e 1 with a transformation ratio of N, and is obtained as the AC output voltage e 0 after the filter, e 0 = 2 = (1 −4Tφs/Ts) Ne 1 ,
Any voltage can be continuously controlled by changing the demodulation pulse phase Tφs. The figure shows the case where the demodulation pulse phase is constant (Tφs = Ts/6), but if this is controlled in terms of time, the output voltage waveform can also be controlled arbitrarily within the range mentioned above, so AC Even if the power supply contains distorted waves, this waveform distortion can be corrected and a voltage-controlled AC output voltage with low waveform distortion can be obtained.

本制御回路の実用的な応用例としては、このよ
うな広範な電圧制御を目的とした適用の他に安定
化電源として特に適している。この場合はその電
圧制御範囲は入力電圧変動および負荷変動による
出力電圧変動を補償する程度で良いため、さらに
小型、軽量化が図かられかつ効率も向上する。
As a practical application example of the present control circuit, in addition to such a wide range of voltage control applications, the present control circuit is particularly suitable as a stabilized power source. In this case, the voltage control range is sufficient to compensate for output voltage fluctuations due to input voltage fluctuations and load fluctuations, so that further size and weight reduction can be achieved, and efficiency can also be improved.

第3図が本制御方式による交流安定化電源とし
ての適用回路例である。非安定化交流電源電圧1
に対し、2,3,4で構成される上述のスイツチ
ング変復調回路により電圧制御された出力がこれ
に加わるようにし、この重畳出力をフイルタ5を
介し、負荷6に導びくことにより構成される。第
4図にこの動作原理波形を示す。同図aは昇圧制
御の場合でbは降圧制御の場合であり、このよう
に復調時のスイツチング位相調整により、スイツ
チング調波成分を除いた平均的な復調出力立とし
て、a入力波形と同相の電圧波形からb逆位相の
電圧波形に至るまで、その大きさを連続的に制御
することができる点は交流安定化電源としての構
成において特に適している。また同時に、上述し
たようにスイツチング復調パルス位相の制御によ
り入力電圧に含まれるひずみも補正することがで
き、かつこのスイチング制御を電源周波数に比べ
極めて高い周波数で行なうと、応答性も極めて高
くなりフイルタを通した出力電圧をフイードバツ
クし基準正弦波との瞬時比較制御ができるため極
めて精度の高い高忠実度、高速応性の交流安定化
電源が実現できる。
FIG. 3 is an example of an applied circuit as an AC stabilized power source using this control method. Unregulated AC power supply voltage 1
On the other hand, an output voltage-controlled by the above-mentioned switching modulation/demodulation circuit composed of 2, 3, and 4 is added thereto, and this superimposed output is guided to a load 6 via a filter 5. FIG. 4 shows the waveforms of this operating principle. In the figure, a shows the case of step-up control, and b shows the case of step-down control. By switching phase adjustment during demodulation in this way, the average demodulated output voltage excluding switching harmonic components is set to the same phase as the input waveform a. The ability to continuously control the magnitude of the voltage waveform from the voltage waveform to the voltage waveform with the opposite phase b is particularly suitable for use in a configuration as an AC stabilized power source. At the same time, as mentioned above, the distortion contained in the input voltage can also be corrected by controlling the switching demodulation pulse phase, and if this switching control is performed at an extremely high frequency compared to the power supply frequency, the response becomes extremely high and the filter Since the output voltage can be fed back and instantaneously compared and controlled with a reference sine wave, it is possible to realize an AC stabilized power supply with extremely high precision, high fidelity, and high speed response.

以上のように本制御方式では、スイツチング周
波数を極めて高く選ぶことにより、出力電圧波形
の瞬時波形補正ができ、またトランスが高周波用
で小型、軽量化ができ高効率の極めてすぐれた特
性を有する交流電圧制御が実現でき、特に安定化
電源としての適用において極めて有用であると共
に低価格化が期待できる。
As described above, in this control method, by selecting an extremely high switching frequency, it is possible to perform instantaneous waveform correction of the output voltage waveform.Also, since the transformer is for high frequencies, it is compact and lightweight, and has extremely excellent characteristics of high efficiency. Voltage control can be realized, and it is extremely useful, especially in application as a stabilized power source, and can be expected to be inexpensive.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案による交流電圧制御基本回路図
であり、1は商用周波交流電源、2および4は双
方向性スイツチでダイオーブリツジにパワートラ
ンジスタ、パワーFET等のスイツチング素子を
接続することにより、あるいはダイオードと直列
に接続されたこれらスイツチング素子を逆並列に
することなどにより構成され、3は高周波変調さ
れた電圧を適当な変圧比で二次に絶縁伝達するた
め高周波特性のすぐれたコア材料による高周波ト
ランスであり、5はこれらによりスイチング変復
調された出力のスイツチング調波成分除去用フイ
タを含めた負荷を示している。第2図はその動作
原理波形を示したもので、eiが交流入力電圧、p1
がスイツチング変調用信号で、これによりスイツ
チング変調された電圧がeSであり、p1に対し位相
調整された復調用スイツチングパルス信号p2で復
調された出力がe2で、このスイツチング調波成分
を除去したものが制御された交流出力電圧であ
る。第3図は本電圧制御手法を交流安定化電源に
適用する場合の主回路構成例であり、第1図に示
したスイツチング変復調回路の復調出力が入力電
圧に重畳され、フイルタ5を介して負荷6に導び
いたものである。第4図は電源電圧eiに重畳され
る復調出力esが復調位相の制御により、電源電圧
と同極性aあるいは逆極性bいずれにも連続的に
制御できることを示している。
Figure 1 is a basic circuit diagram of AC voltage control according to the present invention, in which 1 is a commercial frequency AC power supply, 2 and 4 are bidirectional switches, and switching elements such as power transistors and power FETs are connected to the diode bridge. , or by making these switching elements connected in series with diodes in antiparallel, etc. 3 is a core material with excellent high frequency characteristics in order to insulate and transmit high frequency modulated voltage to the secondary at an appropriate transformation ratio. The reference numeral 5 indicates a load including a filter for removing switching harmonic components from outputs subjected to switching modulation and demodulation by these high frequency transformers. Figure 2 shows the waveform of its operating principle, where e i is the AC input voltage and p 1
is the switching modulation signal, the voltage that is switched modulated by this is e S , and the output demodulated by the demodulating switching pulse signal p 2 whose phase is adjusted with respect to p 1 is e 2 , and this switching harmonic The component removed is the controlled AC output voltage. FIG. 3 shows an example of the main circuit configuration when this voltage control method is applied to an AC stabilized power supply. The demodulated output of the switching modulation/demodulation circuit shown in FIG. 6. FIG. 4 shows that the demodulated output e s superimposed on the power supply voltage e i can be continuously controlled to have either the same polarity a or the opposite polarity b as the power supply voltage by controlling the demodulation phase.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 交流電源をセンタータツプ付きの高周波トラン
スの一次側に二組の交流スイツチング素子を介し
て接続し、その二次側も二組の交流スイツチング
素子を設け、センタータツプと両スイツチング素
子の出力間より、制御された交流出力を得る構成
において、一次側の両スイツチング素子を高周波
で同じ割合で交互にスイツチングすることにより
交流電源電圧を高周波で変調し、これを高周波ト
ランスにより適当な変圧比でもつて二次側に伝達
し、一次側の変調用周波数と同じ周波数で二次の
両スイツチング素子を交互にスイツチング制御し
復調をかけるときの位相を制御することにより、
交流出力電圧を制御する高周波スイツチング交流
電圧制御回路。
An AC power source is connected to the primary side of a high-frequency transformer with a center tap via two sets of AC switching elements, and the secondary side is also provided with two sets of AC switching elements, and a connection is made between the center tap and the outputs of both switching elements. In a configuration that obtains a controlled AC output, the AC power supply voltage is modulated at high frequency by alternately switching both switching elements on the primary side at the same rate at high frequency, and this is then applied at an appropriate transformation ratio by a high frequency transformer. By transmitting it to the secondary side and controlling the phase when demodulating by alternately controlling both secondary switching elements at the same frequency as the modulation frequency on the primary side,
High frequency switching AC voltage control circuit that controls AC output voltage.
JP5267780U 1980-04-17 1980-04-17 Expired JPH0242079Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5267780U JPH0242079Y2 (en) 1980-04-17 1980-04-17

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5267780U JPH0242079Y2 (en) 1980-04-17 1980-04-17

Publications (2)

Publication Number Publication Date
JPS5761977U JPS5761977U (en) 1982-04-13
JPH0242079Y2 true JPH0242079Y2 (en) 1990-11-08

Family

ID=29434848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5267780U Expired JPH0242079Y2 (en) 1980-04-17 1980-04-17

Country Status (1)

Country Link
JP (1) JPH0242079Y2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3640260B2 (en) * 1996-06-06 2005-04-20 株式会社アイ・ヒッツ研究所 AC / AC converter
CN102654778A (en) * 2011-03-03 2012-09-05 易丰兴业有限公司 Phase control type alternating current voltage stabilizing circuit
JP5276146B2 (en) * 2011-06-22 2013-08-28 易豐興業有限公司 Phase control type AC voltage stabilization circuit

Also Published As

Publication number Publication date
JPS5761977U (en) 1982-04-13

Similar Documents

Publication Publication Date Title
US5805432A (en) Resonant DC-DC converter capable of controlling by pulse width modulation
US4439821A (en) DC to DC switching regulator with temperature compensated isolated feedback circuitry
EP0211796B1 (en) High efficiency mosfet sine wave generator
EP3192168B1 (en) Wien bridge oscillator circuit
US6922101B2 (en) Phase shift modulation class D amplifier
US20240128883A1 (en) Single stage power factor correcting synchronous harmonic converter
US20240048059A1 (en) Resonant converter with synchronous average harmonic current control
JPS59191485A (en) Low loss high frequency inverter
US4301499A (en) Inverter circuit with current equalization
JPH0242079Y2 (en)
EP0227042A2 (en) High voltage source providing continuously regulated output voltage, preferably for supplying low-power ion and electron beam machining and evaporating apparatuses
US4301502A (en) Isolated D.C. voltage regulating apparatus
WO1998000903A1 (en) A phase shift triggering circuit for thyristor and an integrated module of the triggering circuit and the thyristor
JPH06189554A (en) Ac electronic load system
JP2934689B2 (en) Inverter device
EP0099232A2 (en) Burst length modulation for switching power supplies
JPS6013486Y2 (en) AC high voltage generator for potential therapy equipment
CN87208958U (en) Switching type alternating voltage segulating / modutating apparatus
JP3319072B2 (en) Power amplifier
JPH04265A (en) Power converter
JPS62147969A (en) Inverter unit
SU729791A1 (en) Ac voltage source
JPS61158685A (en) Self-oscillator for high frequency heating
JP3211380B2 (en) Power converter
JPS63194570A (en) Series resonance converter