JPH0241917A - Heat pump type air conditioning device for vehicle - Google Patents

Heat pump type air conditioning device for vehicle

Info

Publication number
JPH0241917A
JPH0241917A JP19246888A JP19246888A JPH0241917A JP H0241917 A JPH0241917 A JP H0241917A JP 19246888 A JP19246888 A JP 19246888A JP 19246888 A JP19246888 A JP 19246888A JP H0241917 A JPH0241917 A JP H0241917A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
air
hot water
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19246888A
Other languages
Japanese (ja)
Inventor
Mitsuru Kimata
充 木全
Hiroshi Inazu
稲津 宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP19246888A priority Critical patent/JPH0241917A/en
Publication of JPH0241917A publication Critical patent/JPH0241917A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To prevent the cooling water of an engine from being leaked out even when an opening is bored in a heat exchanger by providing a cooling medium evaporator for a heater in the downstream of a hot water heater in a ventilating duct and heat exchanging with the cooling water of the engine through air. CONSTITUTION:In a ventilating duct 2, an air blower 3, the hot water type heater of a hot water circuit 4 and the first heat exchanger 51, the second heat exchanger 52 of a freezing cycle 5 are provided sequentially from the upstream side to the downstream side of air flow. In this constitution, the hot water type heater 41 radiates the retention heat of the cooling water of an engine and heats passing air. The first heat exchanger 51 operates as the condenser of a high temperature and high pressure cooling medium from a cooling medium compressor 53 at the time of a heating operation. The second heat exchanger 52 operates as the evaporator of the cooling medium. Like this constitution, the heat exchanger is arranged in the ventilating duct, thereby the leakage of water being prevented even when an opening is bored in the heat exchanger.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、通風ダクト内の温水式ヒータの下流に冷凍サ
イクルの第1熱交換器および第2熱交換器を配設した車
両用ヒートポンプ式冷暖房装置に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a vehicle heat pump type heat exchanger in which a first heat exchanger and a second heat exchanger of a refrigeration cycle are arranged downstream of a hot water type heater in a ventilation duct. Regarding heating and cooling equipment.

[従来の技術] 従来より、エンジン冷却水を水冷媒熱交換器によって暖
房用熱源として吸収することができる車両用ヒートポン
プ式冷暖房装置が存在する。
[Prior Art] Conventionally, there has been a heat pump air-conditioning system for a vehicle that can absorb engine cooling water as a heat source for heating using a water-refrigerant heat exchanger.

この車両用ヒートポンプ式冷暖房装置の冷凍サイクル1
00は、第3図に示すように、冷媒圧縮機101、冷房
運転時に冷媒凝縮器として働く車室外熱交換器102、
受液器103、膨張弁104、冷房運転時に冷媒蒸発器
として働き、暖房運転時に冷媒凝縮器として働く車室内
熱交換器105、膨張弁106、暖房運転時に冷媒蒸発
器として働く水冷媒熱交換器107、およびこれらを環
状に連結する冷媒配管108を備えている。また、冷凍
サイクル100には、冷媒の流通方向を冷房運転時と暖
房運転時とで逆転させるために、四方弁111、電磁弁
112、113および逆止弁114.115が所定の場
所に組み込まれている。
Refrigeration cycle 1 of this vehicle heat pump air conditioning system
00, as shown in FIG. 3, a refrigerant compressor 101, a vehicle exterior heat exchanger 102 which functions as a refrigerant condenser during cooling operation,
A liquid receiver 103, an expansion valve 104, an interior heat exchanger 105 that functions as a refrigerant evaporator during cooling operation and a refrigerant condenser during heating operation, an expansion valve 106, and a water-refrigerant heat exchanger that functions as a refrigerant evaporator during heating operation. 107, and a refrigerant pipe 108 that connects these in an annular manner. In addition, the refrigeration cycle 100 includes a four-way valve 111, solenoid valves 112 and 113, and check valves 114 and 115 installed at predetermined locations in order to reverse the flow direction of the refrigerant between cooling operation and heating operation. ing.

ここで、上記冷凍サイクル100の水冷媒熱交換器10
7は、エンジン冷却水を暖房用熱源として吸収するため
に、エンジン109の冷却用つオータジャケッ1〜に連
通ずる冷却水配管110内に設置されている。
Here, the water refrigerant heat exchanger 10 of the refrigeration cycle 100
7 is installed in a cooling water pipe 110 that communicates with the cooling overjacket 1 of the engine 109 in order to absorb engine cooling water as a heat source for heating.

「発明が解決しようとする課題] しかるに、上記構成の従来の車両用ヒートポンプ式冷曖
房装置は、腐食等により水冷媒熱交換器107または冷
媒配管108に穴が開き、冷却水配管110の中に冷媒
が流入するとい、う不具合が生じる。
[Problems to be Solved by the Invention] However, in the conventional heat pump cooling system for vehicles having the above configuration, a hole is formed in the water-refrigerant heat exchanger 107 or the refrigerant pipe 108 due to corrosion, etc., and the inside of the cooling water pipe 110 is damaged. If refrigerant flows into the tank, problems will occur.

冷却水配管110の中に冷媒が流入すると、冷媒によっ
てエンジン冷却水が押し出され、冷却水配管110中の
内部圧力の」、昇によって、冷却水配管110が外れた
りして、エンジン冷却水が漏出するという恐れがあった
When the refrigerant flows into the cooling water piping 110, the engine cooling water is pushed out by the refrigerant, and the internal pressure in the cooling water piping 110 rises, causing the cooling water piping 110 to come off, causing engine cooling water to leak. There was a fear that it would happen.

本発明は、たとえ第2熱交換器等に穴が開いたとしても
エンジン冷却水の漏出を防止できる車両用ヒートポンプ
式冷暖房装置の提供を目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a heat pump air conditioning system for a vehicle that can prevent engine cooling water from leaking even if a hole is formed in a second heat exchanger or the like.

[課題を解決するための手段] 本発明の車両用ヒーI・ポンプ式冷暖房装置は、車室内
に向かって空気を送るための通風ダクトと、 該通風ダクト内に配設され、エンジン冷却水の保有する
排熱を放熱する温水式ヒータと、前記通風ダクト内の前
記温水式ヒータの下流に配設されるとともに、冷房運転
時に通過する空気を冷却する冷媒蒸発器として働き、暖
房運転時に通過する空気を加熱する冷媒凝縮器として働
く第1熱交換器、および前記通風ダクト内の前記温水式
ヒータの下流に配設されるとともに、暖房運転時に通過
する空気を冷却する冷媒蒸発器として働く第2熱交換器
を具備する冷凍サイクルとを備えた構成を採用した。
[Means for Solving the Problems] The vehicle heating and cooling device of the present invention includes a ventilation duct for sending air toward the vehicle interior, and a ventilation duct disposed within the ventilation duct to supply engine cooling water. A hot water heater that radiates retained waste heat; and a hot water heater that is disposed downstream of the hot water heater in the ventilation duct, and serves as a refrigerant evaporator that cools the air that passes during cooling operation, and acts as a refrigerant evaporator that cools the air that passes during heating operation. a first heat exchanger that serves as a refrigerant condenser that heats air; and a second heat exchanger that is disposed downstream of the hot water heater in the ventilation duct and that serves as a refrigerant evaporator that cools the air passing through it during heating operation. A configuration including a refrigeration cycle equipped with a heat exchanger was adopted.

[作用および発明の効果] 本発明の車両用ヒートポンプ式冷暖房装置は上記構成に
よりつぎの作用および効果を有する。
[Functions and Effects of the Invention] The vehicle heat pump air-conditioning system of the present invention has the following functions and effects due to the above configuration.

暖房運転時に通過する空気を冷却する冷媒蒸発器として
働く第2熱交換器を通風ダクト内の温水式ヒータの下流
に配設しており、空気を介してエンジン冷却水と冷媒と
を熱交換しているため、たとえ第2熱交換器等に穴が開
いたとしても、エンジン冷却水の漏出を防止することが
できる。
The second heat exchanger, which functions as a refrigerant evaporator to cool the air passing through during heating operation, is installed downstream of the hot water heater in the ventilation duct, exchanging heat between engine cooling water and refrigerant via air. Therefore, even if a hole is formed in the second heat exchanger or the like, leakage of engine cooling water can be prevented.

[実施例] 本発明の車両用ヒートポンプ式冷暖房装置の実施例を第
1図および第2図に基づき説明する。
[Example] An example of the heat pump type air conditioning system for a vehicle according to the present invention will be described based on FIGS. 1 and 2.

第1図は本発明の第1実施例を適用した自動小用ヒート
ポンプ式冷暖房装置の冷凍サイクルを示す。
FIG. 1 shows a refrigeration cycle of an automatic small-sized heat pump air-conditioning system to which a first embodiment of the present invention is applied.

1は自動市川ヒートポンプ式冷暖房装置(以下冷暖房装
置と略する)を示す。
1 shows an automatic Ichikawa heat pump air-conditioning system (hereinafter abbreviated as air-conditioning system).

冷暖房装置1は、車室(図示せず)内に向って空気を送
るための通風ダクト2と、エンジン冷却水が循環する温
水回路4と、冷媒の循環方向を逆転して、冷房運転と暖
房運転とが切換可能な冷凍サイクル5とを備えている。
The air conditioner/heater 1 includes a ventilation duct 2 for sending air into a vehicle interior (not shown), a hot water circuit 4 for circulating engine cooling water, and a cooling/heating operation by reversing the direction of refrigerant circulation. The refrigeration cycle 5 is provided with a refrigeration cycle 5 whose operation can be switched.

通風ダクト2は、空気流の上流に車室外の空気を導入す
るための導入口21が形成され、空気流の下流に車室内
に空気を吹き出すための吹出口(図示せず)が形成され
ている。また、通風ダクト2内には、空気流の上流より
下流に向かって順次、送風機3、温水回路4の温水式ヒ
ータ41、および冷凍サイクル5の第1熱交換器51お
よび第2熱交換器52が配設されている。
The ventilation duct 2 has an inlet 21 formed upstream of the airflow for introducing air outside the vehicle interior, and an air outlet (not shown) formed downstream of the airflow for blowing air into the vehicle interior. There is. Further, in the ventilation duct 2, from the upstream to the downstream of the air flow, a blower 3, a hot water heater 41 of the hot water circuit 4, and a first heat exchanger 51 and a second heat exchanger 52 of the refrigeration cycle 5 are installed. is installed.

送風機3は、導入口21より空気を導入し、通風ダクト
2内において車室内に向かう空気流を発生さぜるファン
31、および該ファン31を駆動する駆動モータ32を
有する。
The blower 3 includes a fan 31 that introduces air through an inlet 21 and generates an air flow toward the vehicle interior within the ventilation duct 2, and a drive motor 32 that drives the fan 31.

温水回路4は、エンジン10の冷却用ウォータジャケッ
ト内で暖められたエンジン冷却水が冷却水配管42を経
て供給されるものである。また温水回路4は、温水式ヒ
ータ41およびつオータバルブ43とを備える。
The hot water circuit 4 is supplied with engine cooling water warmed within the cooling water jacket of the engine 10 via a cooling water pipe 42 . The hot water circuit 4 also includes a hot water heater 41 and an over valve 43 .

温水式ヒータ41は、通風ダクト2内において第1熱交
換器51および第2熱交換器52の空気流の上流に配設
され、エンジン冷却水が保有する高温のエンジン排熱を
放熱することにより、通過する空気を加熱し、車室内を
暖房する。
The hot water heater 41 is disposed upstream of the airflow of the first heat exchanger 51 and the second heat exchanger 52 in the ventilation duct 2, and heats the engine by dissipating high-temperature engine exhaust heat held by the engine cooling water. , heats the air passing through it and heats the interior of the vehicle.

つオータバルブ43は、冷却水配管42に設けられ、温
水式ヒータ41へのエンジン冷却水の通水量を制御する
。このつオータバルブ43は、操作パネルに取付けられ
た冷暖房切換レバー(図示せず)が冷房運転に設定され
たT/fp閉弁して温水式ヒータ41へのエンジン冷却
水の供給を阻止し、暖房運転に設定された際開弁して温
水式ヒータ41ヘエンジン冷却水を供給する。
The over valve 43 is provided in the cooling water pipe 42 and controls the amount of engine cooling water flowing to the hot water heater 41 . This over-valve 43 closes the T/fp valve when the air-conditioning/heating switching lever (not shown) attached to the operation panel is set to cooling operation, and blocks the supply of engine cooling water to the hot water heater 41, thereby preventing the air-conditioning operation from being performed. When set to operation, the valve opens to supply engine cooling water to the hot water type heater 41.

冷凍サイクル5は、第1熱交換器51、第2熱交換器5
2、冷媒圧縮機53、冷媒凝縮器54、受液器55、冷
媒の減圧装置をなす暖房用温度作動式膨張弁56、冷媒
の減圧装置をなす冷房用温度作動式膨張弁57、逆止弁
58.59、電磁式開開弁(以下電磁弁と略す)60.
61、四方弁62、およびこれらを接続する冷媒配管6
3を具備する。
The refrigeration cycle 5 includes a first heat exchanger 51 and a second heat exchanger 5.
2. Refrigerant compressor 53, refrigerant condenser 54, liquid receiver 55, heating temperature-activated expansion valve 56 serving as a refrigerant pressure reducing device, cooling temperature-activated expansion valve 57 serving as a refrigerant pressure reducing device, and check valve. 58.59, Solenoid open/close valve (hereinafter abbreviated as solenoid valve) 60.
61, four-way valve 62, and refrigerant pipe 6 connecting these
3.

第1熱交換器51は、通風ダクト2内において温水式ヒ
ータ41の空気流の下流に配設され、暖房運転時に冷媒
圧縮機53から供給された高温、高圧の気相冷媒を冷却
して凝縮させる冷媒凝縮器として働く。ファン31によ
り吸引された冷たい空気は、第1熱交換器51を通過す
ることによって加熱される。
The first heat exchanger 51 is disposed downstream of the air flow of the hot water heater 41 in the ventilation duct 2, and cools and condenses the high temperature, high pressure gas phase refrigerant supplied from the refrigerant compressor 53 during heating operation. It acts as a refrigerant condenser. The cold air sucked by the fan 31 is heated by passing through the first heat exchanger 51.

また、第1熱交換器51は、冷房運転時に膨張弁57か
らの低温、低圧の霧状冷媒を周囲の空気を吸熱すること
により蒸発させる冷媒蒸発器として(至)く。ファン3
1により吸引された暖かい空気は、第1熱交換器51を
通過することによって冷却される。
The first heat exchanger 51 also functions as a refrigerant evaporator that evaporates the low-temperature, low-pressure atomized refrigerant from the expansion valve 57 by absorbing heat from the surrounding air during cooling operation. fan 3
The warm air sucked by the first heat exchanger 51 is cooled by passing through the first heat exchanger 51 .

第2熱交換器52は、通風ダクト2内において第1熱交
換器51の空気流の下流に配設され、電磁弁60が開弁
じている冷房運転時、および暖房運転時に膨張弁56か
らの低温、低圧の霧状冷媒を温水式ヒータ41および第
1熱交換器51を通過した高温の空気を吸熱することに
より蒸発させる冷媒蒸発器として働く。
The second heat exchanger 52 is disposed downstream of the air flow of the first heat exchanger 51 in the ventilation duct 2, and receives air from the expansion valve 56 during cooling operation when the solenoid valve 60 is open and during heating operation. It functions as a refrigerant evaporator that evaporates a low-temperature, low-pressure atomized refrigerant by absorbing heat from the high-temperature air that has passed through the hot water heater 41 and the first heat exchanger 51.

冷媒圧縮機53は、電磁クラッチを介してエンジン10
によって駆動され、吸引口64より吸引した冷媒を圧縮
して吐出口65より吐出する。
The refrigerant compressor 53 is connected to the engine 10 via an electromagnetic clutch.
The refrigerant sucked from the suction port 64 is compressed and discharged from the discharge port 65.

冷媒凝縮器54は、エンジンルーム等の車室外に配され
、冷房運転時にのみ冷媒圧縮機53から供給された高温
、高圧の気相冷媒をファン66により吹き付けられた車
室外の空気で冷却して凝縮させる。
The refrigerant condenser 54 is arranged outside the vehicle interior, such as the engine room, and cools the high temperature, high pressure gas phase refrigerant supplied from the refrigerant compressor 53 only during cooling operation with the air outside the vehicle interior blown by the fan 66. Condense.

受液器55は、冷媒凝縮器54または第1熱交換器51
で液化した冷媒を冷房負荷に応じて、液相冷媒のみを第
1熱交換器51または第2熱交換器52に供給できるよ
うに一時的に蓄える。
The liquid receiver 55 is connected to the refrigerant condenser 54 or the first heat exchanger 51
The liquefied refrigerant is temporarily stored so that only the liquid phase refrigerant can be supplied to the first heat exchanger 51 or the second heat exchanger 52 depending on the cooling load.

膨張弁56.57は、受液器55を通ってきた高温、高
圧の液相冷媒を小さな孔から噴射させることにより急激
に膨張させて、低温、低圧の霧状の冷媒にする。
The expansion valves 56 and 57 inject the high-temperature, high-pressure liquid phase refrigerant that has passed through the liquid receiver 55 through small holes, thereby rapidly expanding it into a low-temperature, low-pressure mist refrigerant.

逆止弁58は、冷媒凝縮器54から冷媒配管63を介し
て受液器55に向かう冷媒を通過させ、第1熱交換器5
1から冷媒配管63を介して冷媒a2縮器54に向かう
冷媒の通過を阻止する。
The check valve 58 allows the refrigerant to pass from the refrigerant condenser 54 to the liquid receiver 55 via the refrigerant pipe 63 and is connected to the first heat exchanger 5.
1 to the refrigerant a2 compressor 54 via the refrigerant pipe 63.

逆止弁59は、第1熱交換器51から冷媒配管63を介
して受液器55に向かう冷媒を通過させ、冷媒凝縮器5
4から冷媒配管63を介して第1熱交換器51に向かう
冷媒の通過を阻止する。
The check valve 59 allows the refrigerant to pass from the first heat exchanger 51 to the liquid receiver 55 via the refrigerant pipe 63 and connects the refrigerant to the refrigerant condenser 5.
4 to the first heat exchanger 51 via the refrigerant pipe 63.

電磁弁60は、暖房運転時に開弁じた際に、第2熱交換
器52へ冷媒を供給する。電磁弁60は、冷房運転時に
開弁した際に、第2熱交換器52へ冷媒を供給し、冷房
運転時に閉弁した際に、第2熱交換器52への冷媒の流
入を阻止する。
The solenoid valve 60 supplies refrigerant to the second heat exchanger 52 when it is opened during heating operation. The solenoid valve 60 supplies refrigerant to the second heat exchanger 52 when opened during cooling operation, and prevents refrigerant from flowing into the second heat exchanger 52 when closed during cooling operation.

電磁弁61は、暖房運転時に閉弁して冷媒凝縮器54へ
の冷媒の流入を阻止し、冷房運転時に開弁じて冷媒凝縮
器54へ冷媒を流入させる。
The solenoid valve 61 closes during heating operation to prevent refrigerant from flowing into the refrigerant condenser 54, and opens during cooling operation to allow refrigerant to flow into the refrigerant condenser 54.

四方弁62は、冷凍サイクル5の冷媒配管63内の冷媒
の循環方向を逆転して、冷凍サイクル5の冷房運転(実
線)と暖房運転(破線)とを切換るものである。
The four-way valve 62 reverses the circulation direction of the refrigerant in the refrigerant pipe 63 of the refrigeration cycle 5, and switches the refrigeration cycle 5 between cooling operation (solid line) and heating operation (broken line).

本実施例の温水回路4および冷凍サイクル5の作用を第
1図に基づき説明する。
The functions of the hot water circuit 4 and the refrigeration cycle 5 of this embodiment will be explained based on FIG. 1.

■、冷房運転時 冷暖房切換レバーが冷房運転に設定されると、電磁クラ
ッチのオンにより冷媒圧縮機53がエンジン10により
駆動され、またファン31およびファン66がオンされ
、さらに電磁弁60が閉弁し、電磁弁61が開弁する。
(2) During cooling operation When the heating/cooling switching lever is set to cooling operation, the refrigerant compressor 53 is driven by the engine 10 by turning on the electromagnetic clutch, the fans 31 and 66 are turned on, and the electromagnetic valve 60 is closed. Then, the solenoid valve 61 opens.

そして、温水回路4のつオータバルブ43が閉弁され、
温水式ヒータ41へのエンジン冷却水の供給が阻止され
、温水式ヒータ41においてエンジン冷却水が保有する
高温のエンジン排熱の放熱が阻止される。
Then, the two autovalve 43 of the hot water circuit 4 is closed,
The supply of engine cooling water to the hot water type heater 41 is blocked, and the radiation of high temperature engine exhaust heat held by the engine cooling water in the hot water type heater 41 is blocked.

冷媒圧縮機53で圧縮され、吐出口65より吐出された
高温、高圧の気相冷媒は、冷房運転側に切換わっている
四方弁62、および開弁している電磁弁61を通過して
直接冷媒凝縮器54に流入する。この冷媒は、ファン6
6により吹き付けられる低温の冷却風と熱交換して冷却
され、高圧の液相冷媒に凝縮される。
The high-temperature, high-pressure gas phase refrigerant compressed by the refrigerant compressor 53 and discharged from the discharge port 65 passes through the four-way valve 62, which is switched to the cooling operation side, and the solenoid valve 61, which is open, and is directly discharged. The refrigerant flows into the refrigerant condenser 54 . This refrigerant is
The refrigerant is cooled by exchanging heat with the low-temperature cooling air blown by the refrigerant 6, and is condensed into a high-pressure liquid phase refrigerant.

凝縮された液相冷媒は、逆止弁58を通過し逆止弁59
に阻止されて、受液器55に流入する。受液器55で気
相冷媒と液相冷媒とに分離され、電磁弁60が閉弁状態
であるので、液相冷媒のみが膨張弁57に流入し、断熱
膨張されて低温、低圧の霧状冷媒となり、第1熱交換器
51に流入する。第1熱交換器51に流入した冷媒は、
高温、低圧の気相冷媒となる。
The condensed liquid phase refrigerant passes through the check valve 58 and then passes through the check valve 59.
The liquid is blocked by the liquid and flows into the liquid receiver 55. The liquid receiver 55 separates the refrigerant into gas and liquid refrigerants, and since the solenoid valve 60 is closed, only the liquid refrigerant flows into the expansion valve 57 and is adiabatically expanded to form a low-temperature, low-pressure mist. It becomes a refrigerant and flows into the first heat exchanger 51. The refrigerant that has flowed into the first heat exchanger 51 is
It becomes a high temperature, low pressure gas phase refrigerant.

このとき、第1熱交換器51の周囲の空気が、冷却され
、ファン31により熱交換に寄与しない第2熱交換器5
2を通過し吹出口から車室内に吹き出され、車室内が冷
房される。そして、第1熱交喚器51より流出した気相
冷媒は、四方弁62を通過して冷媒圧縮機53の吸引口
64へ吸い込まれる。
At this time, the air around the first heat exchanger 51 is cooled, and the second heat exchanger 5 which does not contribute to heat exchange is cooled by the fan 31.
2 and is blown out from the air outlet into the vehicle interior, thereby cooling the vehicle interior. The gas phase refrigerant flowing out from the first heat exchanger 51 passes through the four-way valve 62 and is sucked into the suction port 64 of the refrigerant compressor 53.

上記冷房運転を繰り返すことにより車室内が冷房される
By repeating the above cooling operation, the interior of the vehicle is cooled.

また、電磁弁60が開弁されている時には、第1熱交喚
器51および第2熱交換器52の両方が冷媒蒸発器とし
て働き、第1熱交換器51のみを冷媒蒸発器として働か
せる場合より冷房能力を増大させることができる。この
ように、電磁弁60を開弁または閉弁することによって
、第1熱交換器51および第2熱交換器52の両方を冷
媒蒸発器として働かせる場合と、第1熱交換器51のみ
を冷媒蒸発器として働かせる場合との2通りの制御を行
うことができるので、空気の吸熱量を2段階に制御でき
る。
Also, when the solenoid valve 60 is open, both the first heat exchanger 51 and the second heat exchanger 52 work as a refrigerant evaporator, and only the first heat exchanger 51 works as a refrigerant evaporator. Cooling capacity can be further increased. In this way, by opening or closing the solenoid valve 60, both the first heat exchanger 51 and the second heat exchanger 52 can be used as a refrigerant evaporator, and the first heat exchanger 51 alone can be used as a refrigerant evaporator. Since it is possible to perform two types of control, one for operating as an evaporator and the other for operating as an evaporator, the amount of heat absorbed by the air can be controlled in two stages.

この効果が必要のない時には、電磁弁60を省略して冷
房運転時に第1熱交換器51および第2熱交換器52の
両方を常時冷媒蒸発器として働かせる。
When this effect is not required, the solenoid valve 60 is omitted and both the first heat exchanger 51 and the second heat exchanger 52 always function as refrigerant evaporators during cooling operation.

■、暖房運転 ユーザが冷暖房切換レバーを暖房運転に設定すると、電
磁クラッチのオンにより冷媒圧縮機53が駆動され、フ
ァン31がオンされ、ファン66がオフされ、電磁弁6
0が開弁し、電磁弁61が閉弁する。
(2) Heating operation When the user sets the heating/cooling switching lever to heating operation, the refrigerant compressor 53 is driven by turning on the electromagnetic clutch, the fan 31 is turned on, the fan 66 is turned off, and the electromagnetic valve 6 is turned on.
0 opens, and solenoid valve 61 closes.

温水回路4のウォータバルブ43は、開弁される。The water valve 43 of the hot water circuit 4 is opened.

このとき温水回路4では、エンジン10のウォータジャ
ケット内で暖められたエンジン冷却水がウォータバルブ
43を通過して温水式ヒータ41内へ流入する。このと
き、温水式ヒータ41内に流入したエンジン冷却水によ
り、温水式ヒータ41を通過する空気が暖められる。そ
して、温水式ヒータ41内のエンジン冷却水は、」・、
述したごとく通風ダクト2内に吸引される空気を加熱し
た後、再度エンジン10のウォータジャケット内に流入
する。
At this time, in the hot water circuit 4 , engine cooling water heated within the water jacket of the engine 10 passes through the water valve 43 and flows into the hot water type heater 41 . At this time, the engine cooling water flowing into the hot water type heater 41 warms the air passing through the hot water type heater 41. The engine cooling water in the hot water heater 41 is...
After the air drawn into the ventilation duct 2 is heated as described above, it flows into the water jacket of the engine 10 again.

エンジン10により駆動される冷媒圧縮機53で圧縮さ
れ、吐出口65より吐出された高温、高圧の気相冷媒は
、暖房運転側に切換わっている四方弁62を通過して直
接第1熱交換器51に流入し、高圧の液相冷媒に凝縮さ
れる。このとき、凝縮熱により温水式ヒータ41で加熱
された空気を再度加熱する。
The high-temperature, high-pressure gas phase refrigerant compressed by the refrigerant compressor 53 driven by the engine 10 and discharged from the discharge port 65 passes through the four-way valve 62 which is switched to the heating operation side, and directly undergoes first heat exchange. The refrigerant flows into the vessel 51 and is condensed into a high-pressure liquid phase refrigerant. At this time, the air heated by the hot water heater 41 is heated again by the heat of condensation.

凝縮された液相冷媒は、逆止弁59を通過し逆止弁58
に阻止されて、受液器55に流入する。受液器55で気
相冷媒と液相冷媒に分離され、液相冷媒のみが開弁して
いる電磁弁60を通過し膨張弁56に流入し、断熱膨張
され、低温、低圧の霧状冷媒となり、第2熱交換器52
に流入する。冷媒は、第2熱交換器52を通過する間に
、温水式ヒータ41において放熱されたエンジン冷却水
が保有する高温のエンジン排熱、および第1熱交換器5
1において加熱された空気から吸熱することにより暖房
用熱エネルギーを蓄えた気相冷媒となる。
The condensed liquid phase refrigerant passes through the check valve 59 and the check valve 58
The liquid is blocked by the liquid and flows into the liquid receiver 55. The liquid receiver 55 separates the refrigerant into a gas phase refrigerant and a liquid phase refrigerant, and only the liquid phase refrigerant passes through the open electromagnetic valve 60 and flows into the expansion valve 56 where it is adiabatically expanded and becomes a low temperature, low pressure atomized refrigerant. Therefore, the second heat exchanger 52
flows into. While passing through the second heat exchanger 52 , the refrigerant absorbs high-temperature engine exhaust heat held by the engine cooling water radiated in the hot water heater 41 and the first heat exchanger 5 .
By absorbing heat from the air heated in step 1, the refrigerant becomes a gas phase refrigerant that stores thermal energy for heating.

ここで、ファン31により車室外から通風ダクト2内に
吸引された空気(例えば−20°C1200m ’/H
)は、エンジン冷却水が保有する高温のエンジン排熱に
より暖められることによって、温水式ヒータ41を通過
する間に10℃まで」−昇する(例えばエンジン冷却水
の水温20℃・10ρ/ll1inの場合)。
Here, air sucked into the ventilation duct 2 from outside the vehicle by the fan 31 (for example, -20°C 1200m'/H
) is warmed by the high-temperature engine exhaust heat possessed by the engine cooling water, and rises to 10°C while passing through the hot water heater 41 (for example, when the engine cooling water temperature is 20°C/10ρ/ll1in). case).

つぎに、温水式ヒータ41を通過した空気は、冷媒凝縮
器として働く第1熱交換器51に流入し、空気が冷媒よ
り熱を奪い、再度加熱され、65°Cまで上昇する。
Next, the air that has passed through the hot water heater 41 flows into the first heat exchanger 51, which functions as a refrigerant condenser, where the air absorbs heat from the refrigerant and is heated again, raising the temperature to 65°C.

つぎに、第1熱交換器51を通過した空気は、冷媒蒸発
器として働く第2?l!J、交換器52に流入する。
Next, the air that has passed through the first heat exchanger 51 is transferred to a second heat exchanger that acts as a refrigerant evaporator. l! J, flows into exchanger 52.

このとき、第2熱交換器52の吸熱量が従来のヒートポ
ンプ式冷暖房装置より著しく大きくなっている(従来の
水冷媒熱交換器107の場合にはエンジン冷却水の水温
20℃、本実施例の場合には第1熱交換器51の吹出温
65℃)ので、冷媒圧縮機53の仕事量が大きくなり、
65℃から35℃まで冷却される。
At this time, the amount of heat absorbed by the second heat exchanger 52 is significantly larger than that of the conventional heat pump type air-conditioning system (in the case of the conventional water-refrigerant heat exchanger 107, the engine cooling water temperature is 20°C, and in the case of the present example) In this case, the discharge temperature of the first heat exchanger 51 is 65° C.), so the amount of work of the refrigerant compressor 53 increases,
It is cooled from 65°C to 35°C.

つまり、冷媒蒸発器として働く第2熱交換器52の吸熱
量を大きくすることによって、冷媒圧縮機53の仕事量
が大きくなり、さらに冷媒7am器として働く第1熱交
換器51の放熱量が増大するため、従来の車両用ビート
ポンプ式冷暖房装置の冷凍サイクル100の暖房能力よ
り著しく向上する。さらに、エンジン冷却水の水温が土
、昇すればするほど車室内への吹出温を上昇させること
ができる。
In other words, by increasing the amount of heat absorbed by the second heat exchanger 52, which functions as a refrigerant evaporator, the amount of work performed by the refrigerant compressor 53 increases, and furthermore, the amount of heat released by the first heat exchanger 51, which functions as a refrigerant evaporator, increases. Therefore, the heating capacity is significantly improved compared to that of the refrigeration cycle 100 of the conventional beat pump air conditioning system for vehicles. Furthermore, the higher the temperature of the engine coolant, the higher the temperature of the engine cooling water blown into the passenger compartment.

したがって、水温20℃のエンジン冷却水を空気を介し
て第1熱交換器51と第2熱交換器52とで冷媒と熱交
換することによって、吹出温が35℃の空気が車室内に
吹き出される。このため、単にエンジン冷却水のみを熱
源とする冷暖房装置とは異なり、冷媒圧縮機53の仕事
量も冷媒に熱エネルギーとして付与され、暖房能力がエ
ンジン冷却水の吸熱量+冷媒圧縮機53の仕事量となる
ので、従来の冷暖房装置と比較して暖房能力を向上する
ことができる。
Therefore, by exchanging heat with the refrigerant in the first heat exchanger 51 and the second heat exchanger 52 through the air, the engine cooling water with a water temperature of 20°C causes air with a blowing temperature of 35°C to be blown into the passenger compartment. Ru. Therefore, unlike an air conditioning system that uses only engine cooling water as a heat source, the work of the refrigerant compressor 53 is also given to the refrigerant as thermal energy, and the heating capacity is equal to the amount of heat absorbed by the engine cooling water + the work of the refrigerant compressor 53. Since the heating capacity is reduced, the heating capacity can be improved compared to conventional air-conditioning equipment.

そして、35℃の空気は、ファン31により吹出口から
車室内に吹き出される。したがって、車室内は暖房され
る。この気相冷媒は、冷媒圧縮機53の吸引口64へ吸
い込まれる。
The air at 35° C. is then blown out into the vehicle interior from the air outlet by the fan 31. Therefore, the vehicle interior is heated. This gas phase refrigerant is sucked into the suction port 64 of the refrigerant compressor 53.

上記暖房運転を繰り返すことにより車室内が暖房される
By repeating the heating operation described above, the vehicle interior is heated.

さらに、本実施例では、暖房運転時に冷媒蒸発器として
働く第2熱交換器52を通風ダクト2内の温水式ヒータ
41の空気流の下流に配設しており、空気を介してエン
ジン冷却水と冷媒とが熱交換するため、たとえ第2熱交
換器52等に腐食等により穴が開いたとしても冷却水配
管42内に冷媒が流入することはない。
Furthermore, in this embodiment, the second heat exchanger 52, which functions as a refrigerant evaporator during heating operation, is disposed downstream of the air flow of the hot water heater 41 in the ventilation duct 2, and the engine cooling water is transferred through the air. Since the heat exchanger and the refrigerant exchange heat, the refrigerant will not flow into the cooling water pipe 42 even if a hole is formed in the second heat exchanger 52 or the like due to corrosion or the like.

すなわち、冷媒によってエンジン冷却水か押し出され、
冷却水配管42中の内部圧力の士、昇による冷却水配管
42の外れが防止できるので、エンジン冷却水の漏出を
防止できる。このため、エンジン冷却水の不足によるエ
ンジン10の故障等の不具合を未然に防止できる。
In other words, engine cooling water is pushed out by the refrigerant,
Since the cooling water piping 42 can be prevented from coming off due to an increase in the internal pressure in the cooling water piping 42, leakage of the engine cooling water can be prevented. Therefore, problems such as failure of the engine 10 due to lack of engine cooling water can be prevented.

第2図は本発明の第2実施例に採用された自動車用ヒー
トポンプ式冷暖房装置の冷凍サイクルを示す。
FIG. 2 shows a refrigeration cycle of a heat pump air-conditioning system for an automobile adopted in a second embodiment of the present invention.

(第1実施例と同−機能物は同番号を付す)本実施例で
は、第1熱交換器51を通風ダクト2内において第2熱
交換器52の空気流の下流に配設している。
(Identical to the first embodiment - functional objects are given the same numbers) In this embodiment, the first heat exchanger 51 is disposed downstream of the air flow of the second heat exchanger 52 in the ventilation duct 2. .

車室外より通風ダクト2内にファン31により吸引され
た空気(例えば−20℃、200m’ /H)は、エン
ジン冷却水の保有する高温のエンジン排熱(例えばエン
ジン冷却水の水温20℃・10j /m1n)によって
、温水式ヒータ41を通過する間に10℃まで11昇す
る。つぎに、温水式ヒータ41を通過した空気は、冷媒
蒸発器として働く第2熱交換器52で0℃に冷却される
Air drawn into the ventilation duct 2 from outside the vehicle by the fan 31 (e.g. -20°C, 200m'/H) is absorbed by high temperature engine exhaust heat held in the engine cooling water (e.g. engine cooling water temperature 20°C/10j). /m1n), the temperature rises to 10° C. while passing through the hot water heater 41. Next, the air that has passed through the hot water heater 41 is cooled to 0° C. by a second heat exchanger 52 that functions as a refrigerant evaporator.

つぎに、第2熱交換器52を通過した空気は、冷媒凝縮
器として働く第1熱交換器51で25℃程度に加熱され
る。そして、第1熱交換器51で25℃程度に加熱され
た空気は、ファン31により吹出口から車室内に吹き出
される。したがって、車室内は暖房される。本実施例で
は、第1熱交換器51における吸熱量が第1実施例より
も小さいので、暖房能力自体小さくなるが、エンジン冷
却水の水温以上に車室内への吹出温を上昇さぜることが
できる。
Next, the air that has passed through the second heat exchanger 52 is heated to about 25° C. by the first heat exchanger 51, which functions as a refrigerant condenser. Then, the air heated to about 25° C. by the first heat exchanger 51 is blown out from the air outlet into the vehicle interior by the fan 31. Therefore, the vehicle interior is heated. In this embodiment, since the amount of heat absorbed by the first heat exchanger 51 is smaller than that in the first embodiment, the heating capacity itself is reduced, but the temperature of the air blown into the vehicle interior can be increased above the temperature of the engine coolant. Can be done.

[他の実施例] 本実施例では、冷房運転時に電磁弁により温水式ヒータ
へのエンジン冷却水の供給を阻止したが、エアミックス
ダンパおよび冷風バイパス路を温水式ヒータの上流側に
配設して冷房運転時にエアミックスダンパにより温水式
ヒータへの空気の供給を阻止しても良い。
[Other Examples] In this example, the supply of engine cooling water to the hot water heater was blocked by a solenoid valve during cooling operation, but an air mix damper and a cold air bypass path were arranged upstream of the hot water heater. The air mix damper may be used to block the supply of air to the hot water heater during cooling operation.

本実施例では、冷房運転時に電磁弁により温水式ヒータ
へのエンジン冷却水の供給を阻止したが、冷却水配管に
温水式ヒータを迂回するバイパス配管を配設して冷房運
転時にエンジン冷却水をバイパス配管に流すことにより
温水式ヒータへのエンジン冷却水の供給を阻止しても良
く、また通風ダクトに温水式ヒータを迂回するバイパス
ダクトを配設して冷房運転時に空気をバイパスダクトに
流すことにより温水式ヒータへの空気の供給を阻止して
も良い。
In this example, a solenoid valve was used to block the supply of engine cooling water to the hot water heater during cooling operation, but a bypass piping was installed in the cooling water piping to bypass the hot water heater, so that engine cooling water was not supplied to the hot water heater during cooling operation. The supply of engine cooling water to the hot water heater may be blocked by flowing it through the bypass piping, or a bypass duct that bypasses the hot water heater may be provided in the ventilation duct to allow air to flow through the bypass duct during cooling operation. The supply of air to the hot water heater may also be blocked.

本実施例では、冷房運転時に電磁弁により第2熱交換器
への冷媒の供給を阻1したが、ダンパ部材を第2熱交換
器の上流側に配設して冷房運転時にダンパ部材により第
2熱交III!器への空気の供給を阻止しても良い。
In this embodiment, the supply of refrigerant to the second heat exchanger is blocked by the solenoid valve during cooling operation, but a damper member is disposed upstream of the second heat exchanger, and the damper member prevents the supply of refrigerant to the second heat exchanger during cooling operation. 2 Heat exchange III! The supply of air to the vessel may be blocked.

本実施例では、四方弁と凝縮器との間に電磁弁を配設し
たが、四方弁と凝縮器との間の電磁弁を省略しても良い
In this embodiment, a solenoid valve is provided between the four-way valve and the condenser, but the solenoid valve between the four-way valve and the condenser may be omitted.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例に採用された自動車用ヒー
1〜ポンプ式冷暖房装での冷凍サイクルを示す概略図、
第2図は本発明の第2実施例に採用゛ された自動車用
ヒートポンプ式冷暖房装置の冷凍サイクルを示す概略図
、第3図は従来の車両用ビートポンプ式冷暖房装置の冷
凍サイクルを示す概略図である。 図中 1・・・自動車用ヒートポンプ式冷暖房装置 2・・・
通風ダクト 5・・・冷凍サイクル 10・・・エンジ
ン41・・・温水式ヒータ 51・・・第1熱交換器 
52・・・第2熱交換器
FIG. 1 is a schematic diagram showing a refrigeration cycle in an automobile heater 1 to pump-type air conditioning system adopted in the first embodiment of the present invention;
FIG. 2 is a schematic diagram showing a refrigeration cycle of a heat pump type air conditioning system for an automobile adopted in the second embodiment of the present invention, and FIG. 3 is a schematic diagram showing a refrigeration cycle of a conventional beat pump type air conditioning system for a vehicle. It is. In the diagram 1... Automotive heat pump air conditioning system 2...
Ventilation duct 5... Refrigeration cycle 10... Engine 41... Hot water heater 51... First heat exchanger
52...Second heat exchanger

Claims (1)

【特許請求の範囲】 1)  (a)車室内に向かって空気を送るための通風ダクト
と、  (b)該通風ダクト内に配設され、エンジン冷却水の
保有する排熱を放熱する温水式ヒータと、  (c)前記通風ダクト内の前記温水式ヒータの下流に
配設されるとともに、冷房運転時に通過する空気を冷却
する冷媒蒸発器として働き、暖房運転時に通過する空気
を加熱する冷媒凝縮器として働く第1熱交換器、および
前記通風ダクト内の前記温水式ヒータの下流に配設され
るとともに、暖房運転時に通過する空気を冷却する冷媒
蒸発器として働く第2熱交換器を具備する冷凍サイクル
とを備えた車両用ヒートポンプ式冷暖房装置。
[Claims] 1) (a) A ventilation duct for sending air toward the vehicle interior; (b) A hot water type disposed within the ventilation duct to radiate exhaust heat held by engine cooling water. (c) a refrigerant condenser that is disposed downstream of the hot water heater in the ventilation duct and acts as a refrigerant evaporator to cool the air passing through during cooling operation, and heats the air passing through during heating operation. A second heat exchanger is provided downstream of the hot water heater in the ventilation duct and serves as a refrigerant evaporator for cooling air passing during heating operation. A heat pump air conditioning system for vehicles equipped with a refrigeration cycle.
JP19246888A 1988-08-01 1988-08-01 Heat pump type air conditioning device for vehicle Pending JPH0241917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19246888A JPH0241917A (en) 1988-08-01 1988-08-01 Heat pump type air conditioning device for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19246888A JPH0241917A (en) 1988-08-01 1988-08-01 Heat pump type air conditioning device for vehicle

Publications (1)

Publication Number Publication Date
JPH0241917A true JPH0241917A (en) 1990-02-13

Family

ID=16291797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19246888A Pending JPH0241917A (en) 1988-08-01 1988-08-01 Heat pump type air conditioning device for vehicle

Country Status (1)

Country Link
JP (1) JPH0241917A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5341868A (en) * 1992-02-07 1994-08-30 Zexel Corporation Operating device for air-conditioner
WO2000020240A1 (en) * 1998-10-07 2000-04-13 Llanelli Radiators Limited Vehicle air conditioning
WO2000068031A1 (en) * 1999-05-11 2000-11-16 Valeo Klimasysteme Gmbh Heating system components
WO2001040004A1 (en) * 1999-11-30 2001-06-07 Delphi Technologies, Inc. Air conditioning system for a motor vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5341868A (en) * 1992-02-07 1994-08-30 Zexel Corporation Operating device for air-conditioner
WO2000020240A1 (en) * 1998-10-07 2000-04-13 Llanelli Radiators Limited Vehicle air conditioning
WO2000068031A1 (en) * 1999-05-11 2000-11-16 Valeo Klimasysteme Gmbh Heating system components
WO2001040004A1 (en) * 1999-11-30 2001-06-07 Delphi Technologies, Inc. Air conditioning system for a motor vehicle

Similar Documents

Publication Publication Date Title
US20230158856A1 (en) Heat pump system for vehicle
US6928831B2 (en) Combined cooling plant/heat pump for cooling, heating and dehumidifying a motor vehicle interior
US20100000713A1 (en) Vehicle air conditioning system
WO2010079818A1 (en) Air conditioning device for vehicle
JP2020172178A (en) On-vehicle temperature controller
KR20160087001A (en) Heat pump system for vehicle
US10611212B2 (en) Air conditioner for vehicle
JP2010001013A (en) Heating, ventilating and/or air-conditioning device for automobile
JP3354378B2 (en) Air conditioner
JP4023320B2 (en) Heater for air conditioner
JPH1076837A (en) Heating system for automobile
JPH06135221A (en) Air conditioner
JP2000211345A (en) Vehicle air-conditioner
JPH0241917A (en) Heat pump type air conditioning device for vehicle
JP2002225545A (en) Air conditioner for vehicle
WO2019167822A1 (en) Refrigeration cycle, drive method for refrigeration cycle, accumulator used in refrigeration cycle, and, air conditioning apparatus for vehicle having installed refrigeration cycle
JPH06347111A (en) Cooling and heating cycle of air conditioner for vehicle
US20130283850A1 (en) Air-Conditioning Loop Provided With A Solenoid Valve And Operating As A Heat Pump
KR102577144B1 (en) Automotive heat pump system
JP7494139B2 (en) Vehicle air conditioning system
WO2020246306A1 (en) Vehicle air conditioning device
KR102182346B1 (en) Heat pump system for vehicle
WO2020246305A1 (en) Vehicle air conditioning device
WO2020241612A1 (en) Vehicular air-conditioning device
JP3908830B2 (en) Air conditioner for vehicles