JPH0240377B2 - - Google Patents

Info

Publication number
JPH0240377B2
JPH0240377B2 JP56196299A JP19629981A JPH0240377B2 JP H0240377 B2 JPH0240377 B2 JP H0240377B2 JP 56196299 A JP56196299 A JP 56196299A JP 19629981 A JP19629981 A JP 19629981A JP H0240377 B2 JPH0240377 B2 JP H0240377B2
Authority
JP
Japan
Prior art keywords
catalyst
sodium
potassium
silver
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56196299A
Other languages
Japanese (ja)
Other versions
JPS5898144A (en
Inventor
Naohiro Nojiri
Yukio Sakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP56196299A priority Critical patent/JPS5898144A/en
Publication of JPS5898144A publication Critical patent/JPS5898144A/en
Publication of JPH0240377B2 publication Critical patent/JPH0240377B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、エチレンを酸化してエチレンオキシ
ドを製造する触媒に関するものである。さらに詳
しくは、銀の他にカチオン成分としてナトリウム
及びカリウム及び/又はルビジウムを、アニオン
成分として塩素、臭素及び弗素の群から選ばれた
1種以上の元素(但し、ナトリウムとカリウムと
弗素の組合せを除く)を添加した場合に、触媒の
性能が向上するという新たな発見に基づき達成さ
れたものである。 エチレンを分子状酸素により酸化してエチレン
オキシドを工業的に製造するのに用いられる実質
上唯一の触媒は銀触媒である。しかしながら銀単
独では必ずしも工業触媒として完全ではなく種々
の添加物を加えることにより性能を向上させる努
力がなされている。その中ではアルカリ金属を加
えて性能を向上させている例が多い(例えば特開
昭49−30286号公開公報、特開昭53−1191号公開
公報)が、添加するときの化合物の形態としては
銀の被毒となるハロゲン化物(例えば臭化物)は
好ましくないとして除外されているのが普通であ
る。 本発明者らはカチオン成分としてのアルカリ金
属はもとよりアニオン成分の結果に関して詳細な
検討を実施することにより、従来毒作用を有する
と言われていた塩素、臭素及び弗素の群から選ば
れた1種以上の元素を、ナトリウム及びカリウム
及び/又はルビジウムという特定の組合せ(但
し、ナトリウムとカリウムと弗素の組合せを除
く)で使用した時には、予想に反して触媒の性能
が大巾に向上することを見出し、本発明に到達し
たものである。 即ち、本発明は、エチレンの酸化によるエチレ
ンオキシドの製造用銀触媒において、銀の他にカ
チオン成分としてナトリウム及びカリウム及び/
又はルビジウムを、アニオン成分として塩素、臭
素及び弗素の群から選ばれた1種以上の元素(但
し、ナトリウムとカリウムと弗素の組合せを除
く)を、少なくとも含有することを特徴とする上
記触媒を提供するものである。 本発明の触媒成分であるナトリウムは、ナトリ
ウム化合物例えば、主として硝酸ナトリウム、重
炭酸ナトリウム又は炭酸ナトリウムの形で加える
ことが好ましいが、水酸化物、亜硝酸塩、ホウ酸
塩、硫酸塩、ケイ酸塩、リン酸塩、ハロゲン化物
などの無機塩類又は蓚酸ナトリウムなどのカルボ
ン酸塩などの形で加えても又はこれらを硝酸ナト
リウム、重炭酸ナトリウム又は炭酸ナトリウムと
併用しても構わない。 カリウム及び/又はルビジウム成分としては、
カリウム又はルビジウム化合物として例えば、塩
化物及び/又は臭化物及び/又は弗化物が好まし
いが硝酸塩、亜硝酸塩、炭酸塩、硫酸塩などの塩
類、水酸化物などの水溶性又は水不溶性の如何な
る形で加えることも出来る。塩素及び/又は臭素
及び/又は弗素源としては上記ナトリウム、カリ
ウム及び/又はルビジウムとの塩である臭化及
び/又は弗化ナトリウム、又は臭化及び/又は弗
化カリウム及び/又はルビジウムの形でも、他の
塩類例えばBaBr2、BaF2、CsBr、CsF、LiBr、
LiFなどの形で加えてもよい。いずれにしても銀
以外にナトリウム及びカリウム及び/又はルビジ
ウムと塩素及び/又は臭素及び/又は弗素の添加
が必要でこれらを組合せた場合に触媒の性能が大
巾に向上する。但し、ナトリウムとカリウムと弗
素の組合せは効果が無く、特定のカチオンとアニ
オンとの組合せの場合に、本発明の効果が発現す
ることは、全く予期されない事実であり驚くべき
ことである。 ナトリウムの添加量は触媒に対して100ppm
(mg/Kg触媒)から1.50wt%の範囲が好ましく、
より好ましくは200ppm以上1.3wt%以下である。
またAgに対して原子比で0.58以下さらに0.45以下
であることが好ましい。ナトリウムが多すぎると
活性、選択性共に低下し、少なすぎる場合には塩
素及び/又は臭素及び/又は弗素を加えた効果が
発現しない。 カリウム及び/又はルビジウムの添加量はナト
リウムよりも少ない範囲が好適で、触媒に対し
5ppm以上、0.5wt%以下が好ましく、より好まし
くは10ppm以上、0.1wt%以下である。多すぎる
と活性が顕著に低下し、少なすぎる場合には塩素
及び/又は臭素及び/又は弗素の効果が十分に発
揮されない。 塩素及び/又は臭素及び/又は弗素の添加量は
触媒に対し5ppm以上、0.1wt%以下が好適であ
り、より好ましくは7ppm以上0.07wt%以下であ
る。多く加えすぎると毒作用を示し大巾な性能の
低下を招く。すなわち本発明の特徴は従来毒作用
を示すと考えられていた塩素及び/又は臭素及
び/又は弗素を、ナトリウム及びカリウム及び/
又はルビジウムと組合せて但し、ナトリウムとカ
リウムと弗素の組合せは除く、極く微量加えるこ
とにより性能向上剤としての作用を見出したこと
にある。 また本発明の触媒においては、銀の他に添加さ
れるカチオン成分は上記ナトリウム及びカリウム
及び/又はルビジウムのみに限定されるものでは
なく、例えばリチウム、バリウム、セシウム、マ
グネシウム、タリウム等の第3成分が少量添加さ
れてもよい。 上記触媒成分は、主として経済的及び触媒寿命
の観点から担持触媒として使用される。担体とし
ては多孔質耐火物が用いられ、BET表面積が
0.05〜10m2/g、見掛気孔率が少くとも15%とい
う性状のものが望ましいが、特にα−アルミナを
主成分とするもの(いわゆるアランダム担体)が
好ましい。 ナトリウム、カリウム及び/又はルビジウム、
塩素及び/又は臭素及び/又は弗素の担持は、前
記した化合物を水性溶媒に溶解又は分散し、上記
担体に含浸したあと該担体を窒素、空気などのガ
スの存在下加熱乾燥することにより行なう。ナト
リウム、カリウム及び/又はルビジウム、塩素及
び/又は臭素及び/又は弗素の担持は同時でも
別々に行なつてもよく、かつ触媒調製の任意の段
階において種々の態様で行なうことが出来る。た
とえば銀化合物の含浸の前、同時又は後のいずれ
の時期でも同様な効果を得ることができる。又、
含浸は数回に分けて行うこともできる。 担体に銀を担持せしめるには適当な形状、たと
えば球状、ペレツト状、リング状等に成型された
担体を、銀の化合物たとえばシユウ酸銀、硝酸銀
又は乳酸銀などをエチレンジアミンなどの可溶化
剤の存在下又は不存在下に溶解した水性溶液又は
水分散液に浸漬し、乾燥してから窒素、空気又は
水素などの気流中で適当な温度で焼成することに
より行なうことができる。焼成時のガスの種類及
び焼成温度は銀塩の種類などに応じて選択され、
焼成温度は通常100〜1000℃好ましくは150〜700
℃の範囲である。触媒の銀担持量は担体に対して
通常1〜25wt%、好ましくは3〜20wt%である。 本発明の触媒を用いてエチレンをエチレンオキ
シドに転換する反応は慣用操作法で実施できる。
例えば、圧力は1〜35Kg/cm2、温度は180〜300
℃、好ましくは200〜260℃である。エチレンは1
〜40Vol、酸素は1〜20Vol%で、一般に希釈剤
例えばメタンを一定割合例えば20〜70Vol%で存
在させることが好ましい。酸素は空気の形態でま
たは工業用酸素として供給してよい。反応改変剤
として例えば2塩化エチレンを加えることにより
触媒中にホツトスポツトの形成が防止できかつ触
媒の性能殊に選択性が大巾に改善される。添加量
としては数ppm(重量)〜数10ppm程度が好まし
い。 次に実施例及び比較例をあげて本発明を説明す
る。 実施例 1 ノートン社のα−アルミナ担体(商品名:SA
−5561);30gを、NaHCO3;2.0gを含む水溶液
50mlに浸漬した。余分の液を過した後、窒素ガ
ス気流下で110℃にて2時間乾燥してNaHCO3
浸担体を調製した。 AgNO3;6.0gと蓚酸カリウム(K2C2O4
H2O);3.4gを各々100mlの水に溶解した後混合
し、水浴中60℃に加熱して蓚酸銀の白色沈殿を得
た。これに遠心分離と蒸留水による洗浄を繰返し
て、沈殿中のカリウムを除いた。 別にエチレンジアミンと水の1:1混合液;
6.6mlを作り、氷冷しながら上記蓚酸銀の沈殿を
除々に溶解し、銀溶液を調製した。この溶液に上
記担体を浸漬し、過剰の液を流し出したのち、ロ
ータリーエバポレーター中で減圧下、80℃で乾燥
した。これを焼成管に移し、窒素気流中で300℃
まで2時間で昇温し、その温度でさらに2時間焼
成した。これを冷却後、RbCl;0.029gを含むメ
タノール/水混合液(水含量0.3wt%)50mlに浸
漬し、余分の液を過した後、窒素ガス気流下
110℃で2時間乾燥させて、本発明の触媒を調製
した。Ag担持率は8wt%でありNa、Rb及びClの
担持率はそれぞれ0.22wt%、81ppm、33.8ppmで
あつた。 上記触媒を9〜28メツシユに砕き、この10gを
外径3/8インチ(内径7.4ミリメートル)の鋼製反
応管に充填し、反応ガス(エチレン;30Vol%、
酸素;8Vol%、塩化ビニル;2ppm、残りメタ
ン)を常圧下SV300hr-1で通過させた。浴温232
℃において酸素転化率50%、エチレンオキシドの
選択率80.1%と言う結果を得た。3週間の連続運
転中その性能に変化は無かつた。 実施例 2〜5 RbClの代りに触媒原料としてそれぞれKCl、
RbF、RbBr、KBrを用いた他は実施例1と同様
にして表1に示す触媒を調製した。 これらの触媒を実施例1と同様の反応条件下で
使用し、表1に示す結果を得た。
The present invention relates to a catalyst for producing ethylene oxide by oxidizing ethylene. More specifically, in addition to silver, sodium, potassium, and/or rubidium may be used as cationic components, and one or more elements selected from the group of chlorine, bromine, and fluorine as anionic components (however, a combination of sodium, potassium, and fluorine may be used). This was achieved based on the new discovery that the performance of catalysts improves when catalytic converters are added (excluding Virtually the only catalyst used to industrially produce ethylene oxide by oxidizing ethylene with molecular oxygen is a silver catalyst. However, silver alone is not necessarily perfect as an industrial catalyst, and efforts are being made to improve its performance by adding various additives. Among them, there are many examples in which performance is improved by adding alkali metals (for example, JP-A-49-30286, JP-A-53-1191), but the form of the compound when added is Halides (such as bromides) that poison silver are generally excluded as undesirable. The present inventors conducted a detailed study on the results of not only alkali metals as cationic components but also anionic components. It was discovered that when the above elements were used in a specific combination of sodium, potassium, and/or rubidium (excluding the combination of sodium, potassium, and fluorine), the performance of the catalyst was significantly improved, contrary to expectations. , this invention has been achieved. That is, the present invention provides a silver catalyst for producing ethylene oxide by oxidizing ethylene, which contains sodium and potassium and/or potassium as cationic components in addition to silver.
Alternatively, the above catalyst is characterized in that it contains at least rubidium and one or more elements selected from the group of chlorine, bromine, and fluorine (excluding a combination of sodium, potassium, and fluorine) as an anion component. It is something to do. Sodium, which is a catalyst component of the present invention, is preferably added in the form of sodium compounds such as mainly sodium nitrate, sodium bicarbonate or sodium carbonate, but also hydroxides, nitrites, borates, sulfates, silicates. , phosphates, halides, or carboxylates such as sodium oxalate, or they may be used in combination with sodium nitrate, sodium bicarbonate, or sodium carbonate. As potassium and/or rubidium components,
As the potassium or rubidium compound, for example, chloride and/or bromide and/or fluoride are preferred, but salts such as nitrates, nitrites, carbonates, and sulfates, and hydroxides may be added in any water-soluble or water-insoluble form. You can also do that. Sources of chlorine and/or bromine and/or fluorine may also be in the form of sodium bromide and/or fluoride, salts with the above-mentioned sodium, potassium and/or rubidium, or potassium bromide and/or fluoride and/or rubidium. , other salts such as BaBr 2 , BaF 2 , CsBr, CsF, LiBr,
It may also be added in the form of LiF, etc. In any case, it is necessary to add sodium, potassium and/or rubidium, chlorine and/or bromine and/or fluorine in addition to silver, and when these are combined, the performance of the catalyst is greatly improved. However, it is a completely unexpected and surprising fact that the combination of sodium, potassium, and fluorine has no effect, and that the effect of the present invention is manifested in the case of a combination of a specific cation and anion. The amount of sodium added is 100ppm relative to the catalyst.
(mg/Kg catalyst) to 1.50wt% is preferable,
More preferably, it is 200 ppm or more and 1.3 wt% or less.
Further, the atomic ratio to Ag is preferably 0.58 or less, and more preferably 0.45 or less. If the amount of sodium is too large, both activity and selectivity will be reduced, and if it is too small, the effect of adding chlorine and/or bromine and/or fluorine will not be realized. It is preferable that the amount of potassium and/or rubidium added is smaller than that of sodium.
It is preferably 5 ppm or more and 0.5 wt% or less, more preferably 10 ppm or more and 0.1 wt% or less. If it is too large, the activity will be significantly reduced, and if it is too small, the effects of chlorine and/or bromine and/or fluorine will not be fully exhibited. The amount of chlorine and/or bromine and/or fluorine added is preferably 5 ppm or more and 0.1 wt% or less, more preferably 7 ppm or more and 0.07 wt% or less based on the catalyst. If too much is added, it exhibits a toxic effect and results in a significant drop in performance. In other words, the feature of the present invention is that chlorine and/or bromine and/or fluorine, which were conventionally thought to have a toxic effect, can be replaced with sodium, potassium and/or fluorine.
Or in combination with rubidium, except for the combination of sodium, potassium, and fluorine, we have found that it works as a performance improver when added in extremely small amounts. Furthermore, in the catalyst of the present invention, the cation components added in addition to silver are not limited to the above-mentioned sodium, potassium, and/or rubidium, but include third components such as lithium, barium, cesium, magnesium, and thallium. may be added in small amounts. The above catalyst components are used as supported catalysts mainly from the economical and catalyst life point of view. A porous refractory is used as the carrier, and the BET surface area is
A carrier having properties of 0.05 to 10 m 2 /g and an apparent porosity of at least 15% is desirable, and a carrier containing α-alumina as a main component (so-called alundum carrier) is particularly preferred. sodium, potassium and/or rubidium,
Supporting of chlorine and/or bromine and/or fluorine is carried out by dissolving or dispersing the above-mentioned compound in an aqueous solvent, impregnating it into the carrier, and then heating and drying the carrier in the presence of a gas such as nitrogen or air. The loading of sodium, potassium and/or rubidium, chlorine and/or bromine and/or fluorine can be carried out simultaneously or separately and can be carried out in various manners at any stage of the catalyst preparation. For example, similar effects can be obtained before, simultaneously with, or after impregnation with a silver compound. or,
Impregnation can also be carried out in several steps. In order to support silver on a carrier, a carrier formed into an appropriate shape, such as a sphere, a pellet, or a ring, is mixed with a silver compound such as silver oxalate, silver nitrate, or silver lactate in the presence of a solubilizing agent such as ethylenediamine. This can be carried out by immersing the material in an aqueous solution or dispersion in the presence or absence of the material, drying it, and then calcining it at an appropriate temperature in a stream of nitrogen, air, hydrogen, or the like. The type of gas and firing temperature during firing are selected depending on the type of silver salt, etc.
Firing temperature is usually 100-1000℃, preferably 150-700℃
℃ range. The amount of silver supported on the catalyst is usually 1 to 25 wt%, preferably 3 to 20 wt%, based on the carrier. The reaction of converting ethylene to ethylene oxide using the catalyst of the present invention can be carried out using conventional procedures.
For example, pressure is 1~35Kg/cm 2 , temperature is 180~300
℃, preferably 200-260℃. Ethylene is 1
~40 Vol., oxygen at 1-20 Vol.%, and generally preferred to have a diluent such as methane present in a fixed proportion, for example 20-70 Vol.%. Oxygen may be supplied in the form of air or as industrial oxygen. By adding, for example, ethylene dichloride as a reaction modifier, the formation of hot spots in the catalyst can be prevented and the performance, particularly the selectivity, of the catalyst can be greatly improved. The amount added is preferably about several ppm (by weight) to several tens of ppm. Next, the present invention will be explained with reference to Examples and Comparative Examples. Example 1 Norton α-alumina carrier (product name: SA
−5561); 30 g, an aqueous solution containing 2.0 g of NaHCO 3
Immersed in 50ml. After filtering off the excess liquid, the carrier was dried at 110°C for 2 hours under a nitrogen gas stream to prepare a NaHCO 3 -impregnated carrier. AgNO 3 ; 6.0g and potassium oxalate (K 2 C 2 O 4 .
H 2 O); 3.4 g each were dissolved in 100 ml of water, mixed, and heated to 60° C. in a water bath to obtain a white precipitate of silver oxalate. Centrifugation and washing with distilled water were repeated to remove potassium in the precipitate. Separately, a 1:1 mixture of ethylenediamine and water;
A silver solution was prepared by making 6.6 ml and gradually dissolving the silver oxalate precipitate while cooling on ice. The carrier was immersed in this solution, excess liquid was poured off, and then dried at 80° C. under reduced pressure in a rotary evaporator. Transfer this to a firing tube and heat it to 300℃ in a nitrogen stream.
The temperature was raised over 2 hours to 2 hours, and firing was continued at that temperature for an additional 2 hours. After cooling, it was immersed in 50 ml of a methanol/water mixture (water content 0.3 wt%) containing 0.029 g of RbCl, and after filtering off the excess liquid, it was placed under a stream of nitrogen gas.
The catalyst of the present invention was prepared by drying at 110° C. for 2 hours. The Ag loading rate was 8 wt%, and the Na, Rb, and Cl loading rates were 0.22 wt%, 81 ppm, and 33.8 ppm, respectively. The above catalyst was crushed into 9 to 28 meshes, 10 g of this was filled into a steel reaction tube with an outer diameter of 3/8 inch (inner diameter 7.4 mm), and the reaction gas (ethylene; 30 Vol%,
Oxygen: 8 vol%, vinyl chloride: 2 ppm, remaining methane) were passed under normal pressure at SV300 hr -1 . Bath temperature 232
At ℃, an oxygen conversion rate of 50% and an ethylene oxide selectivity of 80.1% were obtained. There was no change in its performance during three weeks of continuous operation. Examples 2 to 5 KCl and RbCl were used as catalyst raw materials instead of RbCl, respectively.
The catalysts shown in Table 1 were prepared in the same manner as in Example 1 except that RbF, RbBr, and KBr were used. These catalysts were used under the same reaction conditions as in Example 1, and the results shown in Table 1 were obtained.

【表】 比較例 1〜5 表2に示した触媒原料をそれぞれ用いて、表2
に示した触媒を調製し、使用した他は実施例1と
同様に実験を行つた。 結果を表2に示した。
[Table] Comparative Examples 1 to 5 Using the catalyst raw materials shown in Table 2, Table 2
An experiment was carried out in the same manner as in Example 1, except that the catalyst shown in Example 1 was prepared and used. The results are shown in Table 2.

【表】 実施例及び比較例から、本発明の触媒の優れる
ことが明らかである。
[Table] From the Examples and Comparative Examples, it is clear that the catalyst of the present invention is superior.

Claims (1)

【特許請求の範囲】 1 エチレンの酸化によるエチレンオキシドの製
造用銀触媒において、銀の他にカチオン成分とし
てナトリウム及びカリウム及び/又はルビジウム
を、アニオン成分として塩素、臭素及び弗素の群
から選ばれた1種以上の元素(但し、ナトリウム
とカリウムと弗素の組合せを除く)を、少なくと
も含有することを特徴とする上記触媒。 2 触媒成分が、表面積が0.05〜10m2/g、見掛
け気孔率が少なくとも15%である多孔質耐火物担
体上に担持されていることを特徴とする特許請求
の範囲第1項記載の触媒。
[Scope of Claims] 1. A silver catalyst for producing ethylene oxide by oxidizing ethylene, in addition to silver, sodium and potassium and/or rubidium are selected from the group of cationic components and chlorine, bromine and fluorine as anionic components. The above-mentioned catalyst is characterized in that it contains at least one or more elements (excluding a combination of sodium, potassium, and fluorine). 2. The catalyst according to claim 1, wherein the catalyst component is supported on a porous refractory support having a surface area of 0.05 to 10 m 2 /g and an apparent porosity of at least 15%.
JP56196299A 1981-12-08 1981-12-08 Silver catalyst for preparing ethylene oxide Granted JPS5898144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56196299A JPS5898144A (en) 1981-12-08 1981-12-08 Silver catalyst for preparing ethylene oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56196299A JPS5898144A (en) 1981-12-08 1981-12-08 Silver catalyst for preparing ethylene oxide

Publications (2)

Publication Number Publication Date
JPS5898144A JPS5898144A (en) 1983-06-10
JPH0240377B2 true JPH0240377B2 (en) 1990-09-11

Family

ID=16355492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56196299A Granted JPS5898144A (en) 1981-12-08 1981-12-08 Silver catalyst for preparing ethylene oxide

Country Status (1)

Country Link
JP (1) JPS5898144A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8611121D0 (en) * 1986-05-07 1986-06-11 Shell Int Research Silver catalyst
EP0724479B1 (en) * 1993-08-23 2001-06-13 Shell Internationale Researchmaatschappij B.V. Ethylene oxide catalyst
JP4747066B2 (en) * 2006-10-03 2011-08-10 株式会社日本触媒 Catalyst for producing ethylene oxide and method for producing ethylene oxide using the catalyst
CN104624246A (en) * 2013-11-13 2015-05-20 中国石油化工股份有限公司 Alumina carrier for silver catalyst and catalyst

Also Published As

Publication number Publication date
JPS5898144A (en) 1983-06-10

Similar Documents

Publication Publication Date Title
EP0716884B2 (en) Process for preparing ethylene oxide catalysts
US4007135A (en) Promoted silver catalyst for producing alkylene oxides
US5703253A (en) Ethylene oxide catalyst and process
EP0247414B2 (en) Silver-deposited catalyst and its use for production of ethylene oxide
US4916243A (en) New catalyst composition and process for oxidation of ethylene to ethylene oxide
SU509206A3 (en) Catalyst for the oxidation of ethylene and ethylene oxide
US4939114A (en) Silver-deposited catalyst for production of ethylene oxide
US5929259A (en) Preparation of ethylene oxide and catalyst
US4248740A (en) Process for preparing silver-supported catalyst for the production of ethylene oxide
TWI543815B (en) Methods for producing epoxidation catalysts and epoxidation methods utilizing them
JPH11513305A (en) Production method of epoxidation catalyst
TW200916451A (en) Process for production of an olefin oxide
AU7695194A (en) Epoxidation catalyst and process
KR100495435B1 (en) Catalyst for manufacturing epoxide and manufacturing process thereof and process of manufacturing epoxide
BRPI0912391B1 (en) OLEFINE EPOXIDATION PROCESS
JP2004515331A (en) Ethylene oxide catalyst
EP3496851A1 (en) Catalyst for the oxidation of ethylene to ethylene oxide
JPH0240375B2 (en)
US4415476A (en) Silver-based catalyst containing chlorine as an anionic component for the production of ethylene oxide
JPH0240377B2 (en)
EP0059422B1 (en) Silver-based catalyst for production of ethylene oxide
US4310442A (en) Supported silver catalysts mixed with promoter metal compounds for the production of ethylene oxide
JPH04363139A (en) Silver catalyst for production of ethylene oxide
JP3739265B2 (en) Catalyst for producing epoxide, method for preparing the same, and method for producing epoxide
JPH0516903B2 (en)