JPH023945A - Estimation method of semiconductor chip on wafer - Google Patents

Estimation method of semiconductor chip on wafer

Info

Publication number
JPH023945A
JPH023945A JP63152809A JP15280988A JPH023945A JP H023945 A JPH023945 A JP H023945A JP 63152809 A JP63152809 A JP 63152809A JP 15280988 A JP15280988 A JP 15280988A JP H023945 A JPH023945 A JP H023945A
Authority
JP
Japan
Prior art keywords
wafer
parallel connections
estimation
semiconductor chip
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63152809A
Other languages
Japanese (ja)
Inventor
Toshikazu Otake
敏和 大竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC IC Microcomputer Systems Co Ltd
Original Assignee
NEC IC Microcomputer Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC IC Microcomputer Systems Co Ltd filed Critical NEC IC Microcomputer Systems Co Ltd
Priority to JP63152809A priority Critical patent/JPH023945A/en
Publication of JPH023945A publication Critical patent/JPH023945A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Measuring Leads Or Probes (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

PURPOSE:To enable the estimation of various kinds, and improve measurement precision by spreading the number of parallel connections of single elements to be estimated in a semiconductor chip as far as the whole surface of a wafer, and executing difference estimation. CONSTITUTION:Estimation wiring patterns A1, A2 commonly connect the part between measuring terminals of adjacent semiconductor chips 2, as shown by chip end patterns a1-a4, and are mutually connected by through holes B. By using such estimation wiring patterns A1, A2, measured values between measuring terminals T1-T2 of one semiconductor chip 2 and between T2-T3 can be obtained as values wherein the number of parallel connections of single elements is multiplied by the number of semiconductor chips on a wafer. As a result, the number of parallel connections can be increased without changing manufacturing method and measuring method, and the measurement precision in difference estimation can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はウェハー上における半導体チップの評価方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for evaluating semiconductor chips on a wafer.

〔従来の技術〕[Conventional technology]

半導体チップは非常に小さい形状を有する為、ウェハー
」二にX方向及びY方向に繰り返し配置形成し、チップ
特性を評価した後個々に切り出すのが通常である9この
チップ特性の評価に当っては、ウェハー上の測定配線に
直接針を当てたり、切り出した半導体チップを個々にパ
ッケージに組むなどして数々の測定を行っている。一方
、従来から測定精度を向上させる為に評価用パターンの
構成及び測定方法に色々の工夫がなされて来た。
Because semiconductor chips have very small shapes, it is common practice to repeatedly form them on a wafer in the X and Y directions, and then cut them out individually after evaluating the chip characteristics9. A number of measurements are carried out by applying a needle directly to the measurement wiring on the wafer, and by assembling cut-out semiconductor chips into individual packages. On the other hand, various improvements have been made to the configuration of evaluation patterns and measurement methods in order to improve measurement accuracy.

たとえば、容量値を評価する際、チップ個々の容量素子
単体の容量値が小さく、しかも測定精度が要求される場
合には、チップ内における容量素子の並列接続数が異な
る測定径路についてそれぞれ測定し、それぞれの径路で
得られた測定値の差を並列接続数で割る所謂差分評価法
と呼ばれる測定方法を採用することにりより、チップ容
量値を精度高く求めることが行われて来た。
For example, when evaluating the capacitance value, if the capacitance value of a single capacitor element in each chip is small and high measurement accuracy is required, each measurement path with a different number of parallel connection of capacitor elements within the chip is measured, Chip capacitance values have been determined with high accuracy by employing a measurement method called the so-called differential evaluation method, in which the difference between the measured values obtained on each path is divided by the number of parallel connections.

第3図および第4図はそれぞれ差分評価法を用いた従来
のチップ容量値の評価方法を示す半導体ウェハー上の評
価用配線パターンの構成図およびそのチップ面の拡大図
である。ここで、C1は容敬素子の並列接続数が多い側
く測定値大)で、C2は逆に少ない側(測定鎖車)を示
しており、T1とT2はC1を引出す測定用端子、T2
とT3はC2を引出した測定端子である( T 2はC
1とC2の共通引出し端子である)。
FIGS. 3 and 4 are a configuration diagram of an evaluation wiring pattern on a semiconductor wafer and an enlarged view of the chip surface, respectively, showing a conventional method for evaluating a chip capacitance value using a differential evaluation method. Here, C1 is the side where the number of parallel connections of the capacitive elements is large (the measured value is large), and C2 is the side where there are fewer parallel connections (measurement chain wheel), T1 and T2 are the measurement terminals that draw out C1, and T2
and T3 are the measurement terminals from which C2 is drawn out (T2 is C
1 and C2).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、従来の評価方法によれば、評価用配線パ
ターンA3 +’ A4が何れもチップ2の端部までで
終っているので、測定対象とする素子単体く例えば容量
または抵抗など)の並列接続数や素子単体に条件の異な
る形状などの水準を設ける場合には、この水準数は半導
体チップ2の面積から制限を受けるようになになる。従
って、測定精度を向上させたり、より多くの評価を行う
ことが難しいという欠点がある。
However, according to the conventional evaluation method, the evaluation wiring patterns A3 +' A4 all end at the end of the chip 2, so the number of parallel connections of individual elements to be measured (for example, capacitance or resistance) is limited. When providing levels such as shapes with different conditions for each element, the number of levels is limited by the area of the semiconductor chip 2. Therefore, there is a drawback that it is difficult to improve measurement accuracy or perform more evaluations.

本発明の目的は、上記の問題点に鑑み、半導体チップ特
性の測定精度を向上させると共に、より多くの評価を行
うことのできるウェハー上における半導体チップの評価
方法を提供することである。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, an object of the present invention is to provide a method for evaluating semiconductor chips on a wafer, which improves the measurement accuracy of semiconductor chip characteristics and allows more evaluations to be performed.

〔課題を解決するための手段〕[Means to solve the problem]

本発明によれば、ウェハ上におけるチップの評価方法は
、半導体チップをX方向及びY方向に繰り返し配置し隣
接するすべてのチップの測定端子間を共通に配線接続す
るウェハーを準備し、前記半導体チップ内の評価すべき
素子単体の並列接続数を前記ウェハーの全面にまで拡大
して差分評価することを含んで構成される。
According to the present invention, a method for evaluating chips on a wafer includes preparing a wafer in which semiconductor chips are repeatedly arranged in the X direction and the Y direction and connecting the measurement terminals of all adjacent chips with a common wiring, and The method includes expanding the number of parallel connections of individual elements to be evaluated to cover the entire surface of the wafer and performing differential evaluation.

〔実施例〕〔Example〕

以下図面を参照して本発明の詳細な説明する。 The present invention will be described in detail below with reference to the drawings.

第1図および第2図はそれぞれ本発明を容量値の評価に
実施した場合の一実施例を示す半導体ウェハー上の差分
評価用配線パターン図およびそのチップ面の拡大図であ
る。ここで、従来と同じくC1は容量素子単体の並列接
続数が多い側く測定値大)で、C2は容量素子単体の並
列接続数の少ない側(測定鎖車)を示しており、またT
1とT2はC1を引き出した測定用端子、T2とT3は
C2を引き出した測定端子をそれぞれ示している。(T
 2はC1及びC2の共通引き出し端子である〉。
FIG. 1 and FIG. 2 are a diagram of a wiring pattern for differential evaluation on a semiconductor wafer and an enlarged view of the chip surface, respectively, showing an example in which the present invention is applied to evaluate a capacitance value. Here, as in the past, C1 indicates the side where the number of parallel connections of single capacitive elements is large (the measured value is large), C2 indicates the side where the number of parallel connections of single capacitive elements is small (measurement chain wheel), and T
1 and T2 indicate measurement terminals from which C1 is drawn, and T2 and T3 indicate measurement terminals from which C2 is drawn. (T
2 is a common lead-out terminal for C1 and C2.

本実施例によれば、評価用配線パターンA1゜A2は隣
接する半導体チップ2の測定端子間をチップ端パターン
al 、C2、C3、C4で示すように共通接続してお
り、スルー・ホールBで相互に接続される。このような
評価用配線バターA、、A2を用いると、一つの半導体
チップ2の測定端子T、−T2間及びT2−T3間の測
定値は、素子単体の並列接続数がウェハー上の半導体チ
ップ数倍されたものとして得ることができる。
According to this embodiment, the evaluation wiring patterns A1 and A2 commonly connect the measurement terminals of adjacent semiconductor chips 2 as shown by chip end patterns al, C2, C3, and C4, and the through holes B interconnected. When such evaluation wiring patterns A, A2 are used, the measured values between the measurement terminals T, -T2 and T2-T3 of one semiconductor chip 2 are as follows: It can be obtained multiple times.

従って、製造方法や測定方法を変更すること無く並列接
続数の増加を行うことができ、差分評価における測定精
度を向上せしめることができる。また、ウェハー上にお
ける並列接続数の増加を見越して一つの半導体チップ内
の並列接続数を減らすこともでき、この減らした分を素
子単体に条件の異なる形状などの水準を設ける場合の水
準数にあてることもできるので、条件の異なる水準を容
易に増やすことが可能となる。
Therefore, the number of parallel connections can be increased without changing the manufacturing method or measurement method, and the measurement accuracy in differential evaluation can be improved. In addition, in anticipation of an increase in the number of parallel connections on a wafer, it is possible to reduce the number of parallel connections within one semiconductor chip, and this reduction can be used to increase the number of levels when providing levels such as shapes with different conditions on a single element. Since it is also possible to apply different conditions, it is possible to easily increase the number of levels with different conditions.

以上は容量測定パターンについて説明したが、これに限
られることなく抵抗値及び伝播遅延時間の評価法として
実施することも可能である。
Although the capacitance measurement pattern has been described above, the present invention is not limited to this, and can also be implemented as a method for evaluating resistance values and propagation delay times.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、ウェハー上の評
価用配線パターンを変更するだけで素子単体の並列接続
数を実質的に増加させることができ、差分評価法による
測定精度をその分だけ向上せしめることができる他、チ
ップ内の素子単体の並列接続数を少なく設定して条件の
差による水準数の増加をはかることもできるので、従来
法に対しより多くの種類の評価を実施することが可能で
ある。
As explained above, according to the present invention, the number of parallel connections of individual elements can be substantially increased simply by changing the evaluation wiring pattern on the wafer, and the measurement accuracy by the differential evaluation method can be increased accordingly. In addition, it is possible to increase the number of levels due to differences in conditions by setting the number of parallel connections of individual elements in the chip to a small number, so it is possible to conduct more types of evaluation than conventional methods. is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はそれぞれ本発明を容量値の評価に
実施した場合の一実施例を示す半導体ウェハー上の差分
評価用配線パターン図およびそのチップ面の拡大図、第
3図および第4図はそれぞれ差分評価法を用いた従来の
チップ容量値の評価方法を示す半導体ウェハー上の評価
用配線バターン図およびそのチップ面の拡大図である。 1・・・半導体ウェハー、2・・・半導体チップ、Al
A2・・・評価用配線パターン、B・・・スルー・ホー
ル、a 1.a2 、a3 、a4・・・評価用配線の
チ・ンブ端パターン、Tl 、T2 、T3・・・測定
用端子。
FIGS. 1 and 2 are a diagram of a wiring pattern for differential evaluation on a semiconductor wafer and an enlarged view of its chip surface, respectively, showing one embodiment of the present invention for evaluating capacitance values, and FIGS. The figures are a diagram of a wiring pattern for evaluation on a semiconductor wafer and an enlarged view of the chip surface, respectively, showing a conventional method for evaluating chip capacitance values using a differential evaluation method. 1... Semiconductor wafer, 2... Semiconductor chip, Al
A2...Evaluation wiring pattern, B...Through hole, a1. a2, a3, a4... Chin end pattern of wiring for evaluation, Tl, T2, T3... terminal for measurement.

Claims (1)

【特許請求の範囲】[Claims] 半導体チップをX方向及びY方向に繰り返し配置し隣接
するすべてのチップの測定端子間を共通に配線接続する
ウェハーを準備し、前記半導体チップ内の評価すべき素
子単体の並列接続数を前記ウェハーの全面にまで拡大し
て差分評価することを特徴とするウェハー上における半
導体チップの評価方法。
A wafer is prepared in which semiconductor chips are repeatedly arranged in the X and Y directions and the measurement terminals of all adjacent chips are commonly connected by wiring, and the number of parallel connections of individual elements to be evaluated in the semiconductor chip is calculated by calculating the number of parallel connections of the individual elements to be evaluated in the semiconductor chip. A method for evaluating semiconductor chips on a wafer, which is characterized by performing differential evaluation by expanding to the entire surface.
JP63152809A 1988-06-20 1988-06-20 Estimation method of semiconductor chip on wafer Pending JPH023945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63152809A JPH023945A (en) 1988-06-20 1988-06-20 Estimation method of semiconductor chip on wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63152809A JPH023945A (en) 1988-06-20 1988-06-20 Estimation method of semiconductor chip on wafer

Publications (1)

Publication Number Publication Date
JPH023945A true JPH023945A (en) 1990-01-09

Family

ID=15548629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63152809A Pending JPH023945A (en) 1988-06-20 1988-06-20 Estimation method of semiconductor chip on wafer

Country Status (1)

Country Link
JP (1) JPH023945A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102175922A (en) * 2011-01-24 2011-09-07 重庆大学 Phasor measurement unit (PMU) measurement data-based power line parameter identification and estimation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102175922A (en) * 2011-01-24 2011-09-07 重庆大学 Phasor measurement unit (PMU) measurement data-based power line parameter identification and estimation method

Similar Documents

Publication Publication Date Title
KR950006957A (en) A semiconductor device manufacturing method comprising the step of forming an overlap error measurement pattern
KR100273317B1 (en) Test pattern structure for measuring a misalignment in semiconductor device fabrication process and method of measuring the misalignment
JPH0434950A (en) Semiconductor integrated circuit device
KR950015703A (en) Manufacturing Method of Semiconductor Device Using Measurement Mark Pattern
EP0128986B1 (en) Monolithic microwave integrated circuit and method for selecting it
JPH023945A (en) Estimation method of semiconductor chip on wafer
JP2710357B2 (en) Integrated circuit device
JPS6175543A (en) Semiconductor integrated circuit device
JPS63166256A (en) Semiconductor device and manufacture thereof
JPS6341042A (en) Semiconductor substrate for measuring high-frequency characteristic
JPS6293952A (en) Semiconductor test element
JPH03151651A (en) Semiconductor device
KR200265836Y1 (en) Photo Mask Set
JPH01175251A (en) Semiconductor integrated circuit device
JPH03211843A (en) Semiconductor integrated circuit
JPS63220537A (en) Semiconductor substrate
KR980010446A (en) Contact resistance measurement pattern
JPS6285457A (en) Composite semiconductor package
JPH08236593A (en) Evaluating method of wiring state on a semiconductor substrate
JPH0262043A (en) Pattern for size measurement
JPS63142767U (en)
JPH08298426A (en) Surface acoustic wave device and its manufacture
JPS58176966A (en) Integrated circuit device
JPH04287940A (en) Ic wafer probe card
JPH01304742A (en) Probe card