JPH0239411A - Conductive composed material for ceramic capacitor terminal electrode - Google Patents

Conductive composed material for ceramic capacitor terminal electrode

Info

Publication number
JPH0239411A
JPH0239411A JP18895888A JP18895888A JPH0239411A JP H0239411 A JPH0239411 A JP H0239411A JP 18895888 A JP18895888 A JP 18895888A JP 18895888 A JP18895888 A JP 18895888A JP H0239411 A JPH0239411 A JP H0239411A
Authority
JP
Japan
Prior art keywords
weight
glass
terminal electrode
ceramic capacitor
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18895888A
Other languages
Japanese (ja)
Other versions
JPH0817141B2 (en
Inventor
Eiichi Asada
榮一 浅田
Masami Akagi
正美 赤木
Yasutoshi Endo
安俊 遠藤
Naoki Nose
能勢 直樹
Hiroshi Majima
浩 真島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shoei Chemical Inc
Original Assignee
Shoei Chemical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shoei Chemical Inc filed Critical Shoei Chemical Inc
Priority to JP18895888A priority Critical patent/JPH0817141B2/en
Publication of JPH0239411A publication Critical patent/JPH0239411A/en
Publication of JPH0817141B2 publication Critical patent/JPH0817141B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To strengthen the connection strength with a capacitor element assembly and reduce the chance of crack occurrence by burning to the capacitor element assembly a conductive composed material in which borosilicate lead- zinc-aluminum glass is used as a binder. CONSTITUTION:This is a conductive composed material for a ceramic capacitor terminal electrode which is made by dispersing into an organic vehicle the precious metal powder 100 pts.wt. and one or two or more kinds of glassy frits 0.2 to 20 pts.wt. which is composed by glass-composing elements in the following proportions in terms of an oxide: B2O3 15 to 35wt.%, ZnO 35 to 60wt.%, SiO2 1 to 15wt.%, Al2O3 1 to 15wt.% and PbO 0.5 to 12wt.%. On an interface between a terminal electrode and a capacitor element assembly, a thin layer of strong crystallized glass is formed.

Description

【発明の詳細な説明】 り鼠旦立丘里豆ヱ 本発明は、セラミックコンデンサの端子電極を形成する
ための導電性組成物であり、特にチタン酸バリウム系積
層コンデンサの端子電極付近に生じるクラックを防止し
た電極組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a conductive composition for forming terminal electrodes of ceramic capacitors. The present invention relates to an electrode composition that prevents.

良米立韮韮 積層コンデンサ等、チップ状セラミックコンデンサの端
子電極は、銀、パラジウム、金、白金、銅、ニッケル又
はこれらの混合物などの導電性粉末と、ガラス質フリッ
ト等の無機結合剤とを有機ビヒクルに分散させたペース
ト状の組成物を、チップ素体の端子部に塗布し、焼付け
することによって形成される。
The terminal electrodes of chip-shaped ceramic capacitors, such as Ryomaritsu Niranori multilayer capacitors, are made of conductive powder such as silver, palladium, gold, platinum, copper, nickel, or a mixture thereof, and an inorganic binder such as glass frit. It is formed by applying a paste-like composition dispersed in an organic vehicle to the terminal portion of the chip body and baking it.

コンデンサチップの回路基板への実装は、半田付けによ
って行うのが一般的であるが、電極中の導電成分が貴金
属のように半田に溶解し易い金属である場合は、耐半田
溶解性を高めるため電極表面に半田に溶解し難いニッケ
ル、銅などの金属の薄膜を電解メツキ等の手段によって
形成し、次いでその上に半田付性の良い錫や錫−鉛合金
などを被覆し、その後半田呼処理を行っている。
Capacitor chips are generally mounted on circuit boards by soldering, but if the conductive component in the electrode is a metal that easily dissolves in solder, such as a noble metal, it may be necessary to use soldering to increase resistance to solder melting. A thin film of metal such as nickel or copper, which is difficult to dissolve in solder, is formed on the electrode surface by means such as electrolytic plating, and then tin or a tin-lead alloy, which has good solderability, is coated on top of it, followed by a soldering process. It is carried out.

ところが、従来この種の導電性組成物は無機結合剤に硼
珪酸鉛系や硼珪酸ビスマス系のガラス質フリットを用い
ているが、この組成物から形成された導電被膜に電解メ
ツキ処理を施したとき、端子とコンデンサ素体間の接合
強度が劣化する問題が生じ、このため電極材料、特に電
極に使用するガラス質フリットの改良がなされてきた。
However, conventionally, this type of conductive composition uses a lead borosilicate-based or bismuth borosilicate-based glass frit as an inorganic binder; At this time, a problem arises in which the bonding strength between the terminal and the capacitor body deteriorates, and for this reason, improvements have been made to electrode materials, particularly the glass frit used in the electrodes.

例えば特公昭60−37562号は、鉛を含有しないZ
n0−B203−3LO2ガラスを使用したベーストで
酸処理、電解メツキの可能な導体膜を形成するものであ
る。又、特公昭62−1662号には、アルカリ金属及
びアルカリ土類金属を含有する特定の組成の硼珪酸亜鉛
系ガラス質フリットを用いた導電塗料が記載されている
。しかしこれらのガラスを使用することによって、電解
メツキによる密着強度の劣化はある程度改善されるもの
の、電極表面にガラスが分布してメツキが一様に形成さ
れず、このため半田の付着性が不十分になる欠点かある
For example, Special Publication No. 60-37562 is a lead-free Z
A conductor film that can be acid-treated and electrolytically plated is formed using a base using n0-B203-3LO2 glass. Further, Japanese Patent Publication No. 1662/1983 describes a conductive paint using a zinc borosilicate glass frit having a specific composition containing an alkali metal and an alkaline earth metal. However, although the use of these glasses improves the deterioration of adhesion strength due to electrolytic plating to some extent, the glass is distributed on the electrode surface and the plating is not formed uniformly, resulting in insufficient solder adhesion. There are some drawbacks to it.

又従来、電解メツキ処理したコンデンサを半田付する際
、半田浴の温度が高温で300°C以上にも及ぶため、
半田浴にコンデンサチップを浸漬するときに急激な温度
変化が加わることになり、このため信頼性に問題を生ず
る6例えば積層セラミックコンデンサを製造する場合、
半田付時に加わるサーマルショックによりコンデンサ素
体にしばしばクラックが発生し、コンデンサとして使用
できなくなることがある。このクラックは、半田付時の
他、コンデンサ製造工程において大きな機械的応力が加
わったときなどにも生ずることがある。
In addition, conventionally, when soldering electrolytically plated capacitors, the temperature of the solder bath was high and reached over 300°C.
When a capacitor chip is immersed in a solder bath, a sudden temperature change is applied, which causes reliability problems6. For example, when manufacturing multilayer ceramic capacitors,
Thermal shock applied during soldering often causes cracks in the capacitor body, making it unusable as a capacitor. These cracks may occur not only during soldering but also when large mechanical stress is applied during the capacitor manufacturing process.

このようなりラックの発生は、特に内部電極材料にパラ
ジウム系又は銀−パラジウム系の金属を使用し、端子電
極を銀−パラジウム又は銀系で形成したときに多く、又
機械的強度が比教的弱いBaT i O3系の積層コン
デンサで多発しており、大きな問題となっている。
The occurrence of such racks is especially common when palladium-based or silver-palladium-based metals are used for the internal electrode material and the terminal electrodes are formed from silver-palladium or silver-based metals. This occurs frequently in weak BaT i O3 multilayer capacitors, and is a major problem.

が 決しようとする課題 本発明の目的は、セラミックコンデンサ端子電極のガラ
ス結合剤の改良により、端子とコンデンサ素体との接合
性及び半田付性を改善し、更に積層コンデンサの半田付
時の熱?R撃等によるクラックの発生を防止することに
ある。
The purpose of the present invention is to improve the bondability and solderability between the terminal and the capacitor body by improving the glass bonding agent of the ceramic capacitor terminal electrode, and to improve the heat resistance during soldering of the multilayer capacitor. ? The purpose is to prevent the occurrence of cracks due to R strikes, etc.

課題を ゛ るための 段 本発明は、貴金属粉末100重量部と、ガラスを構成す
る各元素の合計が酸化物換算でそれぞれB2O3   
     15〜35重量%Zn0        3
5〜60重量%Sio2        1〜15重量
%Al2O31−15重厘% PbOO,5〜12重量% の比率となるような1種又は2種以上のガラス質フリッ
ト0.2〜20重1部とを有機ビヒクルに分散させてな
るセラミックコンデンサ端子ti用導電性組成物であり
、又第2の発明は貴金属粉末100重凰部上、ガラスを
構成する各元素の合計が酸1ヒ物換算でそれぞれ B2O3        15〜35ffij1%Zn
0        35〜60重呈%Sio2    
    1〜15重坂%Al2O31〜15重量% P b OO,5〜12重量% BaO及びCaOから選 ばれる少なくとも1種 2〜28重量%の比率となるよ
うな1種又は2種以上のガラス質フリ、ト0.2〜20
重量部とを有機ビヒクルに分散させてなるセラミックコ
ンデンサ端子電極用導電性組成物である。
To solve the problem, the present invention provides 100 parts by weight of noble metal powder and a total of each element constituting the glass in terms of oxides of B2O3.
15-35 wt% Zn03
5 to 60% by weight Sio2 1 to 15% by weight Al2O3 1-15% by weight PbOO, 0.2 to 20% by weight and 1 part by weight of one or more types of vitreous frit such that the ratio is 5 to 12% by weight. The second invention is a conductive composition for ceramic capacitor terminals, which is dispersed in an organic vehicle. 15~35ffij1%Zn
0 35-60 weight%Sio2
1 to 15% by weight Al2O3 1 to 15% by weight P b OO, 5 to 12% by weight At least one type selected from BaO and CaO One or more types of vitreous material with a ratio of 2 to 28% by weight , 0.2-20
This is a conductive composition for ceramic capacitor terminal electrodes, which is prepared by dispersing parts by weight in an organic vehicle.

1■ 本発明の特定組成の硼珪酸鉛−亜釦一アルミニウム系ガ
ラスを結合剤として使用した導電性組成物は、コンデン
サ素体に焼(−1けすることにより、コンデンサ素体と
の接合強度が強く、電解メツキを施しても接合強度の劣
化がない端子電極が形成される。又電極表面にガラスの
分布が少なく、従ってメツキの付着性及び半田の付着性
か優れている。又積層コンデンサの実装時の半田付に際
してのサーマルショックや、その他の機械的衝撃による
コンデンサ素体へのクラックの発生が著しく減少する。
1. The conductive composition of the present invention using lead borosilicate-aluminum glass having a specific composition as a binder can be baked into a capacitor body to improve the bonding strength with the capacitor body. Terminal electrodes are formed that are strong and have no deterioration in bonding strength even when electrolytically plated.Also, there is little distribution of glass on the electrode surface, resulting in excellent plating and solder adhesion.Also, multilayer capacitors The occurrence of cracks in the capacitor body due to thermal shock during soldering during mounting and other mechanical shocks is significantly reduced.

積層コンデンサのクラックの発生IR椙については明確
には解っていないが、例えばパラジウム系の内部電極を
用いた積層セラミックコンデンサに、銀糸の端子電極組
成物を塗布し、焼成すると、パラジウムと銀の拡散速度
の違いから、端子中の銀が、端子に直接結合している内
部電極中に拡散し、端子近くの内部電極が体積膨張を起
こして周囲のセラミック誘電体層を圧迫する。このため
コンデンサ素体の内部電極が露出していない側面部に引
張り応力の集中が起こり、その結果セラミック誘電体層
に内部歪み、或いは極めて微細な亀裂を生じさせるもの
と考えられる。そして端子部に電解メツキを行なった後
、実装工程で高温の半田浴へ浸漬する際、急激な昇温に
よってこの歪み又は微細な亀裂が拡大され、特に機械的
強度があまり強くないBaTiO3のようなセラミック
誘電体の場合、大きなりラックに至ると考えられる。
The occurrence of cracks in multilayer capacitors is not clearly understood, but for example, when a terminal electrode composition of silver thread is applied to a multilayer ceramic capacitor using palladium-based internal electrodes and fired, the diffusion of palladium and silver occurs. Due to the difference in speed, the silver in the terminal diffuses into the internal electrode that is directly bonded to the terminal, causing volumetric expansion of the internal electrode near the terminal and compressing the surrounding ceramic dielectric layer. This is thought to cause tensile stress to concentrate on the side surfaces of the capacitor body where the internal electrodes are not exposed, resulting in internal distortion or very fine cracks in the ceramic dielectric layer. After electrolytically plating the terminals, when the terminals are immersed in a high-temperature solder bath during the mounting process, these distortions or minute cracks are enlarged due to the rapid temperature rise. In the case of ceramic dielectrics, this would lead to large racks.

本発明においてガラスを前記の組成とすると、端子電極
とコンデンサ素体との界面に強靭な結晶化ガラスの薄い
層が形成され、この層が形成されるとクラックが発生し
にくくなることか判明した。
In the present invention, when the glass has the above composition, a thin layer of tough crystallized glass is formed at the interface between the terminal electrode and the capacitor body, and it has been found that the formation of this layer makes it difficult for cracks to occur. .

この層は分析の結果、亜鉛系の結晶化ガラス中にZnO
とTiO2を主成分とする結晶が析出したものであるが
、これは端子電極の焼成時、軟化したガラスをフラック
スとしてコンデンサ素体の一部が分解され、端子電極の
ガラスの構成成分であるZnOと反応したものではない
かと推定される。
As a result of analysis, this layer was found to contain ZnO in zinc-based crystallized glass.
Crystals mainly composed of TiO2 were precipitated, but this is because when the terminal electrodes were fired, part of the capacitor body was decomposed using softened glass as a flux, and ZnO, which is a component of the glass of the terminal electrodes, was decomposed. It is presumed that this was a reaction.

この素体の分解と反応層が生成する現象に伴って、前述
の内部’E fIの膨脹に起因するセラミックの内部歪
み、及び半田付時の急激な温度変化による歪みが緩和さ
れ、加えてクラック発生箇所の機械的強度が増大するた
め、種々の熱衝撃や機械的衝撃を受けてもクラックの発
生が抑制されると考えられる。
Along with this phenomenon of decomposition of the element and the formation of a reaction layer, the internal distortion of the ceramic caused by the expansion of the internal 'E fI mentioned above and the distortion caused by the rapid temperature change during soldering are alleviated, and in addition, cracks are reduced. It is thought that since the mechanical strength of the crack generation site increases, the generation of cracks is suppressed even when subjected to various thermal shocks and mechanical shocks.

更にガラス質フリットとコンデンサ素体とが反応して接
着しているため、端子とコンデンサ素体間の接合強度ら
著しく改善され、電解メツキ後も強度の劣化が起こらな
いと考えられる。
Furthermore, since the glassy frit and the capacitor body react and adhere to each other, the bonding strength between the terminal and the capacitor body is significantly improved, and it is thought that no deterioration in strength will occur even after electrolytic plating.

第二の発明においては、第一の発明の硼珪酸鉛−亜鉛−
アルミニウムガラスにBaO及び/又はCaOを特定量
添加するか、この添加により素体との接合強度が更に大
きくなり、又膜の緻密性が改善される。焼成膜の膜密度
が向上すると、メツキ工程でメツキ液の浸入が防止され
、従ってメツキ液の滲込みに起因する絶縁抵抗の低下や
、メツキ後の高温加熱時閉込められた水分が膨脹、破裂
するいわゆるポツプコーン現象が防止されるので、信顆
性が向上する。
In the second invention, the lead-zinc borosilicate of the first invention
By adding a specific amount of BaO and/or CaO to aluminum glass, the bonding strength with the element body is further increased and the denseness of the film is improved. When the film density of the fired film is improved, the infiltration of the plating liquid during the plating process is prevented, and therefore the insulation resistance decreases due to seepage of the plating liquid, and the trapped moisture expands and ruptures during high temperature heating after plating. Since the so-called popcorn phenomenon that occurs is prevented, reliability is improved.

ガラスの組成を限定した理由は次の通りである。The reason for limiting the composition of the glass is as follows.

B203は10重量%未満ではガラス化か困難であり、
35重量%を越えると軟化温度が高くなり、又失透する
ので望よしくない。
If B203 is less than 10% by weight, it is difficult to vitrify it.
If it exceeds 35% by weight, the softening temperature becomes high and devitrification occurs, which is not desirable.

ZnOはコンデンサ成分と反応して、素体との密着強度
を改善するとともにクラックを防止すると考えられるが
、35重1%より少ないと反応層の形成か不十分で効果
がなく、ス60重量%を越えるとガラス1ヒが困難にな
る。
It is thought that ZnO reacts with the capacitor components to improve the adhesion strength with the element body and prevent cracks, but if it is less than 1% by weight, the formation of a reaction layer is insufficient and there is no effect; If you exceed this, glass 1hi becomes difficult.

SiO2は、1重量%未満では耐酸性が低く、15重量
%より多いと軟化温度が高くなりすぎるので望ましくな
い。
If SiO2 is less than 1% by weight, the acid resistance is low, and if it is more than 15% by weight, the softening temperature becomes too high, which is not desirable.

Al2O3はガラスを安定化させるために配合する。配
合量が1重量%未満では失透か起こり易く、素体とガラ
スとの反応が均一に起こりにくくなって強度等が低下す
る。15重量%を越えるとガラスの流動性が損なわれる
Al2O3 is added to stabilize the glass. If the blending amount is less than 1% by weight, devitrification is likely to occur, making it difficult for the reaction between the element body and the glass to occur uniformly, resulting in a decrease in strength, etc. If it exceeds 15% by weight, the fluidity of the glass will be impaired.

PbOは0.5重量%より少ないとガラス化が困難であ
り、又12重量%を越えると軟化温度が低下し、流動性
が大きくなりすぎて使用に適さない。
When PbO is less than 0.5% by weight, vitrification is difficult, and when it exceeds 12% by weight, the softening temperature decreases and fluidity becomes too high, making it unsuitable for use.

特にガラス成分にBad、CaOが含まれない場合は0
.5〜9重量%の範囲か好適である。
Especially if the glass component does not contain Bad or CaO, 0
.. A range of 5 to 9% by weight is suitable.

Bad、CaOは必すしも配合されなくてもよいが、上
記の硼珪酸鉛−亜鉛−アルミニウムガラスガラスに添加
することによって接合強度が更に改善されるとともに、
膜密度か大きくなるので膜へのメツキ液の滲込みが防止
され、信頼性が向上する。BaO1CaOの合計量か2
重量%より少ないとこれらの特性改善にあまり効果がな
く、28重量%を越えると前述の反応層の形成が困難に
なり、クラックの発生が多くなる。
Bad and CaO do not necessarily have to be added, but by adding them to the lead borosilicate-zinc-aluminum glass, the bonding strength is further improved, and
Since the film density is increased, plating solution is prevented from seeping into the film, improving reliability. Total amount of BaO1CaO2
If it is less than 28% by weight, it will not be very effective in improving these properties, and if it exceeds 28% by weight, it will be difficult to form the above-mentioned reaction layer and cracks will occur more often.

ガラス質フリットとしては単一のガラス質フリyトを使
用してもよいが、2種以上のフリ・yl−の混合物で、
各成分酸化物の合計が前記の比率となるものを用いても
よい。
A single glassy frit may be used as the glassy frit, but a mixture of two or more types of glassy frits,
You may use the one in which the total of each component oxide has the above-mentioned ratio.

本発明にはガラス質フリットの曲に、無機結合剤として
通常使用される酸化ビスマス、酸化銅、酸化亜鉛等の添
加剤を併用してもよい。
In the present invention, additives such as bismuth oxide, copper oxide, and zinc oxide, which are commonly used as inorganic binders, may be used in combination with the vitreous frit.

導電性粉末としては銀、パラジウム、白金、金などの貴
金属や、これらの合金或いは混合物が使用される。
As the conductive powder, noble metals such as silver, palladium, platinum, and gold, and alloys or mixtures thereof are used.

有機ビヒクルは特に制限はなく、通常この種の導電性組
成物に使用されるものでよい。
The organic vehicle is not particularly limited, and may be one that is normally used in this type of conductive composition.

導電性粉末とガラス質フリットの比率は、導電性粉末1
00重量部に対してガラス質フリット0.2〜20重量
部の範囲で使用される。これより少ないと電極の接合強
度が充分でなく、多ずぎると電極の表層部に存在するガ
ラスが多くなるために、均一なメツキ膜の形成が困難に
なるので望ましくない。又有機ビヒクルは導電性粉末1
00重量部に対し10〜40重1部程度か適当である。
The ratio of conductive powder to vitreous frit is conductive powder 1
The glassy frit is used in an amount of 0.2 to 20 parts by weight per 0.00 parts by weight of the glass frit. If the amount is less than this, the bonding strength of the electrodes will not be sufficient, and if it is too much, the amount of glass present on the surface layer of the electrode will increase, making it difficult to form a uniform plating film, which is not desirable. Also, the organic vehicle is conductive powder 1
Approximately 1 part by weight of 10 to 40 parts per 00 parts by weight is appropriate.

本発明の導電性組成物は、特にB a T i OB系
の積層コンデンサに対して特に効果か大きいが、T i
 O2系その他の積層コンデンサや、単板形のコンデン
サの端子電極形成用にも用いることかできるのはもちろ
んである。更にメツキを行わず直接半田付けするタイプ
の端子電極にもf重用することができる。
The conductive composition of the present invention is particularly effective for B a T i OB type multilayer capacitors;
Of course, it can also be used for forming terminal electrodes of O2-based and other multilayer capacitors and single-plate capacitors. Furthermore, it can also be used for terminal electrodes that are directly soldered without plating.

実施例 実施例1 銀粉末100重量部に対して下記組成のガラス質フリッ
ト6重量部と、有機ビヒクルとしてエチルセルロースの
テルピネオール溶液30重量部を混会し、ペースト状の
導電性組成物を得た。
Examples Example 1 100 parts by weight of silver powder were mixed with 6 parts by weight of a vitreous frit having the following composition and 30 parts by weight of a terpineol solution of ethyl cellulose as an organic vehicle to obtain a paste-like conductive composition.

B2O3      29重量% Zn0       49重量% SiO28重量% Al2O32重量% PbO12重量% このベーストを、内部t %にパラジウムを用いたBa
Ti0q系積層セラミックコンデンサ(層数30層)の
端子部即ち内部電極端部の露出した側面に塗布し、15
0°Cで10分間乾燥した後、最高温度800℃で焼成
し、端子電極被膜を形成した。
B2O3 29% by weight Zn0 49% by weight SiO28% by weight Al2O32% by weight PbO 12% by weight
Coat it on the exposed side surface of the terminal part, that is, the end of the internal electrode, of a Ti0q-based multilayer ceramic capacitor (30 layers).
After drying at 0°C for 10 minutes, it was fired at a maximum temperature of 800°C to form a terminal electrode coating.

次いで端子部にニッケル及び錫を順次電解メツキした。Next, the terminal portions were sequentially electrolytically plated with nickel and tin.

メツキ処理の前後で電極とセラミンク索体間の接合強度
を測定したところ、それぞれ41kg、 3.9kgで
あった。
When the bonding strength between the electrode and the ceramink cord was measured before and after the plating treatment, it was 41 kg and 3.9 kg, respectively.

又メツキ処理したコンデンサを300°Cの錫/釦共晶
半田浴に1秒間浸漬し、その後、光学顕微鏡でセラミッ
ク素体を観察したところ、クラックの発生は見られなか
った。半田の付着性は極めて良好であった。
Furthermore, when the plated capacitor was immersed in a tin/button eutectic solder bath at 300° C. for 1 second and the ceramic body was then observed with an optical microscope, no cracks were observed. Solder adhesion was extremely good.

実施例2〜7 表1に示したガラス質フリyトを使用する以外は実施例
1と同様にして、端子電極を形成した。
Examples 2 to 7 Terminal electrodes were formed in the same manner as in Example 1 except that the vitreous frit shown in Table 1 was used.

同様にメツキ前後の接合強度及びクラyりの発生状況、
半田付性、膜密度を調べ、結果を表1に併せて示した。
Similarly, the joint strength before and after plating and the occurrence of cracking,
The solderability and film density were investigated, and the results are also shown in Table 1.

尚、表1において半田付性は、試料10個中、半田がは
じかれ均一に付着しなかったものの個数で示した。膜密
度は顕微鏡写真により判定し、実施例1の焼成膜を基準
にして、はぼ同等のものは○、より緻密なものは◎とし
た。
In Table 1, the solderability is shown by the number of samples out of 10 samples in which the solder was repelled and did not adhere uniformly. The film density was determined by a microscopic photograph, and based on the fired film of Example 1, the film density was rated ◯ if it was equivalent to that of Example 1, and ◎ if it was denser.

比較例1〜5 表1に示した組成のガラス質フリットを使用する以外は
実施例と同様にして、端子電極を形成し、接合強度、ク
ラックの発生、半田付性及び膜密度を調べた。結果を表
1に併せて示した。
Comparative Examples 1 to 5 Terminal electrodes were formed in the same manner as in the example except that a glassy frit having the composition shown in Table 1 was used, and the bonding strength, occurrence of cracks, solderability, and film density were examined. The results are also shown in Table 1.

表1から明らかなように、本発明の組成物ではクラック
か全く発生せず、接合強度、半III吋性及び膜密度と
もに優れているか、本発明外の組成のガラスを用いるも
のでは、比較例1−3.5では多数のクラックか発生し
た。比較例4.5では、半IJI濡れ性が悪いか、これ
は電極1摸にガラスか多く存在し、ニノゲルメッキが均
一に14着しないためと考えられる。また比較例1.3
・〜5では強度も弱い。尚、ガラスにBaO1CaOを
含む実施例5〜7では1模密度が非常に優れていた。
As is clear from Table 1, the composition of the present invention does not generate any cracks and is excellent in bonding strength, half-III toughness, and film density. 1-3.5, many cracks occurred. In Comparative Example 4.5, the semi-IJI wettability was poor, and this is thought to be because a large amount of glass was present in each electrode, and the Ninogel plating was not applied uniformly. Also, Comparative Example 1.3
・At ~5, the strength is weak. In addition, in Examples 5 to 7 in which the glass contained BaO1CaO, the 1 simulcast density was very excellent.

実施例8 銀粉末1001扛量部、実施例6と同−釘■成のガラス
質フリット3市鼠部及びfli2’3扮木5重量部をエ
チルセル1m?−スのデルビイ・オール溶11t30車
鼠部に混合分散し、ペースi・状の導電性組成物を得た
。このペーストを、BaTi○3系績層セラミ7クコン
デンサの端子部に塗布し、乾燥後、最高温度750°C
で焼成し、端子電極被膜を形成した。
Example 8 1001 parts of silver powder, 3 parts by weight of the same vitreous frit as in Example 6, and 5 parts by weight of fli2'3 were placed in 1 m of ethyl cell. The mixture was mixed and dispersed in the groin area of a Delby All solution 11t30 vehicle to obtain a conductive composition in the form of a paste. This paste was applied to the terminals of a BaTi○3-layer ceramic 7-layer capacitor, and after drying, the maximum temperature was 750°C.
A terminal electrode coating was formed by firing the terminal electrode.

メツキ処理を行わない端子の接合強度は!i、2kgで
あり、陵れた密着性を示した。又半I111寸性は良好
であった。
What is the bonding strength of terminals that are not plated? i, 2 kg, and showed good adhesion. In addition, the semi-I111 dimensional properties were good.

発明の効果 本発明の特定組成のガラスを前桟結合剤として便用する
電極用組成物により、コンデンサ素体との接合強度か強
く、電解メツAにも耐える(憂れな”A’+ ”I′−
電極が形成され、かつ実装時の半ul l・jに際して
のサーマルショックやその曲の機械的衝撃によるクラッ
クの発生のない、信頼性か極めて高いセラミックコンデ
ンサを得ることができる。
Effects of the Invention The electrode composition that uses the glass of the specific composition of the present invention as a front beam bonding agent has strong bonding strength with the capacitor body and can withstand electrolytic metal A (the unfortunate "A'+"). I'-
It is possible to obtain a highly reliable ceramic capacitor in which electrodes are formed and which does not generate cracks due to thermal shock or mechanical impact during half-ul l·j during mounting.

Claims (1)

【特許請求の範囲】 1 貴金属粉末100重量部と、ガラスを構成する各元
素の合計が酸化物換算でそれぞれ下記比率となるような
1種又は2種以上のガラス質フリット0.2〜20重量
部とを、有機ビヒクルに分散させてなるセラミックコン
デンサ端子電極用導電性組成物。 B_2O_3 15〜35重量% ZnO 35〜60重量% SiO_2 1〜15重量% Al_2O_3 1〜15重量% PbO 0.5〜12重量% 2 貴金属粉末100重量部と、ガラスを構成する各元
素の合計が酸化物換算でそれぞれ下記比率となるような
1種又は2種以上のガラス質フリット0.2〜20重量
部とを、有機ビヒクルに分散させてなるセラミックコン
デンサ端子電極用導電性組成物。 B_2O_3 15〜35重量% ZnO 35〜60重量% SiO_2 1〜15重量% Al_2O_3 1〜15重量% PbO 0.5〜12重量% BaO及びCaOから選 ばれる少なくとも1種 2〜28重量% 3 更に酸化ビスマス粉末を添加した請求項1又は2記
載のセラミックコンデンサ端子電極用導電性組成物。
[Scope of Claims] 1. 100 parts by weight of noble metal powder and 0.2 to 20 parts by weight of one or more types of vitreous frit such that the total of each element constituting the glass is in the following ratio in terms of oxide. 1. A conductive composition for a ceramic capacitor terminal electrode, which is prepared by dispersing the above components in an organic vehicle. B_2O_3 15-35% by weight ZnO 35-60% by weight SiO_2 1-15% by weight Al_2O_3 1-15% by weight PbO 0.5-12% by weight 2 100 parts by weight of noble metal powder and the total of each element constituting the glass are oxidized A conductive composition for a ceramic capacitor terminal electrode, comprising 0.2 to 20 parts by weight of one or more glassy frits having the following ratios, respectively, dispersed in an organic vehicle. B_2O_3 15-35% by weight ZnO 35-60% by weight SiO_2 1-15% by weight Al_2O_3 1-15% by weight PbO 0.5-12% by weight At least one selected from BaO and CaO 2-28% by weight 3 Furthermore, bismuth oxide The conductive composition for ceramic capacitor terminal electrodes according to claim 1 or 2, further comprising powder.
JP18895888A 1988-07-28 1988-07-28 Conductive composition for ceramic capacitor terminal electrodes Expired - Lifetime JPH0817141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18895888A JPH0817141B2 (en) 1988-07-28 1988-07-28 Conductive composition for ceramic capacitor terminal electrodes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18895888A JPH0817141B2 (en) 1988-07-28 1988-07-28 Conductive composition for ceramic capacitor terminal electrodes

Publications (2)

Publication Number Publication Date
JPH0239411A true JPH0239411A (en) 1990-02-08
JPH0817141B2 JPH0817141B2 (en) 1996-02-21

Family

ID=16232905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18895888A Expired - Lifetime JPH0817141B2 (en) 1988-07-28 1988-07-28 Conductive composition for ceramic capacitor terminal electrodes

Country Status (1)

Country Link
JP (1) JPH0817141B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5561587A (en) * 1993-12-10 1996-10-01 Murata Manufacturing Co., Ltd. Conductive paste and multilayer ceramic capacitor
US5623389A (en) * 1994-06-20 1997-04-22 Murata Manufacturing Co., Ltd. Conductive paste and multilayered ceramic capacitor employing the same
US5707555A (en) * 1994-11-24 1998-01-13 Murata Manufacturing Co., Ltd. Conductive paste and external electrodes for electronic product formed using same
WO2001048762A1 (en) * 1999-12-24 2001-07-05 Ngk Insulators, Ltd. Ceramic capacitor electrode-forming paste

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5561587A (en) * 1993-12-10 1996-10-01 Murata Manufacturing Co., Ltd. Conductive paste and multilayer ceramic capacitor
US5623389A (en) * 1994-06-20 1997-04-22 Murata Manufacturing Co., Ltd. Conductive paste and multilayered ceramic capacitor employing the same
US5707555A (en) * 1994-11-24 1998-01-13 Murata Manufacturing Co., Ltd. Conductive paste and external electrodes for electronic product formed using same
WO2001048762A1 (en) * 1999-12-24 2001-07-05 Ngk Insulators, Ltd. Ceramic capacitor electrode-forming paste
US6565774B2 (en) 1999-12-24 2003-05-20 Ngk Insulators, Ltd. Paste for formation of ceramic capacitor electrode

Also Published As

Publication number Publication date
JPH0817141B2 (en) 1996-02-21

Similar Documents

Publication Publication Date Title
US6841495B2 (en) Glass and conductive paste using the same
US5781402A (en) Conducting thick film composition, thick film electrode, ceramic electronic component and laminated ceramic capacitor
US7147804B2 (en) Terminal electrode compositions for multilayer ceramic capacitors
JP3297531B2 (en) Conductive paste
JP3463320B2 (en) Multilayer ceramic capacitors
JPH0423308A (en) Ceramic capacitor
JPS6310887B2 (en)
JPH02109314A (en) Electroconductive compound for terminal electrode of ceramic capacitor
JPH01252548A (en) Glass ceramic composition
KR20010095162A (en) Conductive paste and multi-layer ceramic electronic component using the same
JP2002163928A (en) Glass composite and thick film paste using this
JPH0239411A (en) Conductive composed material for ceramic capacitor terminal electrode
JPH0239410A (en) Conductive composed material for ceramic capacitor terminal electrode
JPH087645A (en) Conductive paste and multilayer ceramic capacitor
JP3257036B2 (en) Conductive paste for chip-type electronic components
JPS621662B2 (en)
JP2973558B2 (en) Conductive paste for chip-type electronic components
JPH08298018A (en) Conductive paste
US3849142A (en) Barium- or strontium-containing glass frits for silver metallizing compositions
JPH0239408A (en) Conductive composed material for ceramic capacitor terminal electrode
JP2968316B2 (en) Multilayer ceramic capacitors
JPH0440803B2 (en)
JPS63283184A (en) Circuit substrate covered with conductor composition
JPH06342965A (en) Ceramic circuit board and manufacture thereof
JPH06309921A (en) Electronductive paste for chip type electronic component

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080221

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090221

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090221

Year of fee payment: 13