JPH0238697A - Excavating of tunnel - Google Patents

Excavating of tunnel

Info

Publication number
JPH0238697A
JPH0238697A JP18671988A JP18671988A JPH0238697A JP H0238697 A JPH0238697 A JP H0238697A JP 18671988 A JP18671988 A JP 18671988A JP 18671988 A JP18671988 A JP 18671988A JP H0238697 A JPH0238697 A JP H0238697A
Authority
JP
Japan
Prior art keywords
excavated
excavation
section
shoring
tunnel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18671988A
Other languages
Japanese (ja)
Other versions
JPH0463197B2 (en
Inventor
Yukihiko Tsuchiya
土谷 幸彦
Akio Takase
高瀬 昭雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON TETSUDO KENSETSU KODAN
Original Assignee
NIPPON TETSUDO KENSETSU KODAN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON TETSUDO KENSETSU KODAN filed Critical NIPPON TETSUDO KENSETSU KODAN
Priority to JP18671988A priority Critical patent/JPH0238697A/en
Publication of JPH0238697A publication Critical patent/JPH0238697A/en
Publication of JPH0463197B2 publication Critical patent/JPH0463197B2/ja
Granted legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)
  • Lining And Supports For Tunnels (AREA)

Abstract

PURPOSE:To prevent the looseness of the ground, and to reduce the settling of the ground surface by dividing the cross section of a tunnel into left and right and upper and lower sections, excavating a backward upper half after an advancing upper half, reinforcing a circular surface and executing the circular surface in the same manner as the backward upper half and a backward lower half. CONSTITUTION:The cross section of a tunnel is divided into at least six sections of left and right and upper and lower sections, the advancing upper stage 1 of one cross section part is excavated, and an excavating section 14 is reinforced to the circumferential surface of the advancing upper stage 1 by shotcrete and the installation of a timbering 20. An advancing sublevel 2 is excavated and shotcrete 16, 18 is executed, an excavating section 24 is closed while surrounding the space of the excavating section 24, and a timbering 26 is mounted and the excavating section 24 is reinforced. The excavation and reinforcement of the advancing lower stage 5 and backward lower stage 6 of the lower half section of the cross section part are repeated and executed in succession through the same method. Accordingly, even a sand layer having shallow covering can be excavated safely.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はトンネル掘削方法に関し、特に地盤沈下による
地中埋設物、建物、舗装、その他の構造物や施設への影
響を受は易い市街地や住宅密集地のような地域にトンネ
ルを施工するのに適した掘削方法に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a tunnel excavation method, particularly in urban areas where underground objects, buildings, pavements, and other structures and facilities are easily affected by ground subsidence. Concerning an excavation method suitable for constructing tunnels in areas such as densely populated residential areas.

(従来の技術) 従来のトンネル掘削方法の1つに、例えば、特開昭60
−148993号公報に開示されている方法、すなわち
、トンネルの断面を左右2つの断面部分に分割し、左右
両断面部分間にクラウン部の支えおよびトンネルの剛性
の強化を目的として、吹付はコンクリートと支保工とか
らなるいわゆる中壁を構築しつつ、一方の断面部分にお
いて先進掘削し、その後、他方の断面部分において掘削
するトンネル掘削方法かある。
(Prior art) One of the conventional tunnel excavation methods is, for example,
- The method disclosed in Publication No. 148993, in which the cross-section of the tunnel is divided into two left and right cross-section parts, and the spraying is performed with concrete and support between the left and right cross-section parts for the purpose of supporting the crown part and strengthening the rigidity of the tunnel. There is a tunnel excavation method in which advanced excavation is performed in one cross-sectional area, and then excavation is performed in the other cross-sectional area, while constructing a so-called inner wall consisting of a tunnel.

この従来方法は、第1図に示すように、トンネル断面の
一方を参照番号1,2.3の順で縦方向に段階的に掘削
し、次いでトンネル断面の他方において参照番号4,5
.6の順で縦方向に段階的に掘削するものである。
This conventional method involves excavating longitudinally in stages in the order of reference numerals 1, 2.3 on one side of the tunnel cross section, and then in the order of reference numerals 4, 5 in the other tunnel cross section, as shown in FIG.
.. Excavation is carried out in stages in the vertical direction in the order of 6.

さらに詳しくは、この従来の掘削方法では、方の断面部
分(第1図の左側半断面)において、先進坑−L段1を
掘削し、次いで、アーチおよび断面中央側壁に吹付はコ
ンクリート10を施工しかつそわらに支保工12を設置
し、次いで、先進坑中段2を掘削し、上段におけると同
様に、側壁および断面中央側壁に吹付はコンクリートと
支保工の設置とを行い、さらに、その直下の先進坑F段
3を掘削し、側壁、断面中央側壁およびインバートに吹
付はコンクリートと支保工とを設置し、これにより全体
に縦長で、吹付はコンクリートと断面中央側壁に設けら
れた支保工とからなる、いわゆる中壁13によって補強
された、縦長の先進坑を完成する。その後、他方の断面
部分(第1図の右側半断面)において、後進坑)二段4
、その直下の後進坑中段5、その直下の後進坑下段6を
順次に掘削し、かつ、アーチ、側壁およびインバートへ
の吹付はコンクリートおよび支保工の構築によりそれら
の各部を補強し、最後に、前記の中壁を撤去する。
More specifically, in this conventional excavation method, the advanced shaft L level 1 is excavated in one cross section (the left half cross section in Fig. 1), and then shotcrete 10 is applied to the arch and the side wall at the center of the cross section. Shoring 12 was installed there, and then the middle stage 2 of the advanced pit was excavated, and as in the upper stage, sprayed concrete and shoring were installed on the side walls and the side wall at the center of the cross section, and then the Advanced tunnel F stage 3 was excavated, and shotcrete and shoring were installed on the side walls, the side wall at the center of the cross section, and the invert. A vertically elongated advanced shaft reinforced by a so-called inner wall 13 is completed. After that, in the other cross section (the right half cross section in Figure 1), the second stage 4
, the middle stage of the back shaft 5 directly below it, and the lower stage of the back shaft 6 just below it are excavated in sequence, and the arches, side walls, and inverts are reinforced with concrete and shoring construction, and finally, Remove the above-mentioned inner wall.

(発明か解決しようとする課題) このように、1笹記の従来法はトンネル断面の左右一方
の断面部分の掘削を先に完了し、他方の断面部分を後に
掘削する方法であるため、先進坑の断面形状が縦長とな
り、側圧の影響を受は易い。
(Problem to be solved by the invention) In this way, the conventional method of 1 Sasaki is a method in which the excavation of one of the left and right sections of the tunnel section is completed first, and the other section is excavated later. The cross-sectional shape of the pit is vertically long, so it is easily affected by lateral pressure.

また、先進坑の上半3の掘削時に、上半1.2の沈下に
対する断面内の支えを失う結果となる。さらに、先進坑
の−L段切羽と後進坑の上段切羽との間の距離が大きく
なるため、先進坑の掘削によって横方向力が再配分され
た他山を後進坑の掘削によって再度乱す。
Also, when excavating the upper half 3 of the advanced shaft, it results in the loss of support in the cross section against the settlement of the upper half 1.2. Furthermore, since the distance between the -L stage face of the advanced shaft and the upper stage face of the backward shaft increases, the other shafts to which the lateral force has been redistributed due to the excavation of the advanced shaft are again disturbed by the excavation of the backward shaft.

これらにより、先進坑の変形、掘削域周辺地盤の緩みを
生じ、地盤沈下、それも上被りが比較的浅い地盤では地
表に達する沈下、すなわち地表沈下を招き、地中埋設物
、地ト施設等が影響を受ける。発明者らの実測によれば
、従来方法による縦長の掘削断面形状に起因しての地表
沈下は、その沈下量の5ないし8割が先進坑下半および
後進坑下半の掘削時に発生する。
This causes deformation of the advanced shaft and loosening of the ground around the excavation area, leading to ground subsidence, and in the ground where the overburden is relatively shallow, subsidence reaching the ground surface. is affected. According to actual measurements by the inventors, 50 to 80% of the ground surface subsidence due to the vertically elongated cross-sectional shape of excavation in the conventional method occurs during excavation of the lower half of the advanced shaft and the lower half of the backward shaft.

従って、本発明は、トンネル掘削による地盤沈下、特に
土被りが浅い地盤に発生する地表沈下を軽減することを
目的とする。
Therefore, an object of the present invention is to reduce ground subsidence due to tunnel excavation, particularly ground subsidence that occurs in shallow ground.

(課題を解決するための手段) 本発明は、その目的を達成するために、従来のトンネル
掘削方法か縦長の先進坑を掘削したために生した、横方
向圧力による先進坑の変形、これに基つく周辺地盤の緩
み、最終的な地表にまで影響する地盤沈下を防止するた
めに、側圧に弱い縦長の断面形状を排すること、先進掘
削と後進掘削とを両者の切羽間隔が著しく大きくならな
い間に繰り返えすこと、掘削周面への吹付はコンクリー
トと掘削空間を取り巻いて閉合する支保工とにより各段
の掘削部を7期に安定状態にするように掘削順序を規定
すること、ざらに左右の断面部分の伺わにおいても最F
段の掘削は、そわらの−F方の掘削部の何れもか掘削と
コンクリート吹付けおよび支保fによる補強とを完了し
、これにより安定状態か確保された後に行うことを基本
的な構想とするものである。
(Means for Solving the Problems) In order to achieve the object, the present invention is based on the deformation of an advanced shaft due to lateral pressure caused by the conventional tunnel excavation method or the excavation of a vertically long advanced shaft. In order to prevent the loosening of surrounding ground and ground subsidence that affects the final ground surface, it is necessary to eliminate vertically long cross-sectional shapes that are susceptible to lateral pressure, and to conduct advanced excavation and backward excavation as long as the distance between the two faces does not become significantly large. The spraying on the excavation surface should be repeated, and the excavation order should be stipulated so that the excavation part of each stage is brought to a stable state in the 7th stage by the concrete and the shoring that surrounds and closes the excavation space. It is also the highest F in the width of the left and right cross sections.
The basic idea is that the excavation of the steps will be carried out after all of the excavated parts on the -F side of Sowara have been excavated, concrete sprayed, and reinforced with shoring f, and a stable condition is thereby ensured. It is something.

本発明のトンネル掘削方法は、基本的に、トンネル断面
を左右、1丁に少なくとも4つの部分に分割し、その第
1の部分である先進トt、次いでこの先進ヒ゛柊に隣接
する第2の部分である後進上半において、掘削と、掘削
周面への吹付はコンクリートおよび掘削空間を取り巻い
て閉合する支保工による掘削部の補強とを順次に行い、
その後、先進上゛h向直下先進下半、次いで後進手直下
の後進下半において、掘削と、掘削周面への吹付はコン
クリートおよび掘削空間を取り囲んで閉合する支保Tに
よる掘削部の補強とを順次に繰り返。
The tunnel excavation method of the present invention basically divides the tunnel cross section into at least four parts on each side, the first part being the advanced part, and then the second part adjacent to the advanced part. In the upper half of the backward movement section, the excavation is carried out sequentially, and the excavation part is reinforced with concrete sprayed on the excavation surface and shoring that surrounds and closes the excavation space.
After that, in the leading lower half directly below the leading upper h, and then in the backward moving lower half directly below the trailing hand, excavation is carried out, and the excavated part is reinforced with concrete sprayed onto the excavated surrounding surface and shoring T that surrounds and closes the excavated space. Repeat sequentially.

えす。Esu.

また、本発明のトンネル掘削方法は、トンネル断面を左
右、上下に少なくとも6つの部分に分割するように、面
記先進上゛トおよび後進上半のそれぞれを上″F2つの
部分に分割し、各上半において、−L方部分の掘削と、
掘削底面を除いてのまたはこれを含めての掘削周面への
吹付はコンクリートおよび掘削空間を取り巻いて閉合す
る支保工による掘削部の補強とを行い、その後、下方部
分の掘削と、掘削周面への吹付はコンクリートおよび掘
削空間を取り囲んで閉合する支保工による掘削部分の補
強とを行う。
Further, in the tunnel excavation method of the present invention, each of the advanced upper half and the reverse upper half of the surface is divided into two upper "F" parts, so that the tunnel cross section is divided into at least six parts horizontally, vertically, and vertically. In the upper half, excavation of the -L side part,
For spraying on the surrounding surface of the excavation, excluding or including the bottom of the excavation, the excavation part is reinforced with concrete and shoring that surrounds and closes the excavation space, and then the lower part is excavated and the surrounding surface of the excavation is sprayed. The spraying involves reinforcement of the excavated area with concrete and shoring that surrounds and closes the excavated space.

(作用、効果) 本発明によれば、各トンネル断面部分の下半の掘削をそ
の上半の掘削、補強後に行うことから、縦長の断面形状
を琲し、掘削部に対する側圧の影響を軽減することがで
きる。また、先進掘削と後進掘削とを繰り返えしながら
トンネルを掘削することから、先進掘削と後進掘削との
間の切羽間隔を小さくすることができる。さらに、前記
掘削部の補強は、掘削周面への吹付はコンクリートと掘
削空間を取り囲んで閉合する支保工とによることから、
各段の掘削部を早期に安定状態にすることができる。そ
のため、左右の断面部分の何れにおいても、地表沈下量
を左むする下半の掘削を、それらの1−半の掘削部に安
定状態が確保された後に行うことから、地表沈下を効果
的に低減することができる。
(Operations and Effects) According to the present invention, since the lower half of each tunnel cross section is excavated after the upper half thereof is excavated and reinforced, the vertically elongated cross-sectional shape is reduced and the influence of lateral pressure on the excavated portion is reduced. be able to. Further, since the tunnel is excavated while repeating advanced excavation and backward excavation, the face interval between advanced excavation and backward excavation can be reduced. Furthermore, the reinforcement of the excavation part is based on the spraying of concrete onto the excavation surface and the shoring that surrounds and closes the excavation space.
The excavated portion of each stage can be brought into a stable state at an early stage. Therefore, in both the left and right cross sections, the lower half of the ground, which affects the amount of ground subsidence, is excavated after a stable condition is secured in the first and second half of the excavated area, so that the ground subsidence can be effectively reduced. can be reduced.

(実施例) まず、本発明の1実施例を示す第2図を参照して、掘削
工程をその順に従って説明するに、掘削すべきトンネル
断面を左を丁、上下の6つの断面部分に分割し、一方の
断面部分において、先進上段1、次いで先進中段2を掘
削し、その後、他方の断面部分において、後進下段3、
次いで後進中段4を掘削する。この後進中段4の掘削完
了後、再び一方の断面部分において、先進中段2の直下
に位置する先進下段5を掘削し、その後、該先進F段5
に隣接する、後進中段4直上の後進下段6を掘削する。
(Embodiment) First, the excavation process will be explained in order with reference to FIG. Then, in one cross section, the advanced upper stage 1 and then the advanced middle stage 2 are excavated, and then, in the other cross section, the backward lower stage 3,
Next, the reverse middle stage 4 is excavated. After completing the excavation of this backward middle stage 4, the advanced lower stage 5 located directly below the advanced middle stage 2 is excavated again in one cross section, and then the advanced F stage 5
Excavate the lower reverse stage 6 immediately above the middle reverse stage 4 adjacent to.

さらに詳しくは、第3図を参照するに、先進坑−1−段
1の掘削により生じた掘削部14の円面を規定するアー
チ部および断面中央側壁部のそれぞれに吹付はコンクリ
ート16.18を施工する。
More specifically, referring to FIG. 3, shotcrete 16.18 is applied to each of the arch part defining the circular surface of the excavated part 14 and the side wall part at the center of the cross section, which was created by the excavation of the advanced pit-1 stage 1. Construction.

次いで、掘削部14の空間を取り巻いて閉合する1組の
支保工20を構築し、さらに、二次吹付はコンクリート
を後に説明する支保材20a。
Next, a set of shoring 20 is constructed that surrounds and closes the space of the excavation part 14, and the secondary spraying is performed with concrete shoring 20a, which will be explained later.

20bを包みこむように施工する。前記1組の支保工2
0は、アーチ部、側壁部および底壁部のそれぞれに配置
されかつ相互に結合される支保材20a、20b、20
cを含む。各支保材はH型鋼のような鋼材からなる。前
記支保材のうち、アーチ部16に配置される支保材20
aを除く他の支保材は、後に撒去される。そのため、縦
方向の支保材20b、横方向の支保材20cは、相互に
分解可能にまた支保材20aに対しては取り外し可能に
結合される。
Construct it so as to wrap around 20b. Said one set of shoring 2
0 indicates supporting members 20a, 20b, 20 which are arranged in each of the arch part, the side wall part and the bottom wall part and are connected to each other.
Contains c. Each shoring member is made of steel such as H-beam steel. Among the supporting materials, supporting material 20 arranged in the arch portion 16
The other shoring materials except for a will be scattered later. Therefore, the vertical support member 20b and the horizontal support member 20c are coupled to each other in a disassembly manner and to the support member 20a in a removable manner.

支保工20を構成する縦方向および横方向の支保材は有
機的に結合しており、掘削部14に作用する水平方向力
および」皿上方向力のいずれに対しても、掘削部の剛性
を増大する。
The vertical and horizontal shoring materials constituting the shoring 20 are organically combined, and maintain the rigidity of the excavated part against both horizontal forces and upward forces acting on the excavated part 14. increase

先進」二段1の掘削と、吹付はコンクリートおよび支保
りの設置による掘削部14の補強を完了した後、先進上
段1直Fに位置する先進中段2を掘削する。この掘削に
より生じた掘削部24の周面を規定するアーチ部および
断面中央側壁部のほか底壁部に、掘削部14におけると
同様に、吹付はコンクリート16.18を施工し、さら
にこの掘削部24の空間を取り巻いて閉合しかつ先進上
段の支保工20と一体に結合した支保工26を設置し、
その後、二次吹付はコンクリートを掘削部周面にhh下
する。支保工26は支保工20と同様に縦方向および横
方向の支保材を含む。
After completing the excavation of the "Advanced" second stage 1 and reinforcement of the excavated portion 14 by installing concrete and supports, the advanced middle stage 2 located in the 1st straight F of the advanced upper stage is excavated. Shotcrete 16.18 is applied to the arch part defining the peripheral surface of the excavated part 24 created by this excavation, the side wall part at the center of the cross section, and the bottom wall part in the same manner as in the excavated part 14, and furthermore, this excavated part Installing a shoring 26 that surrounds and closes the space of 24 and is integrally connected to the advanced upper tier shoring 20,
After that, in the secondary spraying, concrete is poured down onto the circumferential surface of the excavated part. Shoring 26, like shoring 20, includes longitudinal and lateral shoring.

先進中段2の掘削と、その掘削部24での吹付はコンク
リートおよび支保工設置による補強とを完了した段階で
見て、トンネル掘削断面の一半における上半部分は、縦
長の形状を有することなく、しかも、吹付はコンクリー
トと閉合する支保工とにより補強されていることから、
垂直方向および横方向の圧力に対抗し得る安定した状態
にある。この状態下では、支保工20の掘削部14゜2
4間にある横方向の支保材20cを撤去してもよい。
When the excavation of the advanced middle stage 2 and the spraying at the excavated portion 24 have been completed, the reinforcement by concrete and shoring installation is completed, and the upper half of one half of the tunnel excavation cross section does not have a vertically elongated shape. Moreover, since spraying is reinforced with concrete and closed shoring,
It is in a stable state capable of resisting vertical and lateral pressures. Under this condition, the excavated portion 14°2 of the shoring 20
The horizontal supporting material 20c located between the four sides may be removed.

次に、トンネル断面の他の−・半における後進−上段3
を掘削する。この掘削により生じた掘削部28の周面を
規定するアーチ部に、掘削部14におけると同様に、吹
付はコンクリートを施工し、かつ、この掘削部28の空
間を取りさいて閉合しかつ後進上段3に隣接する先進り
段1の掘削部14に設置した支保工20と結合した支保
工30を設置し、その後、アーチ部に二次吹付はコンク
リートを施工する。
Next, move backward in the other half of the tunnel cross section - upper stage 3
excavate. In the same way as in the excavation part 14, spray concrete is applied to the arch part defining the circumferential surface of the excavation part 28 created by this excavation, and the space in this excavation part 28 is removed and closed, and the reverse upper stage is closed. A shoring 30 is installed that is connected to the shoring 20 installed in the excavated part 14 of the advanced step 1 adjacent to the arch. After that, secondary spraying of concrete is applied to the arch part.

その後、後進上段3の直下にあって、先進中段2に隣接
する後進中段4を掘削し、この掘削により生じた掘削部
32の周面を規定するアーチ部に吹付はコンクリ−1・
を施工し、さらに掘削部32の空間を取り巻いて閉合し
、かつ、後進上段3の掘削部28および先進中段2の掘
削部24に設置した支保工26,30とそれぞれ結合す
る支保1−34を設置し、その後、アーチ側壁部及び底
壁部に二次吹付はコンクリートを施工する。
After that, the reverse middle stage 4, which is located directly below the reverse upper stage 3 and adjacent to the advanced middle stage 2, is excavated, and the arch section that defines the circumference of the excavated section 32 created by this excavation is sprayed with concrete 1.
, and furthermore, shoring 1-34 that surrounds and closes the space of the excavation part 32 and connects with the shoring 26, 30 installed in the excavation part 28 of the reverse upper stage 3 and the excavation part 24 of the advanced middle stage 2, respectively. After that, secondary spraying concrete is applied to the side walls and bottom wall of the arch.

後進中段4の掘削および補強の完r後、後進上段の掘削
部に設置した支保工30の横方向の支保材30eを撤去
してもよい。
After completing the excavation and reinforcement of the middle reversing stage 4, the horizontal supporting material 30e of the shoring 30 installed in the excavated portion of the upper reversing stage may be removed.

このようにして、トンネル断面の上半部が掘1’ll+
 、補強され、この段階で上手部の縦方向および横力向
の上圧に対する安定状態を確保した後、第2図の左右両
断面部分におけるド゛ト部分すなわち先進上段5および
後進中段6のそれぞれにおいて掘削、補強を順次に行う
。まず、先進坑中段2の直Fに位置し、トンネル断面の
一半の最下部にあたる先進下段5を掘削する。この掘削
による堀rJ11部36の周面を規定する側壁部、断面
中央側部およびインバート部に、前記と同様に吹付はコ
ンクリートを施工し、掘削部36を取り巻いて閉合しか
つ先進坑中段2の掘削部24の支保工26と結合した支
保工38を設置し、さらに二次吹付はコンクリートを掘
削部36の周面に施工する。
In this way, the upper half of the tunnel cross section is dug 1'll+
, and after securing a stable state against upper pressure in the longitudinal and lateral directions of the upper part at this stage, the dot portions in both the left and right cross sections in FIG. Excavation and reinforcement will be carried out sequentially. First, the advanced lower stage 5, which is located directly F of the middle stage 2 of the advanced tunnel and is the lowest part of one half of the tunnel cross section, is excavated. Shotcrete is applied in the same manner as described above to the side walls defining the circumferential surface of the trench rJ11 portion 36, the central side portion of the cross section, and the invert portion to surround and close the excavated portion 36 and to close the middle stage 2 of the advanced pit. A shoring 38 connected to the shoring 26 of the excavated portion 24 is installed, and concrete is further sprayed on the circumferential surface of the excavated portion 36 in the secondary spraying.

その後、後進坑中段4の直下にあって、トンネル断面の
池中の最下部にあたる先進坑下段6を掘削する。こむに
よる掘削部40の周面を規定する側壁部およびインバー
ト部に前記と同様に吹付はコンクリートを施工し、さら
に萌記掘削部を取り巻いて閉合しかつ後進坑中段4およ
び先進坑F段5の掘削部32.36に設置した支保工3
4,38と結合した支保工42を設置し、その後二次吹
付はコンクリートを掘削部40の周面に施工する。
After that, the advanced shaft lower stage 6, which is located directly below the backward shaft middle stage 4 and is the lowest part of the pond in the tunnel cross section, is excavated. Shotcrete is applied to the side walls and invert parts that define the circumferential surface of the excavation section 40 in the same manner as described above, and the concrete is further closed around the excavation section 40 of the backward shaft and the stage F of the advanced shaft F 5. Shoring 3 installed at excavation part 32.36
4 and 38 are installed, and then secondary spraying of concrete is applied to the circumferential surface of the excavated portion 40.

さらにその後、前記した先進上段1ないし後進下段6の
掘削、補強工程を順次に繰り返えしてのトンネルの掘進
に従つC、トンネル周壁面に配置した支保材によフて構
成される支保工44と、トンネル断面の中央に配置され
かつ相互に結合された縦方向の支保材からなる中壁46
を残して、他の支保材を撤去し、最終的に、この中壁4
4を撤去する。その後、トンネル二次覆丁をする。
Furthermore, after that, the tunnel is excavated by sequentially repeating the excavation and reinforcing process of the advanced upper stage 1 to the reverse lower stage 6 described above. 44 and an inner wall 46 consisting of longitudinal supports placed in the center of the tunnel cross section and connected to each other.
, and removed other shoring materials, and finally this inner wall 4
4 will be removed. After that, perform a secondary covering of the tunnel.

前記した例においては、先進坑十段1の掘削部14の底
壁部および後進坑」−段3の掘削部28の底1:1T部
には、横方向の支保材のみを配し、吹付はコンクリート
を施工していないが、トンネル断面の大きさ、ト質など
に応して必要であわば、これらの底壁部すなわち掘削底
面に吹付はコンクリートを施工し、二F圧に対する補強
をする。こ、1Lにより、各掘削部の土庄に対する抵抗
を大きくし、掘削部の安定を一層高めることかできる。
In the above-mentioned example, only horizontal supporting material is provided on the bottom wall of the excavation section 14 of the 10th stage 1 of the advanced shaft and the bottom 1:1T section of the excavation section 28 of the 3rd stage of the backward shaft, and Concrete is not constructed in these areas, but if necessary depending on the size of the tunnel cross section, the quality of the tunnel, etc., sprayed concrete will be applied to these bottom walls, that is, the bottom of the excavation, to strengthen them against the 2F pressure. . By using 1L, it is possible to increase the resistance of each excavated part to the soil and further increase the stability of the excavated part.

また、先進坑F段1および先進坑中段2を先進1ニ半と
し、同様に、後進坑上段および後進中段を後進上゛tと
することにより、トンネル断面を全体に4つの部分に分
割して掘削を進めることができる。これは、地盤が比較
的良質である場合、トンネル断面が比較的小さい場合に
通用することができ、また、それらの場合に有利である
In addition, the advanced shaft F stage 1 and the advanced shaft middle stage 2 are set as the forward stage 1/2, and similarly, the backward shaft upper stage and the reverse middle stage are set as the reverse upper stage t, so that the tunnel cross section is divided into four parts as a whole. Excavation can proceed. This can be applicable and is advantageous in cases where the ground is of relatively good quality and the tunnel cross section is relatively small.

いずれの例においても、先進I−丁をトンネル断面の左
右の一方に、また後進上半をその他方に掘削し、その後
、吹イ]けコンクリートおよび支保fの設置により、掘
削部を4−下方向および左右方向のいずれからの圧力に
対しても安定した状態を確保して地盤の緩みを防ぎ、そ
の状態下でトンネル断面のF半である先進下半および後
進下半を順次に掘削することにより、地盤の緩みを最大
限防止することかできる。その結果、地表沈下の著しい
軽減を達成することができる。
In either example, the advanced I-section is excavated on one side of the tunnel cross section on the left and the left, and the backward upper half is excavated on the other side, and then the excavated portion is moved downward by installing blown concrete and supporting f. To prevent the ground from loosening by ensuring a stable condition against pressure from either the direction or the left or right direction, and under this condition, the forward lower half and backward lower half, which is the F half of the tunnel cross section, are excavated sequentially. This will prevent the loosening of the ground to the maximum extent possible. As a result, a significant reduction in ground subsidence can be achieved.

同一路線での実験によれば、第1図に示した従来方法に
よれば、地表法Fが77ないし84mmであったところ
、第2図に示した本発明の方法によれば、地表mi沈上
は26ないし30mm’t’あっlこ 。
According to an experiment on the same route, according to the conventional method shown in Fig. 1, the ground surface depth F was 77 to 84 mm, but according to the method of the present invention shown in Fig. 2, the ground surface depth F was 77 to 84 mm. The top is 26 to 30mm.

前記した従来方法は、上被りの浅い砂層における安全な
掘削方法として有効であるが、本発明の方法は、上被り
の浅い砂層における安全な掘削方法であるばかりでなく
、地表面沈下を抑制し、埋設物その他の施設に対する影
響を著しく軽減することを可能とする。
The conventional method described above is effective as a safe excavation method in a sand layer with a shallow overburden, but the method of the present invention is not only a safe excavation method in a sand layer with a shallow overburden, but also suppresses ground subsidence. , it is possible to significantly reduce the impact on buried objects and other facilities.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来のトンネル掘削方法の掘削順序を示す掘
削工程図であり、第2図は、本発明の実施例によるトン
ネル掘削順序を示す図であり、第3図は、第2図に示し
た実施例の掘削および補強工程をその順を追って示す図
である。 10・・・吹付はコンクリート、 12・・・支保1゜ 14.24.28.32.36.40・・・掘削部、 16・・・アーチ部、 18・・・断面中央側壁部、 20・・・支保工、 20a・・・支保材、 20b・・・縦方向支保材、 20c・・・横方法支保材、 26.30.34.38.42・・・支保工、。 代理人 か埋土 松 永 η: 行 !1図 第 図 n 第 図
FIG. 1 is an excavation process diagram showing the excavation order of a conventional tunnel excavation method, FIG. 2 is a diagram showing the tunnel excavation order according to an embodiment of the present invention, and FIG. FIG. 6 is a diagram illustrating the excavation and reinforcement steps of the illustrated embodiment in sequence. 10... Concrete is sprayed, 12... Support 1゜14.24.28.32.36.40... Excavation part, 16... Arch part, 18... Section center side wall part, 20... ... Shoring, 20a... Shoring material, 20b... Vertical shoring material, 20c... Horizontal shoring material, 26.30.34.38.42... Shoring material. Agent or buried earth Matsunaga η: Go! Figure 1 Figure n Figure 1

Claims (3)

【特許請求の範囲】[Claims] (1)トンネル断面を左右、上下に少なくとも4つの部
分に分割し、先進上半、次いで該先進上半に隣接する後
進上半において、それぞれ、掘削と、掘削部周面への吹
付けコンクリートおよび掘削空間を取り巻いて閉合する
支保工による掘削部の補強とを順次に行い、その後、先
進上半直下の先進下半、次いで後進上半直下の後進下半
において、掘削と、掘削部周面への吹付けコンクリート
および掘削空間を取り巻いて閉合する支保工による掘削
部の補強とを順次に繰り返えすことを含む、トンネル掘
削方法。
(1) Divide the tunnel cross section into at least four parts left and right, top and bottom, and excavate, spray concrete on the circumference of the excavated part, and The excavated part is reinforced with shoring that surrounds and closes the excavated space, and then the advanced lower half directly below the advanced upper half, and then the backward lower half directly below the reverse upper half, excavates and strengthens the surrounding surface of the excavated part. A tunnel excavation method comprising sequentially repeating reinforcement of the excavation with shotcrete and shoring that surrounds and closes the excavation space.
(2)トンネル断面を左右、上下に少なくとも6つの部
分に分割すべく、前記先進上半および後進上半のそれぞ
れを上下2つの部分に分割し、各上半において、上方部
分の掘削と、底面を除いての掘削部周面への吹付けコン
クリートおよび掘削空間を取り巻いて閉合する支保工に
よる掘削部の補強とを行い、その後、下方部分を掘削し
、掘削周面への吹付けコンクリートと掘削空間を取り巻
いて閉合する支保工とにより掘削部を補強する、請求項
(1)のトンネル掘削方法。
(2) In order to divide the tunnel cross section into at least six parts left and right, top and bottom, each of the advanced upper half and the reverse upper half is divided into two upper and lower parts, and in each upper half, the upper part is excavated and the bottom part is excavated. Reinforce the excavated area with shoring that surrounds and closes the excavated space and sprays shotcrete on the surrounding surface of the excavated area except for 2. The method for excavating a tunnel according to claim 1, wherein the excavated portion is reinforced with shoring that surrounds and closes the space.
(3)トンネル断面を左右、上下に少なくとも6つの部
分に分割すべく、前記先進上半および後進上半のそれぞ
れを上下2つの部分に分割し、各上半において、上方部
分の掘削と、掘削部周面への吹付けコンクリートおよび
掘削空間を取り巻いて閉合する支保工による掘削部の補
強とを行い、その後、下方部分を掘削し、掘削周面への
吹付けコンクリートと掘削空間を取り巻いて閉合する支
保工とにより掘削部を補強する、請求項(1)のトンネ
ル掘削方法。
(3) In order to divide the tunnel cross section into at least six parts horizontally, vertically, and vertically, each of the advanced upper half and the reverse upper half is divided into two upper and lower parts, and in each upper half, excavation of the upper part and excavation of the upper part are performed. Reinforce the excavated part with shotcrete on the surrounding surface and shoring that surrounds and closes the excavated space, then excavates the lower part, and sprays concrete on the circumferential surface of the excavated area and closes the excavated space. The method for excavating a tunnel according to claim 1, wherein the excavated portion is reinforced by shoring.
JP18671988A 1988-07-28 1988-07-28 Excavating of tunnel Granted JPH0238697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18671988A JPH0238697A (en) 1988-07-28 1988-07-28 Excavating of tunnel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18671988A JPH0238697A (en) 1988-07-28 1988-07-28 Excavating of tunnel

Publications (2)

Publication Number Publication Date
JPH0238697A true JPH0238697A (en) 1990-02-08
JPH0463197B2 JPH0463197B2 (en) 1992-10-09

Family

ID=16193441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18671988A Granted JPH0238697A (en) 1988-07-28 1988-07-28 Excavating of tunnel

Country Status (1)

Country Link
JP (1) JPH0238697A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109057802A (en) * 2018-08-06 2018-12-21 中铁建大桥工程局集团第五工程有限公司 Shallow tunnel with big cross-section underpass of freeways construction method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109057802A (en) * 2018-08-06 2018-12-21 中铁建大桥工程局集团第五工程有限公司 Shallow tunnel with big cross-section underpass of freeways construction method

Also Published As

Publication number Publication date
JPH0463197B2 (en) 1992-10-09

Similar Documents

Publication Publication Date Title
CN108425678B (en) Construction method of large-section subway crossover tunnel
CN102410031B (en) Underground space structure constructed by pile wall construction method
JP4647544B2 (en) Underpass construction method and underpass
CN108867692A (en) The protection of city big cross section open trench tunnel Nearby Structure and tunnel foundation pit method for digging
CN117167026B (en) Construction method for reverse roof-picking at intersection of inclined shaft work area of tunnel reconstruction and expansion section
JP2001032673A (en) Tunnel work execution method
CN108978673A (en) A kind of foundation pit supporting construction and construction method of viaduct pile foundation underpinning
JP4226954B2 (en) Underpinning method and viaduct
CN111794286B (en) Underground space protection structure for underground penetration in soft soil stratum and construction method
CN113958322B (en) Tunnel excavation method under existing subway line
JPH0238697A (en) Excavating of tunnel
CN112502042A (en) Construction method for improving jacking efficiency of large frame bridge
JPH07331998A (en) Constructing method of rock cavern
JP2554507B2 (en) Underground space construction method
JP2656892B2 (en) Underground structure construction method and continuous underground wall construction method
JPH07139300A (en) Method for constructing underground construction
CN216008497U (en) Soft soil stratum small clear distance shield end reinforcing system
JPS62220616A (en) Construction work for underground space
CN116220701B (en) Newly built tunnel and existing tunnel reconstruction and extension parallel construction method
CN112065479B (en) Construction method of asymmetric multi-curve double-arch tunnel
JPH06220872A (en) Underground beam construction method
JPH0396600A (en) Constructing method for building large space in large-depth underground section
JP2544829B2 (en) How to build an underground cavity
JP4031284B2 (en) Construction method for underground structures
JP3865468B2 (en) How to build a tunnel