JPH0237216B2 - - Google Patents

Info

Publication number
JPH0237216B2
JPH0237216B2 JP57225514A JP22551482A JPH0237216B2 JP H0237216 B2 JPH0237216 B2 JP H0237216B2 JP 57225514 A JP57225514 A JP 57225514A JP 22551482 A JP22551482 A JP 22551482A JP H0237216 B2 JPH0237216 B2 JP H0237216B2
Authority
JP
Japan
Prior art keywords
activity
catalyst
rhodium
treatment
hydroformylation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57225514A
Other languages
Japanese (ja)
Other versions
JPS59115752A (en
Inventor
Hidetaka Kojima
Hiroshi Koyama
Etsuji Akimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP57225514A priority Critical patent/JPS59115752A/en
Publication of JPS59115752A publication Critical patent/JPS59115752A/en
Publication of JPH0237216B2 publication Critical patent/JPH0237216B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 この発明はロジウムを含むヒドロホルミル化触
媒について、その高活性を回復させる処理法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a treatment method for restoring the high activity of a rhodium-containing hydroformylation catalyst.

ロジウムホスフイン系触媒は温和な反応条件下
でヒドロホルミル化反応を遂行させる高い活性を
持つことで知られている。
Rhodium phosphine-based catalysts are known to have high activity to carry out hydroformylation reactions under mild reaction conditions.

この温和な反応条件という特徴は、一方ではヒ
ドロホルミル化触媒を被毒させる物質を分解しな
い反面を持つているので、この触媒を長時間使用
すると酸素、ハロゲン、イオウなど原料ガス液中
に含まれる微量成分、有機酸のような酸化副生
物、アルデヒド縮合物などにより被毒され、活性
が著るしく低下、あるいは実質的に失活するとい
つた問題点がある。
The characteristic of this mild reaction condition is that it does not decompose substances that poison the hydroformylation catalyst, so if this catalyst is used for a long time, trace amounts of oxygen, halogen, sulfur, etc. There are problems in that the activity is significantly reduced or substantially lost due to poisoning by components, oxidation by-products such as organic acids, and aldehyde condensates.

例えば、アリルアルコールのヒドロホルミル化
においては参考例2に示すような著るしい活性低
下が起ることが認められた。
For example, in the hydroformylation of allyl alcohol, a significant decrease in activity as shown in Reference Example 2 was observed.

そこで本発明者は、活性回復法について種々検
討した結果、ロジウム・ホスフイン系ヒドロホル
ミル化触媒(以下ロジウム錯体触媒と称する)溶
液を水素化ホウ素化合物で処理した後、塩基性物
質を除去することにより、温和な条件で、しかも
完全に活性が回復することを見出し、本発明を完
成した。
Therefore, as a result of various studies on activity recovery methods, the present inventors found that by treating a rhodium-phosphine-based hydroformylation catalyst (hereinafter referred to as rhodium complex catalyst) solution with a boron hydride compound and then removing the basic substance, The present invention was completed based on the discovery that the activity could be completely recovered under mild conditions.

ロジウム錯体触媒の賦活再生方法として水素加
圧下に加熱する方法(特公昭48−43799)が知ら
れている。この先行技術の実施例においてブチル
アルデヒド収率で表現されている触媒活性を速度
定格に換算して初期値(Ko)に対する比活性
(K/Ko)を求めると36%まで低下した触媒は60
℃、14時間、70Kg/cm2の水素加圧下の処理で53%
に回復したことになるが、初期活性への完全な回
復は達成されていない。
As a method for reactivating and regenerating rhodium complex catalysts, a method of heating under hydrogen pressure (Japanese Patent Publication No. 48-43799) is known. In the example of this prior art, the catalyst activity expressed as the butyraldehyde yield is converted into a rate rating to determine the specific activity (K/Ko) with respect to the initial value (Ko).
℃, 14 hours, 53% by treatment under hydrogen pressure of 70Kg/ cm2
However, complete recovery to the initial activity has not been achieved.

しかるに水素化ホウ素化合物で処理する本発明
の方法を用いるとヒドロホルミル化触媒は比活性
約100%まで完全に回復させることができる。し
かも、加圧を必要とせず、きわめて簡単、かつ短
時間の処理で効果が上がることは実施例にみられ
る通りである。
However, by using the method of the present invention, which involves treatment with a borohydride compound, the hydroformylation catalyst can be completely restored to a specific activity of about 100%. Furthermore, as can be seen in the examples, the treatment does not require pressurization and is extremely simple and effective in a short period of time.

ヒドロホルミル化触媒の活性を長期間保持する
ことは、きわめて切実な課題であり、触媒の処理
による活性回復法以外の手段として原料の精製や
触媒液の維持分離についていくつかの提案がすで
になされているが、結局は失活した触媒液をメー
カーなどに出してロジウム回収をせねばならず
(触媒23巻174頁参照)、本発明のように簡単で有
効な活性回復処理法はこれまで実現していなかつ
た。
Maintaining the activity of hydroformylation catalysts for a long period of time is an extremely urgent issue, and several proposals have already been made for refining raw materials and maintaining and separating catalyst liquids as means other than activity recovery methods through catalyst treatment. However, in the end, the deactivated catalyst solution had to be sent to a manufacturer or the like for rhodium recovery (see Catalyst Vol. 23, p. 174), and a simple and effective activation recovery treatment method like the present invention has not been realized to date. Nakatsuta.

もつとも触媒の被毒・失活といつても、その実
体はヒドロホルミル化の対象によつて著るしく異
なる場合がある。特開昭55−106545はα−オレフ
インのような不飽和化合物のヒドロホルミル化に
用いられるロジウム触媒について活性と色との深
い関係につき記している。即ち、通常十分に活性
なロジウム触媒錯体は麦わら色であるが、失活錯
体は黒色であるという。しかし、前記アリルアル
コールのヒドロホルミル化の場合は触媒の失活は
色の変化を全く伴なわず、活性な触媒溶液と同じ
黄色透明な状態を維持したまゝ著るしく短期間の
使用で活性だけが失なわれる。
Of course, the actual nature of catalyst poisoning and deactivation may differ significantly depending on the target of hydroformylation. JP-A-55-106545 describes the close relationship between activity and color of rhodium catalysts used in the hydroformylation of unsaturated compounds such as α-olefins. That is, a fully active rhodium catalyst complex is usually straw-colored, while a deactivated complex is said to be black. However, in the case of hydroformylation of allyl alcohol, the deactivation of the catalyst does not involve any change in color, and while maintaining the same yellow and transparent state as an active catalyst solution, the catalyst only becomes active even after a short period of use. is lost.

アリルアルコール、アリルアセテートなどアリ
ルオキシ化合物のヒドロホルミル化はブタンジオ
ール類を得るプロセスのうちで重要な工程であり
色の変化を全く伴なわないほどの短期間で失活す
るのは支障があり、活性の保持ないし再生をはか
る簡易な方法の開発が望まれる。
Hydroformylation of allyloxy compounds such as allyl alcohol and allyl acetate is an important step in the process of obtaining butanediols, and deactivation in such a short period of time without any color change is problematic, and the activity is It is desired to develop a simple method for preserving or regenerating it.

本発明者はこのような失格の原因と対策につい
て検討した結果、アリルアルコール、アリルアセ
テートなどのアリルオキシ化合物はヒドロホルミ
ル化生成物のひとつを経てロシウム錯体に対して
きわめて強力に配位する不純物を生じ、それ故一
般のオレフイン化合物のヒドロホルミル化と全く
異なる失活状態をもたらすものと考えるに至つ
た。これを模式的に示せば次の通りである。
As a result of studying the causes and countermeasures for such disqualification, the present inventor found that allyloxy compounds such as allyl alcohol and allyl acetate form impurities that coordinate extremely strongly to rosium complexes through one of the hydroformylation products. Therefore, we have come to believe that hydroformylation of general olefin compounds results in a completely different deactivation state. This is schematically shown as follows.

ここでAは水素原子、アセチル基などのアシル
基、メチル、エチルなどのアルキル基、フエニル
基などのアリール基、又はアリル基など、AOH
の形で脱離しやすい基を意味する。
Here, A is a hydrogen atom, an acyl group such as an acetyl group, an alkyl group such as methyl or ethyl, an aryl group such as a phenyl group, or an allyl group, AOH
means a group that is easily eliminated in the form of

本発明は、このような強力な失活性物質による
失活からも触媒活性を完全に回復させることがで
きる。また合成ガスに含まれる微量のH2Sは一般
的な触媒毒として長期的な活性低下の原因となる
が本発明はこのような失活からの回復にも有効で
ある。
The present invention can completely recover catalyst activity even from deactivation caused by such a strong deactivating substance. Further, a trace amount of H 2 S contained in synthesis gas acts as a general catalyst poison and causes a long-term decrease in activity, but the present invention is also effective in recovering from such deactivation.

前記特開昭55−106545にはα−オレフインのよ
うな不飽和化合物のヒドロホルミル化に用いるロ
ジウム触媒再生について多くの方法が試みられた
旨の記載があり、それによると水素化ホウ素ナト
リウムのメタノール液またはヒドラジンのエタノ
ール液のような還元剤による失活触媒の処理も含
めて列挙された多数の方法は、いずれも満足すべ
きものとされていなかつた。
The above-mentioned Japanese Patent Application Laid-Open No. 55-106545 describes that many methods have been tried for regenerating rhodium catalysts used for hydroformylation of unsaturated compounds such as α-olefins, and it states that a methanol solution of sodium borohydride However, none of the numerous methods listed, including treatment of the deactivated catalyst with a reducing agent such as hydrazine in ethanol, was found to be satisfactory.

しかし、本発明者は、このような事実にめげず
更に深く検討した結果、意外にも従来試みられた
上で見捨てられていた水素化ホウ素化合物処理が
それに続く塩基性物質の除去を伴なう場合に限つ
て有効な活性回復法であることを見出し、本発明
を完成した。
However, the inventors of the present invention were not discouraged by this fact, and as a result of further in-depth investigation, they surprisingly discovered that the treatment with a borohydride compound, which had been attempted and abandoned in the past, involves the subsequent removal of basic substances. We have discovered that this is an effective method for restoring activity only in certain cases, and have completed the present invention.

本発明で用いられたロジウム錯体触媒は特公昭
45−10730、特公昭53−17573などで公知のもので
あり、HRh(CO)(PR33、Rh(CO)2(アセチルア
セトネート)、Rh4(CO)12、Rh6(CO)16などのロ
ジウムカルボニルなどCO、H2、三級ホスフイン
の存在下容易にHRh(CO)(PR33に変換される
ものであればなんでも触媒として用いることがで
きる。
The rhodium complex catalyst used in the present invention was
45-10730, Special Publication No. 53-17573, etc., HRh (CO) (PR 3 ) 3 , Rh (CO) 2 (acetylacetonate), Rh 4 (CO) 12 , Rh 6 (CO) Anything that is easily converted to HRh(CO)( PR3 ) 3 in the presence of CO, H2 , or tertiary phosphine, such as rhodium carbonyl 16 , can be used as a catalyst.

ここでPR3で表わされる三級ホスフインとして
は、トリフエニルホスフイン、トリトリルホスフ
イン、トリフエニルホスフアイト、トリブチルホ
スフインや一般式(C6H52P(CH2)nP(C6H52
n=1〜6で表わされるジホスフインなども用い
られ、これら単独もしくは二種以上混合して使用
してもよい。
Examples of the tertiary phosphine represented by PR 3 include triphenylphosphine, tritolylphosphine, triphenylphosphine, tributylphosphine, and the general formula (C 6 H 5 ) 2 P (CH 2 ) nP (C 6 H5 ) 2
Diphosphine and the like represented by n=1 to 6 are also used, and these may be used alone or in combination of two or more.

また、これら三級ホスフインの酸化生成物であ
るホスフインオキサイドを含んでいてもよい。
Furthermore, it may contain phosphine oxide, which is an oxidation product of these tertiary phosphines.

本発明では、ヒドロホルミル化触媒は通常用い
られる有機溶媒溶液の状態で処理され、溶媒とし
てはベンゼン、トルエン、キシレン、エチルベン
ゼンなどの芳香族炭化水素などが一般的であるが
フタル酸オクチルなどの芳香族エステル、その他
ヒドロホルミル化に用いることが知られている有
機溶媒が用いられる。
In the present invention, the hydroformylation catalyst is treated in the form of a solution in a commonly used organic solvent, and the solvent is generally an aromatic hydrocarbon such as benzene, toluene, xylene, or ethylbenzene, or an aromatic hydrocarbon such as octyl phthalate. Ester and other organic solvents known for use in hydroformylation are used.

本発明で処理された触媒を用いるヒドロホルミ
ル化反応条件としては、圧力は大気圧以上であれ
ばよいが、生産性及び経済性の観点より1〜30
Kg/cm2G程度が好ましい。反応温度は20〜200℃、
好ましくは50〜120℃がよい。
Regarding the hydroformylation reaction conditions using the catalyst treated in the present invention, the pressure may be at least atmospheric pressure, but from the viewpoint of productivity and economy,
Kg/cm 2 G is preferable. Reaction temperature is 20~200℃,
The temperature is preferably 50 to 120°C.

水素化ホウ素化合物処理は上記のように通常の
ロジウム錯体触媒を含む触媒溶液に適用される。
ヒドロホルミル化生成物であるアルデヒドは水素
化ホウ素化合物と反応するので、ヒドロホルミル
化反応液中の触媒は蒸留や抽出などの方法により
大部分のアルデヒドを分離した後で水素化ホウ素
化合物と接触させるのが好ましい。しかし、アル
デヒドの存在は水酸化ホウ素化合物の所要量の増
大をまねくだけで、本発明を実施する上で決定的
な支障をもたらすものではない。実際、本発明は
ロジウム触媒の数十モル倍もの残存アルデヒドを
含む触媒溶液についても実施でき、これは工業的
にはきわめて有利なことである。
Boron hydride compound treatment is applied to catalyst solutions containing conventional rhodium complex catalysts as described above.
Since the aldehyde, which is a hydroformylation product, reacts with the borohydride compound, it is recommended that the catalyst in the hydroformylation reaction solution be brought into contact with the borohydride compound after most of the aldehyde has been separated by a method such as distillation or extraction. preferable. However, the presence of aldehyde only increases the amount of boron hydroxide compound required and does not pose a decisive hindrance to the practice of the present invention. In fact, the present invention can be practiced even with a catalyst solution containing residual aldehyde in an amount several tens of moles as large as that of the rhodium catalyst, which is extremely advantageous from an industrial perspective.

水素化ホウ素化合物として最も入手が容易であ
り、かつ安価なものは水素化ホウ素ナトリウム
NaBH4であり、本発明において好ましく用いら
れる。NaBH4は分解抑制の効果があるアルカリ
の共共存している溶液(水、アルコール)でもよ
い。その他KBH4などBH4あるいはBH(OCH33
の如きホウ素に直接結合した水素原子をもつアニ
オンのa、a、a、a族の金属塩が用い
られる。
The most easily available and cheapest borohydride compound is sodium borohydride.
NaBH 4 and is preferably used in the present invention. NaBH 4 may be a solution (water, alcohol) coexisting with an alkali that has the effect of inhibiting decomposition. Others such as KBH 4 , BH 4 or BH (OCH 3 ) 3
Anionic metal salts of group a, a, a, a, having a hydrogen atom directly bonded to boron, such as, are used.

処理方法としては、活性の低下した触媒液に、
水素化ホウ素化合物を固体状でそのまま、あるい
は水、メタノール、エタノール、プロパノールな
どのアルコール類、モノグライム、ジグライム、
トリグライムないしテトラグライムCH3
(OCH2CH21〜4OCH3などのエチレングリコール
誘導体、ジメチルホルムアミドなどに溶かした溶
液として添加してもよい。
As a treatment method, the catalyst liquid with reduced activity is
Boron hydride compounds can be used as they are in solid form, or in water, alcohols such as methanol, ethanol, and propanol, monoglyme, diglyme,
Triglyme or Tetraglyme CH 3
(OCH 2 CH 2 ) 1-4 It may be added as a solution dissolved in an ethylene glycol derivative such as OCH 3 or dimethylformamide.

水、アルコールなど活性水素をもつ溶媒は
NaBH4などと徐々に反応し水素を発生するので、
水素ホウ素化合物としての活性の低下しないうち
に使用するのがよい。水溶液で添加して撹拌など
により分散させ、触媒溶液と接触させてもよい
が、アルコールなど有機溶媒を使えば均一相で処
理することができる。
Solvents with active hydrogen such as water and alcohol
As it gradually reacts with NaBH 4 etc. and generates hydrogen,
It is best to use it before its activity as a hydrogen boron compound decreases. Although it may be added as an aqueous solution, dispersed by stirring, etc., and brought into contact with the catalyst solution, the treatment can be carried out in a homogeneous phase by using an organic solvent such as alcohol.

水素化ホウ素化合物の添加量は賦活処理すべロ
ジウム錯体触媒液中に含まれるロジウムと等モル
以上用いるのが普通である。触媒溶液中にアルデ
ヒドを含んでいる場合には、アルデヒドによる水
素化ホウ素化合物の消費を考慮して、より多い量
例えばロジウムとアルデヒドの和と等モル以上用
いるのが好ましい。
The amount of the boron hydride compound added is usually equal to or more than the rhodium contained in the activation-treated verrodium complex catalyst solution. When the catalyst solution contains an aldehyde, it is preferable to use a larger amount, for example, an amount equal to or more than the sum of rhodium and aldehyde, taking into consideration the consumption of the borohydride compound by the aldehyde.

ロジウム錯体触媒は酸素と接触すると、ロジウ
ム及び三級ホスフインが酸化されるので、処理は
窒素、ヘリウム、アルゴンメタン、水素、一酸化
炭素ガスあるいはこれらの混合ガスなど、ロジウ
ム錯体触媒に悪影響を及ぼさない雰囲気下に行な
う。
When rhodium complex catalysts come in contact with oxygen, rhodium and tertiary phosphine are oxidized, so treatment with nitrogen, helium, argon methane, hydrogen, carbon monoxide gas, or a mixture of these gases will not have an adverse effect on rhodium complex catalysts. Do it in an atmosphere.

処理温度は常温で充分であるが、0〜80℃の温
度で行なつても何ら問題はない。
Although room temperature is sufficient for the treatment, there is no problem if the treatment is carried out at a temperature of 0 to 80°C.

処理時間は、活性低下の程度にもよるが、1〜
300分が普通であり、多くは10〜120分で充分に処
理効果があがる。
The treatment time depends on the degree of activity reduction, but is 1-
300 minutes is normal, and in most cases 10 to 120 minutes is sufficient for the treatment effect.

水素化ホウ素化合物で処理すると、普通塩基性
物質を系内に生ずる。例えば水素化ホウ素ナトリ
ウムからはメタホウ酸ナトリウムを生ずる。
When treated with borohydride compounds, basic substances are usually produced in the system. For example, sodium borohydride produces sodium metaborate.

本発明では、このような塩基性物質が再生した
触媒の活性を再び低下させる原因になることを認
識し、水素化ホウ素化合物処理後塩基性物質を除
去することを特徴とする。例えば、処理後のロジ
ウム錯体触媒液は水で1回以上、好ましくは洗液
のPHが7になるまで水洗するのがよい。水洗した
触媒液はそのままヒドロホルミル化反応器に送り
込むことにより、完全に活性が回復した触媒とし
て長期間使用することができる。
The present invention is characterized in that the basic substance is removed after the borohydride compound treatment, recognizing that such a basic substance causes the activity of the regenerated catalyst to decrease again. For example, the rhodium complex catalyst solution after treatment is preferably washed with water one or more times, preferably until the pH of the washing solution reaches 7. By feeding the water-washed catalyst solution directly into the hydroformylation reactor, it can be used for a long period of time as a catalyst whose activity has been completely recovered.

カチオン交換、吸着など水洗以外の方法による
塩基性物質の除去もあり得るが、ロジウムのロス
をもたらす場合は好ましくない。触媒のトルエン
溶液中に溶解した塩基性物質を紙フイルターに
より除くこともできる。これはセルロースとの反
応による固定化除去と考えられる。
It is possible to remove the basic substance by methods other than washing with water, such as cation exchange and adsorption, but this is not preferable if it causes loss of rhodium. Basic substances dissolved in the toluene solution of the catalyst can also be removed using a paper filter. This is considered to be immobilization removal due to reaction with cellulose.

ロジウム錯体触媒の分野においてClRh(CO)
(PPh33など塩素を含むロジウム化合物を水素化
物へと導く還元剤として水素化ホウ素ナトリウム
やKOHアルコール溶液を用いることが知られて
いる。しかし、この反応はもとより本発明のめざ
すヒドロホルミル化反応の続行により活性のおち
た触媒溶液の活性回復とは対象を全く異にするも
のである。事実、塩素化合物から水素化物を製造
する反応においてはNaBH4と同様に用いられる
アルコール中のアルカリ処理では活性は回復せず
むしろ低下する。
ClRh (CO) in the field of rhodium complex catalysts
It is known that sodium borohydride or KOH alcohol solution is used as a reducing agent to convert chlorine-containing rhodium compounds such as (PPh 3 ) 3 into hydrides. However, this reaction is completely different from the objective of the present invention, which is to recover the activity of a catalyst solution that has lost its activity due to the continuation of the hydroformylation reaction. In fact, in the reaction of producing hydrides from chlorine compounds, alkali treatment in alcohol, which is used in the same way as with NaBH 4 , does not restore the activity, but rather reduces its activity.

また、CaH2や、一般にはNaBH4よりも高い還
元能を有するLiAlH4など他の水素化物では触媒
活性回復効果のないことも本発明が単なる還元処
理でなく、特異的なものであることを物語つてい
る。
In addition, the fact that other hydrides such as CaH 2 and LiAlH 4 , which generally have a higher reducing ability than NaBH 4 , have no effect on restoring the catalytic activity shows that the present invention is not just a reduction process, but a specific one. There's a story.

以下、実施例により本発明を更に詳述する。 Hereinafter, the present invention will be explained in further detail with reference to Examples.

なお、触媒活性の測定方法を参考例1に、又水
素化ホウ素化合物処理に供した活性低下触媒を得
た。ヒドロホルミル化反応例を参考例2に示し
た。
The method for measuring the catalyst activity was as shown in Reference Example 1, and a catalyst with reduced activity was obtained which was subjected to a boron hydride compound treatment. An example of the hydroformylation reaction is shown in Reference Example 2.

また、以下の実験ではロジウム錯体触媒溶液と
してHRh(CO)(PRh330.6〜2mmol/と
PRh3(100〜200mmol/)とを含むトルエン溶
液を用いた。
In addition, in the following experiments, HRh (CO) (PRh 3 ) 3 0.6 to 2 mmol/ was used as the rhodium complex catalyst solution.
A toluene solution containing PRh 3 (100 to 200 mmol/) was used.

参考例 1 ロジウム錯体触媒液にアリルアルコール
0.1mol/を加えて、撹拌下にCO、H2ガス
(CO50%)を通じ、1気圧60℃でヒドロホルミル
化反応を行なわせ、アリルアルコールの減少速度
定数K(Hr-1)を測定することにより、触媒の活
性を評価した。
Reference example 1 Allyl alcohol in rhodium complex catalyst solution
By adding 0.1 mol/ of alcohol and carrying out a hydroformylation reaction at 1 atm and 60°C by passing CO and H 2 gas (CO 50%) under stirring, the reduction rate constant K (Hr -1 ) of allyl alcohol was measured. , the activity of the catalyst was evaluated.

参考例 2 ロジウム錯体触媒液とアリルアルコール濃度が
1.4〜3.5mol/となる量のアリルアルコールを
混合し、9.5〜22.1/Hrの速度で液容積60の
気泡塔式反応器に連続的に仕込み、全圧が1.6〜
2.Kg/cm2となるようにCO、H2混合ガス(CO16〜
27%)を供給してアリルアルコールのヒドロホル
ミル化反応を55〜75℃で行ない、反応生成物は水
で抽出し、ロジウム錯体触媒液は再び反応器に循
環した。この反応を90日間行なつた後に反応を停
止し、取り出した触媒溶液は参考例1の方法で測
定した初期の活性が2.9〜3.0Hr-1であつたもの
が、1.2〜1.3Hr-1に低下していた。
Reference example 2 Rhodium complex catalyst liquid and allyl alcohol concentration
Allyl alcohol in an amount of 1.4 to 3.5 mol/Hr is mixed and continuously charged into a bubble column reactor with a liquid volume of 60 at a rate of 9.5 to 22.1/Hr until the total pressure is 1.6 to 1.6 mol/Hr.
CO, H2 mixed gas ( CO16 ~
The hydroformylation reaction of allyl alcohol was carried out at 55-75°C, the reaction product was extracted with water, and the rhodium complex catalyst liquid was circulated to the reactor again. After carrying out this reaction for 90 days, the reaction was stopped, and the catalyst solution taken out had an initial activity of 2.9 to 3.0 Hr -1 measured by the method of Reference Example 1, but the activity increased to 1.2 to 1.3 Hr -1 . It was declining.

この触媒溶液中には30mmol/のアルデヒド
が残存している。
30 mmol/aldehyde remains in this catalyst solution.

実施例 1 参考例2に示した活性の低下したロジウムに触
媒液100mlに50mmol/濃度の水素化ホウ素ナ
トリウム水溶液100mlを加え、窒素雰囲気下150℃
で2時間撹拌した。処理後ロジウム触媒液を100
mlの水で3回洗浄し、参考例1の方法で活性を測
定したところK=3.0Hr-1となつており、活性が
完全に回復していることが明らかになつた。触媒
液中のアルデヒドとロジウムの合計に対する
NaBH4の使用量は約1.6倍(モル比)であつた。
Example 1 Add 100 ml of a 50 mmol/concentration sodium borohydride aqueous solution to 100 ml of the catalyst solution to the rhodium with reduced activity shown in Reference Example 2, and heat at 150°C under a nitrogen atmosphere.
The mixture was stirred for 2 hours. 100% rhodium catalyst solution after treatment
After washing with 3.0 ml of water three times, the activity was measured using the method of Reference Example 1, and the result was K = 3.0 Hr -1 , indicating that the activity had been completely recovered. relative to the sum of aldehyde and rhodium in the catalyst solution
The amount of NaBH 4 used was approximately 1.6 times (molar ratio).

実施例 2 水素化ホウ素ナトリウム水溶液の濃度を10m
mol/とし(ロジウム+アルデヒドに対するモ
ル比0.32)、その他は実施例1と同様の処理を行
なつた結果、K=2.4Hr-1であつた。
Example 2 The concentration of sodium borohydride aqueous solution was 10 m
mol/(molar ratio to rhodium + aldehyde: 0.32), and otherwise the same treatment as in Example 1 was carried out, and as a result, K = 2.4 Hr -1 .

実施例 3 処理温度を60℃とした他は実施例2と同じ処理
を行なつた結果、K=2.4Hr-1であつた。
Example 3 The same treatment as in Example 2 was carried out except that the treatment temperature was 60°C, and as a result, K=2.4 Hr -1 .

実施例 4 参考例2と同様の反応と水抽出で得られた活性
の低下したロジウム触媒液(残存アルデヒド7m
mol/)100mlを用い、雰囲気をCO/H2混合ガ
スとした他は実施例1と同じ処理を行なつた結
果、K=2.9Hr-1であつた。触媒液中のアルデヒ
ドとロジウムの合計に対するNaBH4の使用量は
約6.2倍(モル比)であつた。
Example 4 A rhodium catalyst solution with reduced activity obtained by the same reaction and water extraction as in Reference Example 2 (residual aldehyde 7m
The same treatment as in Example 1 was performed except that 100 ml of mol/) was used and the atmosphere was a CO/H 2 mixed gas, and as a result, K = 2.9 Hr -1 . The amount of NaBH 4 used was approximately 6.2 times (molar ratio) the total amount of aldehyde and rhodium in the catalyst solution.

実施例 5 500mmol/濃度の水素化ホウ素ナトリウム
のエタノール溶液10mlを用いて均一系で処理を行
なつた。他の条件は実施例4と同じである。処理
後の反応速度定数はK=3.0Hr-1であつた。
Example 5 A homogeneous treatment was carried out using 10 ml of an ethanol solution of sodium borohydride at a concentration of 500 mmol/concentration. Other conditions are the same as in Example 4. The reaction rate constant after treatment was K=3.0 Hr -1 .

実施例 6 200mmol/濃度の水素化ホウ素ナトリウム
のエタノール溶液3.5ml(ロジウム+アルデヒド
に対するNaBH4のモル比0.88倍)を加えた他は
実施例5と同じ処理を行なつた結果、K=
2.8Hr-1であつた。
Example 6 The same treatment as in Example 5 was carried out except that 3.5 ml of an ethanol solution of sodium borohydride at a concentration of 200 mmol/concentration (0.88 times the molar ratio of NaBH 4 to rhodium + aldehyde) was carried out, and as a result, K =
It was 2.8Hr -1 .

実施例 7 参考例2と同様の反応と水抽出で得られた活性
の低下したロジウム触媒液(残存アルデヒド7m
mol/)5に200mmol/濃度の水素化ホ
ウ素ナトリウムのエタノール溶液250ml(ロジウ
ム+アルデヒドに対するNaBH4のモル比1.2倍)
を加え、CO/H2混合ガス雰囲気下25℃で2時間
撹拌した。処理後等容積の水で11回洗浄し、参考
例1の方法で活性を測定したところK=2.9Hr-1
であつた。
Example 7 A rhodium catalyst solution with reduced activity obtained by the same reaction and water extraction as in Reference Example 2 (residual aldehyde 7m
250 ml of an ethanolic solution of sodium borohydride at a concentration of 200 mmol/) 5 (1.2 times the molar ratio of NaBH 4 to rhodium + aldehyde)
was added and stirred for 2 hours at 25°C under a CO/H 2 mixed gas atmosphere. After treatment, it was washed 11 times with the same volume of water, and the activity was measured using the method of Reference Example 1. K = 2.9Hr -1
It was hot.

このロジウム触媒を用い、アリルアルコールを
2mol/となる量を混合して、この液を0.5/
Hrの速度で液容積1.35の気泡塔型反応器に連
続的に仕込み、全圧が3Kg/cm2となるようにCO、
H2ガス(CO20%)を供給してアリルアルコール
のヒドロホルミル化反応を65℃で行ない、反応生
成物は水で抽出し、ロジウム錯体触媒液は再び反
応器に循環した。この反応を100時間続けたが、
アリルアルコールの転化率は98%と一定に維持さ
れ、また参考例1の方法で活性を測定したところ
初期となんら変化していなかつた。
Allyl alcohol is produced using this rhodium catalyst.
Mix the amount to be 2mol/ and make this liquid 0.5/
CO was continuously charged into a bubble column reactor with a liquid volume of 1.35 at a rate of 1.35 Hr, and the CO was charged so that the total pressure was 3 Kg/ cm2 .
The hydroformylation reaction of allyl alcohol was carried out at 65°C by supplying H2 gas (CO20%), the reaction product was extracted with water, and the rhodium complex catalyst liquid was circulated to the reactor again. This reaction continued for 100 hours, but
The conversion rate of allyl alcohol was maintained constant at 98%, and when the activity was measured by the method of Reference Example 1, there was no change from the initial level.

このように、著しく活性の低下したロジウム錯
体触媒でも水素化ホウ素ナトリウムによる処理で
容易に活性が完全回復し、持続することが明らか
になつた。
In this way, it has become clear that even a rhodium complex catalyst whose activity has been significantly reduced can easily recover completely and maintain its activity by treatment with sodium borohydride.

実施例 8 エタノールのかわりにジメチルホルムアミドを
用いた他は実施例5と同じ処理を行なつた結果、
活性はK=3.1Hr-1となり、完全に回復した。
Example 8 The same treatment as in Example 5 was performed except that dimethylformamide was used instead of ethanol. As a result,
The activity was K=3.1Hr -1 and was completely recovered.

実施例 9 実施例4で使用したものと同じ活性の低下した
ロジウム触媒液100mlに水素化ホウ素ナトリウム
7%、水酸化ナトリウム24.5%を含む水溶液50ml
を加え、窒素雰囲気下20℃で2時間撹拌した。処
理後ロジウム触媒液を87.5mlの水で3回洗浄し、
活性を測定したところ、K=2.9であり、水酸化
ナトリウムを含む高濃度水素化ホウ素溶液でも問
題なく活性が回復した。なお、こゝで用いた水素
化ホウ素ナトリウムと水酸化ナトリウムとの比は
NaBH4の製造プロセスから出る12%+42%の水
溶液と同じ比のものであり、経済的である。
Example 9 Add 50 ml of an aqueous solution containing 7% sodium borohydride and 24.5% sodium hydroxide to 100 ml of the same rhodium catalyst solution with reduced activity as that used in Example 4.
was added and stirred for 2 hours at 20°C under nitrogen atmosphere. After treatment, the rhodium catalyst solution was washed three times with 87.5ml of water.
When the activity was measured, K=2.9, and the activity was recovered without any problem even in a high concentration borohydride solution containing sodium hydroxide. The ratio of sodium borohydride and sodium hydroxide used here is
It has the same ratio as the 12% + 42% aqueous solution from the NaBH 4 manufacturing process, making it economical.

実施例 10 実施例4で使用したと同じ活性の低下したロジ
ウム触媒液100mlに水素化ホウ素ナトリウムを固
体のまゝで1g加え窒素雰囲下20℃で2時間撹拌
した。処理後固体の水素化ホウ素ナトリウムを
過により除き、ロジウム触媒液を86mlの水で3回
洗浄し、活性を測定したところK=2.8であり、
固体状態の水素化ホウ素化合物を用いても充分活
性が回復した。
Example 10 To 100 ml of the same rhodium catalyst solution with reduced activity as used in Example 4, 1 g of sodium borohydride in solid form was added and stirred at 20° C. for 2 hours under a nitrogen atmosphere. After the treatment, the solid sodium borohydride was removed by filtration, the rhodium catalyst solution was washed three times with 86 ml of water, and the activity was measured, and K = 2.8.
The activity was sufficiently recovered even when a solid state borohydride compound was used.

実施例 11 活性の低下していないロジウム触媒液100mlに
硫化水素を触媒液中に含まれるロジウムに対して
等モル量加えると活性はK=2.5であつたものが
K=0.8まで低下した。この触媒液を実施例1と
同じ処理を行なうことにより、活性はK=2.5と
なり、完全に回復した。
Example 11 When hydrogen sulfide was added in an amount equimolar to the rhodium contained in the catalyst solution to 100 ml of a rhodium catalyst solution whose activity had not decreased, the activity decreased from K=2.5 to K=0.8. By subjecting this catalyst solution to the same treatment as in Example 1, the activity became K=2.5, and was completely recovered.

比較例 1 水素化ホウ素ナトリウムのかわりに水酸化ナト
リウムを用いた他は実施例1と同じ処理を行なつ
た結果、活性はK=0.24Hr-1となり、むしろ低下
した。
Comparative Example 1 The same treatment as in Example 1 was carried out except that sodium hydroxide was used instead of sodium borohydride. As a result, the activity was K=0.24 Hr -1 , which was rather lower.

比較例 2 水素化ホウ素ナトリウムのかわりにヒドラジン
を用いた他は実施例1と同じ処理を行なつた結
果、活性はK=1.0Hr-1で、全く回復していなか
つた。
Comparative Example 2 The same treatment as in Example 1 was carried out except that hydrazine was used instead of sodium borohydride. As a result, the activity was K = 1.0 Hr -1 and had not recovered at all.

比較例 3 水素化ホウ素ナトリウムのかわりにリチウムア
ルミニウムハイドライドを用いた他は実施例10と
同じ処理を行なつた結果、活性はK=1.2Hr-1で、
全く回復していなかつた。
Comparative Example 3 The same treatment as in Example 10 was carried out except that lithium aluminum hydride was used instead of sodium borohydride. As a result, the activity was K = 1.2Hr -1 ,
He hadn't recovered at all.

比較例 4 水素化ホウ素ナトリウムのかわりに水素化カル
シウムを用いた他は実施例10と同じ処理を行なつ
た結果、活性はK=0.98Hr-1で、全く回復してい
なかつた。
Comparative Example 4 The same treatment as in Example 10 was carried out except that calcium hydride was used instead of sodium borohydride. As a result, the activity was K = 0.98 Hr -1 , which was not recovered at all.

Claims (1)

【特許請求の範囲】 1 活性の低下したロジウム・ホスフイン系ヒド
ロホルミル化触媒溶液を水素化ホウ素化合物で処
理したのち、塩基性物質を除去することを特徴と
するヒドロホルミル化触媒の活性回復法。 2 アリルオキシ化合物のヒドロホルミル化反応
に用いて活性の低下した触媒を処理する特許請求
の範囲第1項記載の方法。
[Scope of Claims] 1. A method for restoring the activity of a hydroformylation catalyst, which comprises treating a rhodium-phosphine-based hydroformylation catalyst solution whose activity has decreased with a boron hydride compound, and then removing a basic substance. 2. The method according to claim 1, which is used in the hydroformylation reaction of an allyloxy compound to treat a catalyst whose activity has decreased.
JP57225514A 1982-12-22 1982-12-22 Method of reactivating hydroformylation catalyst Granted JPS59115752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57225514A JPS59115752A (en) 1982-12-22 1982-12-22 Method of reactivating hydroformylation catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57225514A JPS59115752A (en) 1982-12-22 1982-12-22 Method of reactivating hydroformylation catalyst

Publications (2)

Publication Number Publication Date
JPS59115752A JPS59115752A (en) 1984-07-04
JPH0237216B2 true JPH0237216B2 (en) 1990-08-23

Family

ID=16830505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57225514A Granted JPS59115752A (en) 1982-12-22 1982-12-22 Method of reactivating hydroformylation catalyst

Country Status (1)

Country Link
JP (1) JPS59115752A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02101011U (en) * 1989-01-30 1990-08-10

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5290743A (en) * 1993-03-22 1994-03-01 Arco Chemical Technology L.P. Process for regenerating a deactivated rhodium hydroformylation catalyst system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02101011U (en) * 1989-01-30 1990-08-10

Also Published As

Publication number Publication date
JPS59115752A (en) 1984-07-04

Similar Documents

Publication Publication Date Title
US4473655A (en) Method for the recovery of rhodium complexes
EP0429963B1 (en) Method for recovering a group viii metal solid complex and hydroformylation method
US4396551A (en) Method for the recovery of Group VIII noble metal solid complexes
SU1757458A3 (en) Method of oil aldehyde production
NL193211C (en) Process for preparing hydroxybutyraldehyde.
GB2110655A (en) Recovery of noble metal values from carbonylation residues
EP1315693B1 (en) Recovery of metals from olefin hydroformylation reactions
EP0018102A1 (en) Functionalised inorganic oxide products and their use in the removal of heavy metals, transition metals and actinide metals from solution
JPH0237216B2 (en)
US5091546A (en) Novel rhodium recovery
US5151537A (en) Process for the recovery of rhodium from the residues of distillation processes
JP2913820B2 (en) Hydroformylation method
JPH07252285A (en) Preparation of hydridocarbonyltris triorganophosphorus rhodium compound
JPH10291996A (en) Preparation of rhodium complex solution
RU2203734C2 (en) Method of removing carbonyl compound of cobalt and rhodium from aqueous solution of 3-hydroxypropanal
US6863872B2 (en) Method for recovering rhodium from hydroformylation products
JPS614534A (en) Treatment of hydroformylation catalyst solution
JP2993032B2 (en) Separation and recovery of Group VIII noble metals
JP4122534B2 (en) Method for recovering Group VIII metal from carbonylation reaction solution
JPS63197543A (en) Adsorbent for recovering group viii noble metallic complex and recovering method
JPH10324525A (en) Preparation of rhodium complex solution
JP3796842B2 (en) Method for recovering Group VIII metal from carbonylation reaction solution
CN103506166A (en) Activation method for deactivated rhodium-phosphine catalyst
KR0143393B1 (en) Synthetic method of organo rodium compound from disused rodiumcatalyst
JPH03253523A (en) Method for separating and recovering group viii noble metal