JPH0236794A - Excitation controller for 3-phase wound-rotor induction motor - Google Patents

Excitation controller for 3-phase wound-rotor induction motor

Info

Publication number
JPH0236794A
JPH0236794A JP63184006A JP18400688A JPH0236794A JP H0236794 A JPH0236794 A JP H0236794A JP 63184006 A JP63184006 A JP 63184006A JP 18400688 A JP18400688 A JP 18400688A JP H0236794 A JPH0236794 A JP H0236794A
Authority
JP
Japan
Prior art keywords
converter
rotor
induction machine
excitation
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63184006A
Other languages
Japanese (ja)
Inventor
Setsuro Mine
峯 節朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63184006A priority Critical patent/JPH0236794A/en
Publication of JPH0236794A publication Critical patent/JPH0236794A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

PURPOSE:To rapidly restart a converter after the accident of a system is eliminated by connecting an external resistor between the windings of a rotor winding when the accident of the system occurs. CONSTITUTION:A state monitor controller 3 monitors the driving state of an induction machine 1 to which the voltage of a system 5 is applied, and outputs an external resistance control signal SR when an accident occurs in the system 5 so that the normal operation of the converter 2 becomes impossible. Thus, an external resistor 4 is connected between the winding terminals of rotor windings 1a. On the other hand, the accident of the system 5 is eliminated, and when the normal operation of the converter 2 becomes possible, the signal SR is obviated, and the connected resistor 4 is disconnected.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、揚水又は発電運転をする三相巻線形誘導機の
励磁制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an excitation control device for a three-phase wound induction machine that performs pumping or power generation operation.

〔従来の技術〕[Conventional technology]

第4図は従来の三相巻線形誘導機の励磁制御装置の模式
図である。三相巻線形誘導機(以下誘導機という)1の
固定子lb側は系統5.変換器2及び状態監視制御部3
と接続されている。状態監視制御部3の出力は変換器2
に与えられている。そして変換器2の出力は前記誘導機
1の回転子1aに与えられている。
FIG. 4 is a schematic diagram of a conventional excitation control device for a three-phase wound induction machine. The stator lb side of the three-phase wound induction machine (hereinafter referred to as induction machine) 1 is connected to system 5. Converter 2 and condition monitoring control section 3
is connected to. The output of the condition monitoring control section 3 is sent to the converter 2.
is given to. The output of the converter 2 is given to the rotor 1a of the induction machine 1.

次にこの三相巻線形誘導機の励磁制御装置の動作を説明
する。誘導機lの固定子1b端の三相電圧が、変換器2
及び状態監視制御部3に与えられる。
Next, the operation of the excitation control device for this three-phase wound induction machine will be explained. The three-phase voltage at the stator 1b end of the induction machine 1 is applied to the converter 2
and is given to the status monitoring control unit 3.

そうすると状態監視制御部3は、誘導機1による電気エ
ネルギーと機械エネルギーとのエネルギー変換が、その
所定回転速度範囲内で安定に継続するように所要の周波
数、電圧2位相の励磁電圧を誘導機1の回転子1aに与
えるべく変換器2を制御する。この変換器2の出力たる
励磁電圧が誘導機1に与えられて、誘導機1はその所定
回転速度範囲内で安定に制御され、安定してエネルギー
変換動作をする。
Then, the condition monitoring control unit 3 applies the excitation voltage at the required frequency and two voltage phases to the induction machine 1 so that the energy conversion between electrical energy and mechanical energy by the induction machine 1 continues stably within the predetermined rotational speed range. The converter 2 is controlled so as to give the same to the rotor 1a. The excitation voltage that is the output of the converter 2 is applied to the induction machine 1, and the induction machine 1 is stably controlled within its predetermined rotational speed range and stably performs an energy conversion operation.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のこの種の三相巻線形誘導機の励磁制御装置は、系
統に事故が発生すると、変換器の電源が系統と別電源で
ある場合には変換器の動作により誘導機の回転子側には
大きい過電圧、過電流が発生ずる。一方、変換器の電源
が系統と同電源である場合には誘導機の固定子端電圧が
大幅に低下し、その状態で変換器が動作する。そのため
、いずれの場合も変換器が系統の事故による状態変化に
応動することが不可能になって変換器の運転を停止させ
る必要がある。しかし誘導機が同期速度以上で運転され
ている状態で、変換器の運転を停止した場合には、誘導
機の固定子端電圧VS、電気的トルクTE及び回転速度
ωRは第8図に示す如く変化する。つまり、固定子端電
圧VS及び電気的トルクTEは長時間にわたり変動を続
けることになる。それ故、系統の事故が解消しても、固
定子端電圧VS及びトルクTEの変動が変換器を再起動
できる状態に回復せず、誘導機の回転子の回転停止を余
儀なくされて、誘導機の再起動が大幅に遅れるという問
題がある。
Conventional excitation control equipment for this type of three-phase wound induction machine is such that when an accident occurs in the system, if the converter's power source is separate from the system's power source, the converter's operation causes the rotor side of the induction machine to large overvoltage and overcurrent will occur. On the other hand, if the converter is powered by the same power source as the grid, the stator terminal voltage of the induction machine will drop significantly, and the converter will operate in that state. Therefore, in either case, the converter becomes unable to respond to a change in status due to an accident in the system, and it is necessary to stop operation of the converter. However, if the converter is stopped while the induction machine is operating at a synchronous speed or higher, the stator terminal voltage VS, electrical torque TE, and rotational speed ωR of the induction machine will be as shown in Figure 8. Change. In other words, the stator terminal voltage VS and the electric torque TE continue to fluctuate for a long time. Therefore, even if the system fault is resolved, fluctuations in the stator terminal voltage VS and torque TE do not recover to a state where the converter can be restarted, and the induction machine rotor is forced to stop rotating. There is a problem that there is a significant restart delay.

本発明は斯かる問題に鑑み、系統の事故が解消した場合
には速やかに変換器を再起動できる三相巻線形誘導機の
励磁制御装置を提供することを目的とする。
SUMMARY OF THE INVENTION In view of such problems, it is an object of the present invention to provide an excitation control device for a three-phase wound induction machine that can quickly restart a converter when a system fault is resolved.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る三相巻線形誘導機の励磁制御装置は、誘導
機の回転子巻線の巻線端間に外部抵抗を接離可能に設け
る。
In the excitation control device for a three-phase wound induction machine according to the present invention, an external resistor is movably provided between winding ends of a rotor winding of the induction machine.

〔作用〕[Effect]

状態監視制御部は誘導機の運転状態を監視し、運転状態
に基づいて変換器を制御する。変換器は誘導機の回転子
に励磁電圧を与える。誘導機を接続している系統に事故
が発生して変換器が正常に動作しなくなると、状態監視
制御部により外部抵抗を回転子巻線の巻線端間に接続す
る。系統の事故が解消し変換器が正常な動作に復帰でき
るようになると状態監視制御部は接続していた外部抵抗
を切離す。
The condition monitoring control unit monitors the operating condition of the induction machine and controls the converter based on the operating condition. The converter provides excitation voltage to the rotor of the induction machine. If an accident occurs in the system to which the induction machine is connected and the converter no longer operates normally, the condition monitoring control section connects an external resistor between the winding ends of the rotor winding. When the fault in the system is resolved and the converter can return to normal operation, the condition monitoring control section disconnects the connected external resistor.

系統の事故解消後に、速やかに変換器を再起動できる。The converter can be restarted immediately after the grid fault is resolved.

〔実施例〕〔Example〕

以下本発明をその実施例を示す図面によって詳述する。 The present invention will be described in detail below with reference to drawings showing embodiments thereof.

第1図及び第2図は本発明に係る三相巻線形誘導機の励
磁制御装置の模式図及びその回路図である。第1図にお
いて三相巻線形誘導機1の固定子lb側は系統5.変換
器2及び状態監視制御部3と接続されている。状態監視
制御部3の変換器制御信号Scを変換器2に与えており
、外部抵抗制御信号SRを外部抵抗部4に与えている。
1 and 2 are a schematic diagram and a circuit diagram of an excitation control device for a three-phase wound induction machine according to the present invention. In FIG. 1, the stator lb side of the three-phase wound induction machine 1 is connected to system 5. It is connected to the converter 2 and the condition monitoring control section 3. A converter control signal Sc from the condition monitoring control section 3 is applied to the converter 2, and an external resistance control signal SR is applied to the external resistance section 4.

変換器2及び外部抵抗部4は三相巻線形誘導機1の回転
子1aと接続されている。この外部抵抗部4は第2図に
示すように、一端を共通接続した3つの外部抵抗R,R
,Rと、それらの外部抵抗R,R。
The converter 2 and the external resistance section 4 are connected to the rotor 1a of the three-phase wound induction machine 1. As shown in FIG. 2, this external resistor section 4 consists of three external resistors R,
, R and their external resistances R, R.

Rの夫々と直列接続された3つの開閉器SW、 SW、
 SWとからなり、各開閉器SW、 SW、 SWは連
動して開閉動作するようになっている。そして、共通接
続していない側の外部抵抗R,,R,Rの各端部を、開
閉器SW、 SW、 SWを各別に介して三相巻線形誘
導機1の回転子1aの各相巻線U、V、Wと接続されて
いる。
Three switches SW, SW, connected in series with each R
Each switch SW, SW, SW is configured to open and close in conjunction with each other. Then, each end of the external resistor R, , R, R on the side that is not commonly connected is connected to each phase winding of the rotor 1a of the three-phase wound induction machine 1 through the switch SW, SW, SW. Connected to lines U, V, and W.

この外部抵抗R,R,Rは夫々前記回転子1aの各相巻
線の巻線抵抗R1の略10〜20倍の抵抗値に選定しで
ある。状態監視制御部3は、系統5の電圧が与えられて
誘導機1の運転状態を監視しており、系統5に事故が発
生して変換器2の正常な運転が不能になった場合には外
部抵抗制御信号S、lを出力して、開閉器SW、 SW
、 SWを閉路動作させるようになっており、一方系統
5の事故が解消し、また変換器2の正常な運転が可能に
なった場合には、外部抵抗制御信号S8を消滅させて開
閉器SW、SW、SWを開路動作させるようになってい
る。また状態監視制御部3は、誘導機1による電気エネ
ルギーと機械エネルギーとのエネルギー変換が、誘導機
の所定回転速度範囲内で安定に継続するよう変換器制御
信号Scを出力して変換器2を制御するようになってい
る。そして変換器3は与えられた変換器制御信号Scに
関連する周波数、電圧9位相の励磁電圧を出力して誘導
機1の回転子1aに与えるようになって&)る。なお、
固定子1bと系統5との間には遮断器CB、を、系統5
と変換器2との間には遮断器CB2を夫々介装させてい
る。また回転子1aの各相巻線のU、  V相巻線間、
U、 W相巻線間、■、W相巻線間には、アレスタAR
C,ARZ、 ARZを夫々介装させている。
The external resistances R, R, and R are each selected to have a resistance value approximately 10 to 20 times the winding resistance R1 of each phase winding of the rotor 1a. The condition monitoring control unit 3 monitors the operating state of the induction machine 1 by being supplied with the voltage of the system 5, and if an accident occurs in the system 5 and normal operation of the converter 2 becomes impossible, Output external resistance control signals S and l to switch switches SW and SW.
On the other hand, when the fault in system 5 is resolved and converter 2 is able to operate normally, external resistance control signal S8 is extinguished and switch SW is closed. , SW, and SW are operated to open the circuit. The condition monitoring control unit 3 also outputs a converter control signal Sc to control the converter 2 so that the induction machine 1 can stably continue the energy conversion between electrical energy and mechanical energy within a predetermined rotational speed range of the induction machine. It is meant to be controlled. Then, the converter 3 outputs an excitation voltage having nine phases of voltage and a frequency related to the applied converter control signal Sc, and applies it to the rotor 1a of the induction machine 1. In addition,
A circuit breaker CB is connected between the stator 1b and the system 5.
A circuit breaker CB2 is interposed between the converter 2 and the converter 2, respectively. In addition, between the U and V phase windings of each phase winding of the rotor 1a,
Arrester AR is installed between the U and W phase windings, and between the ■ and W phase windings.
C, ARZ, and ARZ are interposed respectively.

次にこのように構成した三相巻線形誘導機の励磁制御装
置の動作を第1図及び第2図により説明する。状態監視
制御部3に系統5の電圧が与えられると、状態監視制御
部3は、系統5の電圧に関連して変換器制御信号S、を
出力して変換器2に与える。それにより変換器2が制御
されて誘導機1の回転子1aに励磁電圧が与えられ、誘
導機1による電気エネルギーと機械エネルギーとのエネ
ルギー変換が、所定回転速度範囲内で安定に継続して行
われる。そのような誘導機の運転状態において系統5に
事故が発生するき、その事故を状態監視制御部2が検知
して、系統5の電圧変動に相応する変換器制御信号Sc
を出力して変換器2を制御するが、その電圧変動に応動
できず変換器2の制御が不能となったときには外部抵抗
制御信号S11を出力する。それにより開閉器sh、 
sh、 shが閉路して、外部抵抗R,R,Rが誘導機
1の回転子1aの各相巻線U、 V、 Wq)各巻線端
間に、2個が直列状態となって接続されることになる。
Next, the operation of the excitation control device for a three-phase wound induction machine constructed as described above will be explained with reference to FIGS. 1 and 2. When the voltage of the system 5 is applied to the state monitoring control section 3, the state monitoring control section 3 outputs a converter control signal S in relation to the voltage of the system 5 and provides it to the converter 2. As a result, the converter 2 is controlled and an excitation voltage is applied to the rotor 1a of the induction machine 1, and the induction machine 1 stably and continuously converts electrical energy and mechanical energy within a predetermined rotation speed range. be exposed. When an accident occurs in the system 5 in such an operating state of the induction machine, the condition monitoring control section 2 detects the accident and outputs a converter control signal Sc corresponding to the voltage fluctuation of the system 5.
is output to control the converter 2, but when the converter 2 cannot be controlled because it cannot respond to the voltage fluctuation, an external resistance control signal S11 is output. As a result, the switch sh,
sh, sh are closed, and two external resistors R, R, R are connected in series between the winding ends of each phase winding U, V, Wq) of the rotor 1a of the induction machine 1. That will happen.

そして誘導機1は誘導電動機としての運転状態になる。The induction machine 1 then enters the operating state as an induction motor.

第3図は、横軸を誘導機の回転速度ωRとし、縦軸を電
力Pとしており、誘導機1の回転子端間を短絡又は回転
子端間に外部抵抗Rを介して短絡し、固定子端電圧を定
格値に保持した状態における回転速度ωR1有効電力P
o+Px+無効電力Qo、Qxの関係を示した曲線図で
ある。そして実線で示すP。
In Fig. 3, the horizontal axis is the rotational speed ωR of the induction machine, and the vertical axis is the power P. Rotation speed ωR1 active power P when terminal voltage is maintained at rated value
It is a curve diagram showing the relationship between o+Px+reactive power Qo and Qx. and P shown by a solid line.

及びQoは外部抵抗Rが零の場合の有効電力及び無効電
力を示し、破線で示すPx及びQxは外部抵抗Rを回転
子1aの各相の巻線抵抗Rrの20倍とした場合の有効
電力及び無効電力を示している。この図から明らかなよ
うに同期速度SSの付近では、外部抵抗Rが零の場合の
有効、無効電力Po、Qoは右下りの直線となって急激
に変化するが、回転子1aの巻線抵抗Rrの20倍の外
部抵抗Rを接続した場合には緩やかな変化、となる。つ
まり、誘導電動機とじてS の領域■は、誘導a1を交流励磁して運転する回転速度
範囲に比べて極端に狭いが、外部抵抗Rを接続すれば誘
導電動機として安定に運転できる回転速度範囲を、回転
子1aを交流励磁して運転するS ことになる。
and Qo indicate the active power and reactive power when the external resistance R is zero, and Px and Qx shown by broken lines are the active power when the external resistance R is set to 20 times the winding resistance Rr of each phase of the rotor 1a. and reactive power. As is clear from this figure, in the vicinity of the synchronous speed SS, the effective and reactive powers Po and Qo when the external resistance R is zero form a straight line downward to the right and change rapidly, but the winding resistance of the rotor 1a When an external resistance R that is 20 times as large as Rr is connected, the change will be gradual. In other words, the region (■) of S as an induction motor is extremely narrow compared to the rotational speed range in which the induction motor is operated with AC excitation, but if the external resistance R is connected, the rotational speed range in which it can be stably operated as an induction motor can be expanded. , the rotor 1a is operated with alternating current excitation.

第4図は横軸を時間もとし、縦軸を回転速度ωR。In Figure 4, the horizontal axis is time, and the vertical axis is rotational speed ωR.

トルクTE、固定子端電圧VSとしており、回転子1a
を交流励磁して運転中に、変換器の動作を停止させると
同時に、回転子に外部抵抗Rを接続した場合の回転速度
ωR,トルクTE、固定子端電圧VSの動揺を示したも
のである。この図から明らかなように、回転子1aを外
部抵抗Rを介して短絡した場合には誘導機は誘導電動機
としての運転状態となり、その回転速度ωRは回転子を
交流励磁により運転する速度制御範囲内になり、また固
定子端電圧VSは極く僅かな時間だけ僅かに低下するも
のの回復して、変換器2を正常に動作させ得る大きさと
なって安定する。
Torque TE, stator terminal voltage VS, rotor 1a
This figure shows the fluctuations in the rotational speed ωR, torque TE, and stator terminal voltage VS when the converter is stopped and an external resistance R is connected to the rotor while the converter is being operated with AC excitation. . As is clear from this figure, when the rotor 1a is short-circuited via the external resistor R, the induction machine operates as an induction motor, and its rotational speed ωR is within the speed control range in which the rotor is operated by AC excitation. The stator terminal voltage VS decreases slightly for a very short period of time, but then recovers and stabilizes to a level that allows the converter 2 to operate normally.

したがって、系統の事故が回復したときは、外部抵抗R
を回転子1aの巻線端から切離せば変換器2を直ちに再
起動させ得て、回転子1aを交流励磁して運転する運転
状態に復帰させ得ることが判る。
Therefore, when the system fault recovers, the external resistance R
It can be seen that if the converter 2 is disconnected from the end of the winding of the rotor 1a, the converter 2 can be immediately restarted, and the rotor 1a can be returned to an operating state in which the rotor 1a is excited with alternating current and operated.

これは、また第5図に示す電気的トルクの過渡的軌跡に
よっても、外部抵抗を介して回転子の巻線端間を短絡し
た場合に効果が得られることが判る。
It can also be seen from the transient trajectory of the electric torque shown in FIG. 5 that this effect can be obtained when the winding ends of the rotor are short-circuited via an external resistance.

第5図は横軸を誘導機1の回転速度ωRとし、縦軸を電
気トルクTEとして示している。この第5図は回転子を
交流励磁した誘導機の運転中に、変換器を停止させると
同時に回転子の巻線端間を短絡させた場合と、回転子の
巻線端間を外部抵抗Rを介して短絡させた場合の電気ト
ルクTHの過渡的軌跡を示したものである。曲線り、は
回転子の巻線端間を短絡した場合、LRは回転子の巻線
端間を外部抵抗Rを介して短絡した場合の軌跡である。
In FIG. 5, the horizontal axis represents the rotational speed ωR of the induction machine 1, and the vertical axis represents the electric torque TE. This figure 5 shows the case where the converter is stopped and the winding ends of the rotor are short-circuited at the same time while the rotor is being operated with alternating current excitation, and the external resistance R is connected between the winding ends of the rotor. This figure shows the transient locus of the electric torque TH when short-circuited through the . Curved line is a trajectory when the winding ends of the rotor are short-circuited, and LR is a locus when the winding ends of the rotor are short-circuited via an external resistor R.

回転子端を短絡又は外部抵抗Rを介して短絡させた時点
t0から、曲線Ls(実線)は負側に大きく変化し0.
1秒後(t=o、l )において負の最大となりその後
、再び正側に大きく変化した後、再度負側に大きく変化
し、1秒後(t=1 )において正側に達する。そして
このような電気トルクTEの変動とともに回転速度ωR
は低下し、同期速度SSに近づく。
From the time t0 when the rotor ends are short-circuited or short-circuited via the external resistor R, the curve Ls (solid line) changes significantly to the negative side and reaches 0.
After 1 second (t=o,l), it reaches a maximum negative value, then changes significantly to the positive side again, changes significantly to the negative side again, and reaches the positive side after 1 second (t=1). Along with such fluctuations in the electric torque TE, the rotational speed ωR
decreases and approaches the synchronous speed SS.

これに対し外部抵抗Rを介して短絡させている場合は、
短絡させた時点t0から曲線LR(破線)は負側に大き
く変化するが、0.1秒後(t =0.1 ”)におけ
る負の最大値は前述した短絡の場合の最大値以下となる
。その後は負側において一旦大幅に正側に変化した後、
徐々に正側方向に変化していく。そして、そのような変
化を辿る期間に回転速度ωRは同期速度SSに近づき、
1秒後(t=1 )において、同期速度SSより若干低
い回転速度となり、誘導機1の回転速度制御範囲内とな
る。このように回転子1aの巻線端を短絡した場合には
電気トルクTEは大きく変動して安定せず変換器2を再
起動し得す、回転子1aの回転を停止させる必要がある
が、外部抵抗Rを介して短絡した場合には、誘導機1が
誘導電動機としての運転状態になって交流励磁による誘
導機lの回転速度制御範囲内で運転できることが判る。
On the other hand, when short-circuited through an external resistor R,
The curve LR (dashed line) changes significantly to the negative side from the time t0 when the short circuit occurs, but the maximum negative value after 0.1 seconds (t = 0.1'') is less than the maximum value in the case of the short circuit described above. .After that, after changing significantly from the negative side to the positive side,
It gradually changes in the positive direction. Then, during the period during which such changes occur, the rotational speed ωR approaches the synchronous speed SS,
After one second (t=1), the rotational speed becomes slightly lower than the synchronous speed SS and falls within the rotational speed control range of the induction machine 1. If the winding ends of the rotor 1a are short-circuited in this way, the electric torque TE will fluctuate greatly and become unstable, potentially restarting the converter 2. However, it is necessary to stop the rotation of the rotor 1a. It can be seen that in the case of a short circuit via the external resistor R, the induction machine 1 enters the operating state as an induction motor and can be operated within the rotational speed control range of the induction machine 1 by AC excitation.

第6図は回転子の巻線抵抗R1に対する外部抵抗R4回
転子端電圧Vr、回転子電流fr、外部抵抗の消費エネ
ルギーJの関係を示す曲線図である。
FIG. 6 is a curve diagram showing the relationship between the rotor winding resistance R1, the external resistance R4, the rotor terminal voltage Vr, the rotor current fr, and the energy consumption J of the external resistance.

横軸を、回転子巻線抵抗R1に対する外部抵抗Rを示し
、縦軸を回転子端電圧Vr、回転子電流1r。
The horizontal axis shows the external resistance R with respect to the rotor winding resistance R1, and the vertical axis shows the rotor terminal voltage Vr and the rotor current 1r.

外部抵抗の消費エネルギーJを示している。Irmは回
転子巻線端間短絡後の回転子端電圧の最大値を、Ir、
はその短絡から0.1秒後の回転子端電圧を、Vrmは
前記同様に短絡後の回転子端電圧の最大値を、Vr、は
短絡から0.1秒後の回転子端電圧を、Jは誘導機1の
定格容量を基準にした短絡後0.1秒間の外部抵抗Rに
おける消費エネルギーを夫々示している一0外部抵抗R
による効果を最大に得るための、その抵抗値はR/Rr
 = 10〜30の範囲が望ましい。そして外部抵抗R
をこの抵抗値範囲にすることにより、三相巻線形誘導機
を誘導電動機として安定pこ運転できる範囲を、回転子
を交流励磁して回転速度を制御し得る誘導機の運転範囲
まで拡大できることになる。また、この第6図に基づい
て消費エネルギー31回転子端電圧Vrl、Vrm回転
子電流1r1. Irmを考慮して、消費エネルギーJ
に関連する外部抵抗Rの経済的な抵抗値を選定できる。
It shows the energy consumption J of the external resistance. Irm is the maximum value of the rotor terminal voltage after a short circuit between the rotor winding ends, Ir,
is the rotor terminal voltage 0.1 seconds after the short circuit, Vrm is the maximum value of the rotor terminal voltage after the short circuit as above, Vr is the rotor terminal voltage 0.1 seconds after the short circuit, J represents the energy consumed in the external resistance R for 0.1 seconds after a short circuit based on the rated capacity of the induction machine 1.
In order to obtain the maximum effect, the resistance value is R/Rr.
= A range of 10 to 30 is desirable. and external resistance R
By setting the resistance value to this range, it is possible to expand the range in which a three-phase wound wire induction machine can be operated stably as an induction motor to the operating range of an induction machine whose rotational speed can be controlled by alternating current excitation of the rotor. Become. Also, based on this FIG. 6, energy consumption 31 rotor terminal voltage Vrl, Vrm rotor current 1r1. Considering Irm, energy consumption J
It is possible to select an economical resistance value for the external resistor R associated with .

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明は変換器の動作を停止させ
て三相巻線形誘導機の励磁を遮断した場合には、その回
転子の巻線端間を外部抵抗を介して短絡させるから、三
相巻線形誘導機はその回転子を交流励磁して安定に運転
する場合と同様に誘導電動機としての安定した運転状態
になし得て、回転速度可変範囲に保持できる。したがっ
て、外部抵抗を切離すことにより三相巻線形誘導機を直
ちに交流励磁して、交流励磁による運転を再開すること
ができ、系統の安定化に大きく寄与する優れた効果を奏
する。
As described in detail above, when the operation of the converter is stopped and the excitation of the three-phase wound induction machine is cut off, the ends of the windings of the rotor are short-circuited via the external resistance. The three-phase wound induction machine can be stably operated as an induction motor in the same way as when the rotor is excited with alternating current and operated stably, and the rotation speed can be maintained within a variable range. Therefore, by disconnecting the external resistance, the three-phase wound induction machine can be immediately AC-excited and operation by AC excitation can be restarted, which is an excellent effect that greatly contributes to the stabilization of the system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明に係る三相巻線形誘導機の励
磁制御装置の模式図及びその回路図、第3図は回転速度
、有効電力、無効電力の関係を示す曲線図、第4図は回
転速度、トルク、固定子端電圧の動揺を示す曲線図、第
5図は回転速度及び電気トルクの関係を示す曲線図、第
6図は外部抵抗1回転子端電圧2回転子電流、消費エネ
ルギーの関係を示す曲線図、第7図は従来の三相巻線形
誘導機の励磁制御装置の模式図、第8図はその回転速度
、トルク、固定子端電圧の動揺を示す曲線図である。 1・・・三相巻線形誘導機 2・・・変換器3・・・状
態監視制御部 4・・・外部抵抗部5・・・系統 R・
・・外部抵抗 SW・・・開閉器CB、、CB2・・・
遮断器 ARC,ARz、 Alh・・・アレスタなお
、図中、同一符号は同一、又は相当部分を示す。
1 and 2 are a schematic diagram and a circuit diagram of an excitation control device for a three-phase wound induction machine according to the present invention, and FIG. 3 is a curve diagram showing the relationship between rotational speed, active power, and reactive power. Figure 4 is a curve diagram showing the fluctuation of rotational speed, torque, and stator terminal voltage. Figure 5 is a curve diagram showing the relationship between rotational speed and electric torque. Figure 6 is external resistance 1 rotor terminal voltage 2 rotor current. , a curve diagram showing the relationship between energy consumption, Figure 7 is a schematic diagram of an excitation control device for a conventional three-phase wound induction machine, and Figure 8 is a curve diagram showing fluctuations in rotational speed, torque, and stator terminal voltage. It is. 1... Three-phase wound induction machine 2... Converter 3... Condition monitoring control section 4... External resistance section 5... System R.
...External resistance SW...Switch CB,,CB2...
Circuit breakers ARC, ARz, Alh... Arresters In the figures, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】 1、三相巻線形誘導機の運転状態を監視する状態監視制
御部により、前記誘導機の回転子巻線に与える励磁電圧
を出力する変換器を制御すべくしてなる三相巻線形誘導
機の励磁制御装置において、 前記回転子巻線の巻線端間に外部抵抗を接 離可能に設けていることを特徴とする三相巻線形誘導機
の励磁制御装置。
[Scope of Claims] 1. A three-phase winding induction machine configured to control a converter that outputs an excitation voltage to be applied to the rotor winding of the induction machine by a state monitoring control unit that monitors the operating state of the three-phase wound induction machine. An excitation control device for a three-phase wound induction machine, characterized in that an external resistor is detachably provided between winding ends of the rotor winding.
JP63184006A 1988-07-22 1988-07-22 Excitation controller for 3-phase wound-rotor induction motor Pending JPH0236794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63184006A JPH0236794A (en) 1988-07-22 1988-07-22 Excitation controller for 3-phase wound-rotor induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63184006A JPH0236794A (en) 1988-07-22 1988-07-22 Excitation controller for 3-phase wound-rotor induction motor

Publications (1)

Publication Number Publication Date
JPH0236794A true JPH0236794A (en) 1990-02-06

Family

ID=16145677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63184006A Pending JPH0236794A (en) 1988-07-22 1988-07-22 Excitation controller for 3-phase wound-rotor induction motor

Country Status (1)

Country Link
JP (1) JPH0236794A (en)

Similar Documents

Publication Publication Date Title
US4734634A (en) Method and system for reconnecting inverter to rotating motors
EP1510691B1 (en) Control apparatus for a starter/generator system
US4605888A (en) Starting winding switching circuit for single-phase induction motors
JP2006514523A5 (en)
RU2008134123A (en) BRAKE CONTROLLER AND CONTROLS FOR ITS OPERATION FOR A WIND TURBINE
JP2011087399A (en) Winding switching unit for electric motor
RU2518907C1 (en) Uninterrupted and secured power supply system for crucial power consumers
JPH10313595A (en) Pumped storage power generation facility
JPH0236794A (en) Excitation controller for 3-phase wound-rotor induction motor
CN108306553A (en) Threephase asynchronous machine starting device and its starting method
CN109659902B (en) Differential protection method and device for water pump starting process of pumped storage power station
JPS5947556B2 (en) motor starting circuit
CN216162645U (en) Frequency conversion speed regulation control system based on full-rotation rim propeller
JP2003284353A (en) Power converter
KR100492758B1 (en) Control circuit for stop of hybrid motor starter
JPH01214238A (en) Power switching method
JP2000116164A (en) Star-delta starting apparatus for induction motor
KR920000458Y1 (en) Three-phase motor control circuit
JPH04121100A (en) Variable speed pumped-storage power station
JPH07203695A (en) Star-delta starter for main motor
RU2017307C1 (en) Device for automatic switching-on of users' stand-by power supply
JPH0412794Y2 (en)
JPH07245872A (en) Variable speed generator motor
JP2023165274A (en) Momentary sag compensation device
JPH1032998A (en) Method for operating variable-speed flywheel power generating facility