JPH0236779A - Driving circuit for vibration wave motor - Google Patents

Driving circuit for vibration wave motor

Info

Publication number
JPH0236779A
JPH0236779A JP63186439A JP18643988A JPH0236779A JP H0236779 A JPH0236779 A JP H0236779A JP 63186439 A JP63186439 A JP 63186439A JP 18643988 A JP18643988 A JP 18643988A JP H0236779 A JPH0236779 A JP H0236779A
Authority
JP
Japan
Prior art keywords
drive
phase
vibration wave
wave motor
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63186439A
Other languages
Japanese (ja)
Inventor
Etsuro Koto
悦朗 古都
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP63186439A priority Critical patent/JPH0236779A/en
Publication of JPH0236779A publication Critical patent/JPH0236779A/en
Priority to US07/752,966 priority patent/US5146143A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To stably control to drive a vibration wave motor by driving it by second driving mode means only when the phase output of a vibration detecting converter is stable, and driving it by first driving mode means when it is unstable. CONSTITUTION:A driving circuit for a vibration wave motor 6 is composed of a controller 7 having a microcomputer for controlling to drive a whole circuit, S-phase.A-phase comparators 8a, 8b, a shift register 8c, edge trigger type phase comparators 8d, 8m, lag-lead filters 8f, 8n, positive/reverse conversion switch 8h, n-the frequency divider 8q, a counter 8r, etc. The switch 8h is operated by the instruction of the controller 7, a signal from the register 8c is selected, and the rotating direction of the motor is altered by changing its phase relationship. The converter 8t is so controlled by the controller 7 that, when the detection signal becomes unstable, it is driven by first driving mode means of an open loop, while when it becomes stable, it is driven by second driving mode means of a closed loop.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は振動波モータの駆動回路に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to a drive circuit for a vibration wave motor.

[従来の技術] 進行性振動波を利用して移動体を摩擦駆動する振動波モ
ータは最近実用化されつつあり、その原理的概要を第3
図を参照して説明する。
[Prior art] Vibration wave motors that frictionally drive moving objects using progressive vibration waves have recently been put into practical use, and an overview of their principles is given in Section 3.
This will be explained with reference to the figures.

全周長が成る長さλの整数倍であるような弾性材料製の
リング状の振動体3の片面に、周方向に配列された二群
の複数個の圧電素子4を固着したものをステータ2とす
る。これら圧電素λ 子4は各群内では−のピッチにて且つ交互に逆の伸縮極
性となるように配列されており、またλ 両群間には−の奇数倍のずれがあるように配置されてい
る、圧電素子の両群には夫々電極膜が施されている。い
ずれかの−群(以下A相と称す)のみに交流電圧を印加
すれば、上記振動体3には、該A相の各圧電素子の中央
点およびそこから−おきの点が腹の位置、また詰腹の位
置間の中央点が節の位置であるような曲げ振動の定在波
(波長λ)が該振動体3の全周に亘って発生する。他の
一群(以下B相と称す)のみに交流電圧を印加すれば、
同様に定在波が生ずるが、その腹および節の位置は前記
定在波に対しλ 時に印加すると、両者の定在波の合成の結果、振動体3
には周方向に進行する曲げ振動の進行波(波長λ)が発
生し、このとき、厚みを有する上記振動体3の他面上の
各点は一種の楕円運動をする。よりて、振動体3の該他
面にロータ1としてリング状移動体を加圧接触させてお
けば、該移動体1は振動体3から周方向の摩擦力を受け
、回転駆動される。その回転方向は、両A、B相のA相
電asa、B相電極5bに印加する交流電圧の位相差を
正負に切換えることにより、反転できる。以上がこの種
の振動波モータの原理的概要である。
A stator is a ring-shaped vibrating body 3 made of an elastic material whose total circumferential length is an integral multiple of the length λ, and two groups of piezoelectric elements 4 arranged in the circumferential direction are fixed to one side of the ring-shaped vibrating body 3. Set it to 2. These piezoelectric elements 4 are arranged at a pitch of - within each group so that they alternately have opposite expansion and contraction polarities, and are arranged so that there is a shift of an odd multiple of - between the two groups. Electrode films are applied to both groups of piezoelectric elements, respectively. If an alternating current voltage is applied only to one of the -groups (hereinafter referred to as A-phase), the vibrating body 3 will have an antinode position at the center point of each piezoelectric element of the A-phase and a point at - intervals from there. Further, a standing wave (wavelength λ) of bending vibration is generated over the entire circumference of the vibrating body 3, with the center point between the pad positions being the node position. If AC voltage is applied only to the other group (hereinafter referred to as B phase),
Similarly, a standing wave is generated, but when the antinode and node positions are applied at λ to the standing wave, as a result of the synthesis of both standing waves, the vibrating body 3
A traveling wave (wavelength λ) of bending vibration traveling in the circumferential direction is generated, and at this time, each point on the other surface of the thick vibrating body 3 moves in a kind of ellipse. Therefore, if a ring-shaped moving body as the rotor 1 is brought into pressure contact with the other surface of the vibrating body 3, the movable body 1 receives a circumferential frictional force from the vibrating body 3 and is rotationally driven. The direction of rotation can be reversed by switching the phase difference between the AC voltages applied to the A-phase electrodes asa and the B-phase electrode 5b of both the A and B phases to positive or negative. The above is an overview of the principle of this type of vibration wave motor.

このように構成した振動波モータにおいて、振動波モー
タの回転数の制御は、人相、B相に加える駆動用交流信
号の印加周波数を変化させる方式と、A相、B相に加え
る駆動用交流信号の電圧を変化させる方式とがある。
In the vibration wave motor configured as described above, the rotation speed of the vibration wave motor is controlled by changing the frequency of the driving AC signal applied to the human phase and B phase, and by changing the frequency of the driving AC signal applied to the A phase and B phase. There is a method that changes the voltage of the signal.

前者の回転数制御方式では、第5図に示すように、振動
波モータのa1械的共振周波数より低い周波数側に急な
回転数変化があり、このため広い回転数領域に渡り安定
して駆動させるには問題点が多い。又、後者の回転数制
御方式は前者のような急な回転数の変化点がない為、広
い回転数領域に渡って利用する場合に適した制御方法で
、この場合振動波モータに印加する駆動用交流信号の周
波数は駆動効率が最も高い機械的共振周波数に固定され
るのが一般的である。
In the former rotational speed control method, as shown in Figure 5, there is a sudden change in the rotational speed at a frequency lower than the a1 mechanical resonance frequency of the vibration wave motor, and therefore the drive is stable over a wide rotational speed range. There are many problems in doing so. In addition, the latter rotation speed control method does not have the sudden change point of rotation speed like the former, so it is a control method suitable for use over a wide rotation speed range.In this case, the drive applied to the vibration wave motor Generally, the frequency of the AC signal for use is fixed at the mechanical resonance frequency that provides the highest drive efficiency.

ところで、振動波モータの機械的共振周波数はモータ個
々や駆動時の温度等により変化するので、固定された周
波数では必らずしも機械的共振周波数になっているとは
かぎらなかった。
By the way, since the mechanical resonance frequency of a vibration wave motor changes depending on the individual motor, the temperature during driving, etc., a fixed frequency does not necessarily correspond to the mechanical resonance frequency.

そこでこの種の振動波モータにおいて、上記A相、B相
の圧電素子の他に、振動検出用圧電素子(以下S相と称
す)を振動板に固着し、該S相のS相電極5Sからの検
出出力に応じてA相、B相に印加する交流電圧の周波数
を自動的に共振周波数となして、振動波モータを最も効
率良く駆動させることができるPLL制御方式の駆動回
路が提供されている。
Therefore, in this type of vibration wave motor, in addition to the above-mentioned A-phase and B-phase piezoelectric elements, a piezoelectric element for vibration detection (hereinafter referred to as S-phase) is fixed to the diaphragm, and from the S-phase electrode 5S of the S-phase. A PLL control type drive circuit is provided which can drive a vibration wave motor most efficiently by automatically setting the frequency of the AC voltage applied to the A-phase and B-phase as a resonance frequency according to the detection output of the There is.

[発明が解決しようとする課題] しかし、このよりなT’LL制御方式による振動波モー
タの駆動回路にあっては、第4図に示すように、モータ
の起動時や、駆動用電圧の低電圧時にS相の出力が不定
的なため、PLL制御が不能となる場合があフた。
[Problems to be Solved by the Invention] However, in the vibration wave motor drive circuit using this more T'LL control method, as shown in FIG. PLL control sometimes became impossible because the S-phase output was unstable when the voltage was applied.

本発明の目的は、振動波モータの起動時や駆動用電圧が
低い時でも安定した回転数の制御を行える振動波モータ
の駆動回路を提供するものである。
An object of the present invention is to provide a drive circuit for a vibration wave motor that can stably control the rotational speed even when the vibration wave motor is started or when the driving voltage is low.

[課題を解決するための手段] 本発明の目的を達成するための要旨とするところは、振
動体に配列固定された二群の駆動用電気−機械エネルギ
ー変換素子に対し互いに90°の時間的位相差を有する
交流信号を印加する第1の駆動モード手段と、該振動体
に設けた振動検出用電気−機械エネルギー変換素子から
の検出信号に応じて該二群の駆動用電気−機械エネルギ
ー変換素子に印加する交流信号の周波数を共振周波数に
設定する第2のm!1lllモード手段と、該二群の駆
動用電気−機械エネルギー変換素子に印加する交流電圧
を可変可能とする電源手段と、常時は該第2の駆動モー
ド手段を選択し、駆動用電圧が低電圧であることを検出
した時又は予め設定した起動初期時に、該第1の駆動モ
ード手段を選択する駆動モード選択手段を有することを
特徴とする振動波モータの駆動回路にある。
[Means for Solving the Problems] The gist of the present invention is to set two groups of drive electro-mechanical energy conversion elements arranged and fixed on a vibrating body at a temporal angle of 90 degrees from each other. a first drive mode means for applying an alternating current signal having a phase difference; and an electric-to-mechanical energy converter for driving the two groups according to a detection signal from an electric-to-mechanical energy conversion element for vibration detection provided on the vibrating body. The second m! sets the frequency of the AC signal applied to the element to the resonance frequency. 1lll mode means, a power supply means that can vary the alternating current voltage applied to the two groups of drive electro-mechanical energy conversion elements, and the second drive mode means is normally selected, and the drive voltage is a low voltage. A drive circuit for a vibration wave motor is characterized in that it has drive mode selection means for selecting the first drive mode means when detecting that the first drive mode is the first drive mode or at a predetermined initial stage of startup.

[作 用] 上記の如く構成した振動波モータの駆動回路は、振動検
出用電気−機械エネルギー変換素子からの検出信号が不
安定となる振動波モータの起動時や駆動電圧が低下した
時には、第1の駆動モード手段で振動波モータの駆動を
行ない、低電圧低回転から高電圧高回転までの広範囲に
渡る速度制御が行なえる。
[Function] The drive circuit for the vibration wave motor configured as described above performs the first operation when the vibration wave motor starts up or when the drive voltage decreases, when the detection signal from the electro-mechanical energy conversion element for vibration detection becomes unstable. The vibration wave motor is driven by the first drive mode means, and speed control can be performed over a wide range from low voltage, low rotation to high voltage, high rotation.

[実施例] 以下本発明を図面に示す実施例に基づいて詳細に説明す
る。
[Example] The present invention will be described in detail below based on an example shown in the drawings.

第1図は本発明による振動波モータの駆動回路の一実施
例を示すブロック図で、振動波モータの回転数を電圧に
より制御するものである。
FIG. 1 is a block diagram showing an embodiment of a vibration wave motor drive circuit according to the present invention, in which the rotation speed of the vibration wave motor is controlled by voltage.

6は振動波モータ、7は回路全体の駆動制御を行うマイ
クロコンピュータからなる制御部、8aはS相用コンパ
レータ、8bはA相用コンパレータ、8Cはシフトレジ
スタ、8d及び8mはエツジトリガ型位相比較器、8e
はAND回路、8f及び8nはラグリードフィルタ、8
g及び8pは電圧制御発振器、8hは正転逆転切換スイ
ッチ、81及び8jは可変電圧源、8k及び8系はマツ
チングコイル、8qはN次分周回路、8rはカウンタ回
路、8sは数値比較器、8tは閉ループ/開ループ切換
え器、8uは電圧制御発振器8gの自走周波数設定器、
9は振動波モータの駆動/停止、正転/逆転、加速/減
速等の指示を行うマイクロコンピュータからなる制御指
示手段で、制御部7へは数値比較器8sの出力信号が入
力され、正転逆転切換スイッチ8h、閉/開ループ切換
え器8t、自走周波数設定器8u可変電圧源81及び8
jへの制御信号が出力されている。なお、開ループとは
S相電極からの信号によらず振動波モータの回転数を制
御するモード、閉ループとはS相電極からの信号により
振動波モータの回転数を制御するモードと称する。
6 is a vibration wave motor, 7 is a control unit consisting of a microcomputer that controls the drive of the entire circuit, 8a is an S phase comparator, 8b is an A phase comparator, 8C is a shift register, 8d and 8m are edge trigger type phase comparators. ,8e
is an AND circuit, 8f and 8n are lag lead filters, 8
g and 8p are voltage controlled oscillators, 8h is a forward/reverse switch, 81 and 8j are variable voltage sources, 8k and 8 series are matching coils, 8q is an N-th frequency divider circuit, 8r is a counter circuit, and 8s is a numerical comparison 8t is a closed loop/open loop switch, 8u is a free-running frequency setter for the voltage controlled oscillator 8g,
Reference numeral 9 denotes a control instruction means consisting of a microcomputer that instructs the vibration wave motor to drive/stop, forward/reverse, accelerate/decelerate, etc. The output signal of the numerical comparator 8s is input to the control section 7, Reverse changeover switch 8h, closed/open loop changeover 8t, free-running frequency setter 8u variable voltage sources 81 and 8
A control signal to j is output. Note that open loop refers to a mode in which the rotational speed of the vibration wave motor is controlled without using a signal from the S-phase electrode, and closed loop refers to a mode in which the rotational speed of the vibrational wave motor is controlled by a signal from the S-phase electrode.

振動波モータの電極6aには電圧制御発振器8gからの
信号が可変電圧源8量で増幅されコイル8kを通して印
加される。
A signal from a voltage controlled oscillator 8g is amplified by a variable voltage source 8 and applied to the electrode 6a of the vibration wave motor through a coil 8k.

電極6bにはA相コンパレータ8bからの信号のデータ
を電圧制御発振器8gの発振周波数fのN倍のクロック
信号でシフトするシフトレジスタで電圧制御発振器8g
の信号と+90゜又は−90’ずれた信号をとりだし可
変電圧源8jで増幅されコイル8ftを通して印加され
る。
The voltage controlled oscillator 8g is connected to the electrode 6b by a shift register that shifts the data of the signal from the A-phase comparator 8b using a clock signal N times the oscillation frequency f of the voltage controlled oscillator 8g.
A signal shifted by +90° or -90' from the signal is extracted, amplified by a variable voltage source 8j, and applied through a coil 8ft.

このとき制御部7の指示により正転/逆転切り換えスイ
ッチ8hを操作してシフトレジスタ8cからの信号を選
択する事によりA相とB相間に印加される信号の位相関
係が変わり振動波モータの回転方向が変化する。
At this time, by operating the forward/reverse rotation switch 8h and selecting the signal from the shift register 8c according to instructions from the control unit 7, the phase relationship of the signals applied between the A phase and the B phase changes, causing the vibration wave motor to rotate. The direction changes.

位相比較器8dにはS相コンパレータ8aの出力とA相
コンパレータ8bからの信号をシフトレジスタ8Cで9
0°ずらした信号が入力される。位相比較器8dの出力
パルスをカウンタ回路8rで計数し、その値を数値比較
器8Sで内部設定値と比較する事により現在の位相状態
を検出できる。
The output of the S-phase comparator 8a and the signal from the A-phase comparator 8b are transferred to the phase comparator 8d by a shift register 8C.
A signal shifted by 0° is input. The current phase state can be detected by counting the output pulses of the phase comparator 8d with a counter circuit 8r and comparing that value with an internal setting value with a numerical comparator 8S.

また、制御部7が間ループ/閉ループ切り換え器8tを
操作する事により、電圧制御発振器8gは位相比較器8
dの出力が一定になるようにPLL駆動を行なう。
In addition, the voltage controlled oscillator 8g is switched to the phase comparator 8 by the control unit 7 operating the interloop/closed loop switch 8t.
PLL driving is performed so that the output of d is constant.

次に制御部7の動作手順を第2図に示すフローチャート
の■〜@ステップに従って説明する。
Next, the operating procedure of the control unit 7 will be explained according to steps ① to @ of the flowchart shown in FIG.

(初期状態の設定) ■ 先ずシステムがスタート後電圧源81及び8jに対
して電源オフを指示し、出力電圧レベルLをL=Oとし
て最低電圧設定し、マイコン内の時間カウンタをT=O
とする。
(Initial state settings) ■ First, after the system starts, it instructs the voltage sources 81 and 8j to turn off the power, sets the output voltage level L to the lowest voltage with L=O, and sets the time counter in the microcontroller to T=O.
shall be.

(駆動制御指示の入力) ■ 次に制御部7は制御指示手段9から駆動開始/停止
の指示を入力し、駆動開始指示であれば■へ分岐して駆
動方向入力処理を行なう。
(Input of drive control instruction) (2) Next, the control unit 7 inputs a drive start/stop instruction from the control instruction means 9, and if it is a drive start instruction, branches to (2) and performs drive direction input processing.

又、駆動停止指示であれば、■へ分岐して初期状態を保
つ。
If the instruction is to stop driving, the process branches to (2) and maintains the initial state.

■ 同様に制御部7は制御指示手段9から駆動方向指示
を入力し、正転/逆転切り換えスイッチ8hを設定する
(2) Similarly, the control section 7 inputs a drive direction instruction from the control instruction means 9 and sets the forward/reverse rotation changeover switch 8h.

■ 同様に制御部7は制御指示手段9から加速/減速指
示を入力し、指示がなければ■へ分岐し時間カウンタT
のチエツクを行なう。
■Similarly, the control section 7 inputs an acceleration/deceleration instruction from the control instruction means 9, and if there is no instruction, branches to ■ and returns the time counter T.
Check.

加速指示があれば■へ分岐して加速処理を行い、減速指
示があれば■へ分岐して減速処理を行なう。
If there is an instruction to accelerate, the process branches to ■ to perform acceleration processing, and if there is an instruction to decelerate, the process branches to ■ to perform deceleration processing.

(加速処理) ■ 出力電圧レベルLをチエツクし、Lが最大電圧レベ
ルMと等しければ■へ分岐して時間カウンタTのチエツ
クを行なう、又、L<Mであれば■へ分岐する。
(Acceleration Processing) (2) Check the output voltage level L, and if L is equal to the maximum voltage level M, branch to (2) and check the time counter T. If L<M, branch to (2).

■ 出力電圧レベルを1段増加して加速方向に設定する
。この後■へ分岐して時間カウンタTのチエツクを行な
う。
■ Increase the output voltage level by one step and set it in the acceleration direction. After this, the process branches to (2) and checks the time counter T.

(減速処理) ■ 出力電圧レベルLをチエツクし、Lが最低電圧レベ
ル0であれば■へ分岐して時間カウンタTのチエツクを
行なう。又、L〉0であれば■へ分岐する。
(Deceleration Processing) (1) Check the output voltage level L, and if L is the lowest voltage level 0, branch to (2) and check the time counter T. If L>0, the process branches to ■.

■ 出力電圧レベルLを1段減らして減速方向に設定す
る。この後のへ分岐して時間カウンタTのチエツクを行
なう。
■ Decrease the output voltage level L by one step and set it in the deceleration direction. The process branches to the next step and checks the time counter T.

(起動後安定時間の確認) ■ マイコン内時間カウンタTと起動安定時間カウント
値Nを比較して、T<Nであれば■へ分岐し、T≠Nで
あれば■へ分岐して出力電圧レベルのチエツクを行なう
(Checking the stabilization time after startup) ■ Compare the time counter T in the microcontroller and the startup stabilization time count value N, and if T<N, branch to ■; if T≠N, branch to ■ and output voltage. Check the level.

■ マイコン内時間カウンタTを1インクリメントして
起動後の経過時間をカウントする。
■ Increment the time counter T in the microcomputer by 1 to count the elapsed time after startup.

この後[相]へ分岐して開ループ設定を行なう。After this, branch to [phase] and perform open loop setting.

(出力電圧レベルの確認) ■ 出力電圧レベルLと閉ループ駆動電圧レベルCと比
較してL>Cであれば■へ分岐して閉ループ設定を行な
う。
(Confirmation of output voltage level) ■ Compare the output voltage level L with the closed loop drive voltage level C, and if L>C, branch to ■ to perform closed loop setting.

又、L<Cであれば[相]へ分岐して開ループ設定を行
なう。
If L<C, branch to [phase] and open loop setting is performed.

(閉ループ設定) ■ 開ループ/閉ループ切り換えスイッチ8tを閉ルー
プへセット、■へ分岐して電圧源のオオンを指示する。
(Closed loop setting) ■ Set the open loop/closed loop changeover switch 8t to closed loop, branch to ■ and instruct to turn on the voltage source.

(開ループ設定) [相] 間ループ/閉ループ切り換えスイッチ8tを開
ループへセット■へ分岐して電圧源のオンを指示する。
(Open-loop setting) [Phase] Set the inter-loop/closed-loop changeover switch 8t to open loop. Branch to ■ and instruct to turn on the voltage source.

(電圧源のオン) ■ 電圧源81及び8jに対して電源オンを指示し、出
力電圧レベルをLと指示して振動波モータを駆動させる
。この後、駆動制御指示の人力■へ戻る。
(Turning on the voltage source) ① Instruct the voltage sources 81 and 8j to turn on the power, instruct the output voltage level to be L, and drive the vibration wave motor. After this, return to the manual drive control instruction ■.

以上説明したように測定等により、あらかじめ起動安定
時間カウンタ値N及び閉ループ駆動電圧レベルCを設定
しておけば、処理ルーチン■及び■にてS相出力信号が
安定な場合のみ閉ループ駆動となり、不安定な場合は開
ループとなり、PLLのロックレンジを外れて起動不能
となる事がなくなった。
As explained above, if the startup stability time counter value N and closed-loop drive voltage level C are set in advance by measurement etc., closed-loop drive will be performed only when the S-phase output signal is stable in processing routines When it is stable, it becomes an open loop, and it is no longer possible to go out of the PLL lock range and become unable to start.

なお、本実施例は、振動波モータの起動時に招けるS相
出力信号の不安定な時間を起動安定時間カウンタ値Nと
して設定してるが、S相出力信号が不安定となる駆動電
圧範囲を予め測定等により求め、この値を基にして開/
閉ループの切換えを行ワても同様の効果が得られる。
In addition, in this embodiment, the period of instability of the S-phase output signal that occurs when starting the vibration wave motor is set as the starting stability time counter value N, but the drive voltage range in which the S-phase output signal becomes unstable is set as the starting stability time counter value N. Determine this value in advance by measurement, etc., and open/open based on this value.
A similar effect can be obtained by performing closed loop switching.

[発明の効果] 以上説明したように、振動検出用電気−機械エネルギー
変換素子の相出力が安定している時だけ第2の駆動モー
ド手段の駆動とし、不安定なときは第1の駆動モード手
段の駆動とすることで、低電圧低回転数から高電圧高回
転数まで安定して駆動制御が可能となった。
[Effects of the Invention] As explained above, the second drive mode means is used only when the phase output of the electro-mechanical energy conversion element for vibration detection is stable, and when it is unstable, the first drive mode is used. By using a drive means, it is possible to stably control the drive from low voltage and low rotation speed to high voltage and high rotation speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による振動波モータの駆動回路の一実施
例を示すブロック図、第2図はその動作手順を示すフロ
ーチャート、第3図は振動波モータの概略図、第4図は
振動波モータの電圧対回転数特性を示す図、第5図は振
13彼モータの周波数対回転数特性を示す図である。 1:ロータ、     2:ステータ、3:振動体、 
   4:圧電素子、 6:振動波モータ、  7:制御部。 党4図 第5図 敲初周波数rKHzコ
Fig. 1 is a block diagram showing an embodiment of the vibration wave motor drive circuit according to the present invention, Fig. 2 is a flowchart showing its operating procedure, Fig. 3 is a schematic diagram of the vibration wave motor, and Fig. 4 is a vibration wave motor drive circuit. FIG. 5 is a diagram showing the voltage versus rotation speed characteristic of the motor. FIG. 1: Rotor, 2: Stator, 3: Vibrating body,
4: piezoelectric element, 6: vibration wave motor, 7: control section. Part 4 Figure 5 First frequency rKHz

Claims (1)

【特許請求の範囲】  1 振動体に配列固定された二群の駆動用電気−機械
エネルギー変換素子に対し互いに 90゜の時間的位相差を有する交流信号を印加する第1
の駆動モード手段と、該振動体に設けた振動検出用電気
−機械エネルギー変換素子からの検出信号に応じて該二
群の駆動用電気−機械エネルギー変換素子に印加する交
流信号の周波数を共振周波数に設定する第2の駆動モー
ド手段と、該二群の駆動用電気−機械エネルギー変換素
子に印加する交流電圧を可変可能とする電源手段と、常
時は該第2の駆動モード手段を選択し、駆動用電圧が低
電圧であることを検出した時又は予め設定した起動初期
時に、該第1の駆動モード手段を選択する駆動モード選
択手段を有することを特徴とする振動波モータの駆動回
路。
[Scope of Claims] 1. A first circuit that applies an AC signal having a temporal phase difference of 90° to two groups of drive electro-mechanical energy conversion elements arranged and fixed on a vibrating body.
The frequency of the AC signal applied to the two groups of drive electric-mechanical energy conversion elements according to the detection signal from the vibration detection electric-mechanical energy conversion element provided on the vibrating body is set as the resonance frequency. a second drive mode means set to , a power supply means capable of varying the alternating current voltage applied to the two groups of drive electro-mechanical energy conversion elements; and a power supply means that normally selects the second drive mode means; A drive circuit for a vibration wave motor, comprising drive mode selection means for selecting the first drive mode means when detecting that a drive voltage is a low voltage or at a preset initial startup time.
JP63186439A 1988-07-26 1988-07-26 Driving circuit for vibration wave motor Pending JPH0236779A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63186439A JPH0236779A (en) 1988-07-26 1988-07-26 Driving circuit for vibration wave motor
US07/752,966 US5146143A (en) 1988-07-26 1991-08-29 Vibration wave driven motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63186439A JPH0236779A (en) 1988-07-26 1988-07-26 Driving circuit for vibration wave motor

Publications (1)

Publication Number Publication Date
JPH0236779A true JPH0236779A (en) 1990-02-06

Family

ID=16188467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63186439A Pending JPH0236779A (en) 1988-07-26 1988-07-26 Driving circuit for vibration wave motor

Country Status (1)

Country Link
JP (1) JPH0236779A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62203574A (en) * 1986-03-04 1987-09-08 Canon Inc Drive control circuit for supersonic motor
JPS63117672A (en) * 1986-11-04 1988-05-21 Matsushita Electric Ind Co Ltd Method for driving ultrasonic motor
JPH01148080A (en) * 1987-12-03 1989-06-09 Matsushita Electric Ind Co Ltd Controller for ultrasonic motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62203574A (en) * 1986-03-04 1987-09-08 Canon Inc Drive control circuit for supersonic motor
JPS63117672A (en) * 1986-11-04 1988-05-21 Matsushita Electric Ind Co Ltd Method for driving ultrasonic motor
JPH01148080A (en) * 1987-12-03 1989-06-09 Matsushita Electric Ind Co Ltd Controller for ultrasonic motor

Similar Documents

Publication Publication Date Title
JP2637467B2 (en) Vibration type actuator device
JPS63178774A (en) Driving circuit for oscillatory wave motor
US5146143A (en) Vibration wave driven motor
US4794294A (en) Vibration wave motor
JPH01303073A (en) Driving circuit for oscillatory motor
JP6112835B2 (en) Drive device and drive control method for vibration actuator
JP3789017B2 (en) Position control device
JPH01185174A (en) Drive circuit for oscillatory wave motor
US5136215A (en) Driving circuit for vibration wave motor
US5416374A (en) Ultrasonic motor and electronic apparatus equipped with ultrasonic motor
JPH06189566A (en) Drive control device for vibration wave motor
JPH0236779A (en) Driving circuit for vibration wave motor
JPH09163765A (en) Driving method and driving circuit of ultrasonic motor
JPH03139179A (en) Ultrasonic wave actuator
JPH0475479A (en) Controller for ultrasonic motor
JP6279119B2 (en) Drive device and drive control method for vibration actuator
JP3382454B2 (en) Drive control device for vibration wave drive device
JP2018068112A (en) Driving device and driving control method for vibration type actuator
JP5553565B2 (en) Vibration motor controller
JP2683196B2 (en) Vibration drive controller
JP2509310B2 (en) Control method of ultrasonic motor
JPH04222477A (en) Power supply circuit of ultrasonic motor
JPH09191667A (en) Drive controller for oscillation wave unit
JPH04217883A (en) Controller for ultrasonic motor
JP4958342B2 (en) Ultrasonic motor control circuit