JPH0236608A - Frequency adjusting method for surface acoustic wave element - Google Patents

Frequency adjusting method for surface acoustic wave element

Info

Publication number
JPH0236608A
JPH0236608A JP18770488A JP18770488A JPH0236608A JP H0236608 A JPH0236608 A JP H0236608A JP 18770488 A JP18770488 A JP 18770488A JP 18770488 A JP18770488 A JP 18770488A JP H0236608 A JPH0236608 A JP H0236608A
Authority
JP
Japan
Prior art keywords
film
acoustic wave
surface acoustic
frequency
silicon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18770488A
Other languages
Japanese (ja)
Other versions
JPH0748626B2 (en
Inventor
Kazuyuki Hashimoto
和志 橋本
Yoshiaki Fujiwara
嘉朗 藤原
Kiyoshi Sato
清 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63187704A priority Critical patent/JPH0748626B2/en
Priority to US07/384,829 priority patent/US4978879A/en
Priority to DE68921811T priority patent/DE68921811T2/en
Priority to EP89307660A priority patent/EP0353073B1/en
Publication of JPH0236608A publication Critical patent/JPH0236608A/en
Publication of JPH0748626B2 publication Critical patent/JPH0748626B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PURPOSE:To easily apply frequency adjustment of a high frequency element especially with high accuracy by coating an SiOx film, a Ta2O5 film and an Si3N4 film on the SiO2 film with a proper thickness while measuring, e.g., the oscillating frequency. CONSTITUTION:A drive electrode 4 is formed in the middle of the upper face of a piezoelectric substance 3 sliced from a 36 deg. Y-XLiTaO3 in the surface acoustic wave element 11, a reflecting electrode 5 is formed to the left and right of the drive electrode 4 and a silicon dioxide film 6 whose refractive index is 1.46+ or -0.01 is laminated on the electrode 5 by the plasma CVD method. A silicon oxide film 12, a pentoxide tantalium film or a silicon nitride film is laminated on the film 6 in a proper thickness by the electron beam vapor deposition method to adjust the frequency. Thus, the fine adjustment with excellent productivity with high frequency elements especially is attained.

Description

【発明の詳細な説明】 〔概要〕 弾性表面波素子の発振周波数を調整するための方法に関
し、 特に高周波素子の周波数調整を容易かつ高精度化するこ
とを目的とし、 リチウムタンタレート単結晶のX軸廻りにZ軸方向へ3
6度回転させたY仮から切り出した基板上に電極を形成
し、その上にプラズマCVDにより屈折率が1.46±
0.01の二酸化シリコン膜を積層した弾性表面波素子
において、 該二酸化シリコン膜の上に、電子ビーム蒸着法によって
酸化シリコン膜または五酸化タンタル膜あるいは窒化シ
リコン膜を積層することを特徴とする、 ならびに、該弾性表面波素子において、四フフ化炭素を
用いたプラズマエツチングにより、前記二酸化シリコン
膜の表層部を除去することを特徴とし構成する。
[Detailed Description of the Invention] [Summary] Regarding a method for adjusting the oscillation frequency of a surface acoustic wave device, particularly for the purpose of facilitating and increasing the precision of frequency adjustment of a high-frequency device, around the axis in the Z-axis direction 3
An electrode is formed on a substrate cut out from a Y temporary rotated by 6 degrees, and a refractive index of 1.46± is formed on it by plasma CVD.
A surface acoustic wave device in which a 0.01 silicon dioxide film is laminated, characterized in that a silicon oxide film, a tantalum pentoxide film, or a silicon nitride film is laminated on the silicon dioxide film by an electron beam evaporation method. Further, in the surface acoustic wave element, the surface layer portion of the silicon dioxide film is removed by plasma etching using carbon tetrafluoride.

〔産業上の利用分野〕[Industrial application field]

本発明は、VHF、UHF周波数帯域において信号処理
等に使用される弾性表面波素子、特にその周波数調整方
法に関する。
The present invention relates to a surface acoustic wave element used for signal processing, etc. in the VHF and UHF frequency bands, and particularly to a frequency adjustment method thereof.

近年の情報処理機器2通信機器の高速化に伴って、これ
らの装置中で使用される周波数は、高周波へ移行してい
る。また、高周波における基準信号の発生、フィルタリ
ング等が必要となり、これらの用途に弾性表面波素子が
使用されているが、周波数の高精度化が要求されている
前記機器において、該素子の高精度化および安定化が望
まれている。
As information processing equipment 2 and communication equipment have become faster in recent years, the frequencies used in these devices have shifted to higher frequencies. In addition, generation of reference signals at high frequencies, filtering, etc. are required, and surface acoustic wave elements are used for these purposes. and stabilization is desired.

弾性表面波素子を用いたフィルタの挿入損失や比帯域幅
、VCOとしての周波数可変幅の点で、大きな結合係数
をもつにも係わらず比較的温度係数の優れたリチウムタ
ンタレート(LiTaO+)の圧電体、特にリチウムタ
ンタレート単結晶のX軸廻りにZ軸方向へ36度回転さ
せたY板(36’ Y −XLiTag、板)から切り
出した圧電体を利用した素子は、極めて有用であり、現
在、この36 ” Y −XLiTa0゜板上に二酸化
シリコン(Sint)を積層し、温度特性を改善する試
みがなされている。かかる基板上に電極を形成した素子
は、電極の膜厚および電極幅ならびにSiO□の膜厚変
化等によって、周波数にばらつきを生じるため、その周
波数調整が必要となる。
Lithium tantalate (LiTaO+) piezoelectric material has a relatively excellent temperature coefficient despite having a large coupling coefficient in terms of insertion loss and specific bandwidth of filters using surface acoustic wave elements, and frequency variable width as a VCO. Elements that utilize a piezoelectric material cut out from a Y plate (36' Y-XLiTag, plate) rotated 36 degrees around the X-axis of a lithium tantalate single crystal in the Z-axis direction are extremely useful and currently available. , an attempt has been made to stack silicon dioxide (Sint) on this 36" Y-XLiTa 0° plate to improve its temperature characteristics. Elements in which electrodes are formed on such a substrate have the following characteristics: Since variations in frequency occur due to changes in the film thickness of SiO□, etc., it is necessary to adjust the frequency.

〔従来の技術〕[Conventional technology]

第7図は弾性表面波素子の概略構成を示す平面図(イ)
とその断面図(ロ)、第8図(イ)、(II)は36゜
Y −XLiTaOx板の説明図である。
Figure 7 is a plan view (a) showing the schematic configuration of the surface acoustic wave element.
The cross-sectional view (B), FIGS. 8(A) and (II) are explanatory diagrams of the 36°Y-XLiTaOx plate.

第7図において、第8図に示すようにリチウムタンタレ
ート単結晶のX軸廻りにZ軸方向へ36度回転させたY
板(ウェーハ)lから圧電体3を切り出した弾性表面波
素子2は、圧電体3の上面の中央に駆動電極4を形成し
、駆動電極4の左方および右方位置に、反射電極5を形
成してなる。
In Fig. 7, as shown in Fig. 8, the Y
The surface acoustic wave element 2 has a piezoelectric material 3 cut out from a plate (wafer) 1, and has a driving electrode 4 formed in the center of the upper surface of the piezoelectric material 3, and reflective electrodes 5 on the left and right sides of the driving electrode 4. It forms.

従来、かかる素子2の周波数調整方法は、電極4.5を
エツチングして薄くするまたは電極4゜5の一部をトリ
ミングする方法あるいは、圧電体3の電極間をエツチン
グする方法であった。
Conventionally, the frequency adjustment method of such an element 2 has been a method of etching the electrodes 4.5 to make them thinner, a method of trimming a part of the electrodes 4.5, or a method of etching the space between the electrodes of the piezoelectric body 3.

また、弾性表面波素子2の温度特性を改善するため、第
柔図−(II)に−点鎖線で示すようにSiO□膜6を
積層した弾性表面波素子では、紫外線照射による周波数
調整方法も報告されている。
In addition, in order to improve the temperature characteristics of the surface acoustic wave element 2, a frequency adjustment method using ultraviolet irradiation is also available for the surface acoustic wave element in which the SiO□ film 6 is laminated, as shown by the dotted chain line in FIG. It has been reported.

Sin、膜6には屈折率が1.46±0.01のものを
使用しており、1.46±0.01から外れた屈折率の
Sing膜6を使用すると、温度特性の改善が損なわれ
るのみならず、他の電気特性をも低減させることになる
The Sing film 6 has a refractive index of 1.46±0.01, and if the Sing film 6 has a refractive index outside of 1.46±0.01, the improvement in temperature characteristics will be impaired. Not only will this lead to a decrease in other electrical characteristics, but it will also reduce other electrical characteristics.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

以上説明したように、電極または電極間の圧電体をエツ
チングする従来の周波数調整方法は、特に電極パターン
が微細化されると困難となり、高性能の所望周波数に対
して効率的かつ高精度に調整できないという問題点があ
った。
As explained above, the conventional frequency adjustment method of etching the electrodes or the piezoelectric material between the electrodes becomes difficult, especially as the electrode pattern becomes finer, and it is difficult to efficiently and precisely adjust the desired frequency for high performance. The problem was that it couldn't be done.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の実施例を示す第1図または第3図によれば、 リチウムタンタレート単結晶のX軸廻りにZ軸方向へ3
6度回転させたY板から切り出した基板3上に駆動電極
4と反射電極5とを形成し、その上にプラズマCVDに
より屈折率が1.46±0.01の二酸化シリコン膜6
を積層した弾性表面波素子11において、 二酸化シリコン膜6の上に、電子ビーム蒸着法によって
酸化シリコン膜12を積層することを特徴とした弾性表
面波素子11の周波数調整方法、ならびに、リチウムタ
ンタレート単結晶のX軸廻りにZ軸方向へ36度回転さ
せたY板から切り出した基板3上に駆動電極4と反射電
極5とを形成し、その上にプラズマCVDにより屈折率
が1.46±0.01の二酸化シリコン膜6を積層した
弾性表面波素子21において、 四フッ化炭素を用いたプラズマエツチングにより、前記
二酸化シリコン膜6の表層部16を除去することを特徴
とした弾性表面波素子の周波数調整方法である。
According to FIG. 1 or FIG. 3 showing an embodiment of the present invention, three steps are taken in the Z-axis direction around the X-axis of the lithium tantalate single crystal.
A driving electrode 4 and a reflecting electrode 5 are formed on a substrate 3 cut out from a Y plate rotated by 6 degrees, and a silicon dioxide film 6 having a refractive index of 1.46±0.01 is formed thereon by plasma CVD.
A method for adjusting the frequency of a surface acoustic wave element 11 characterized in that a silicon oxide film 12 is laminated on a silicon dioxide film 6 by an electron beam evaporation method in the surface acoustic wave element 11 laminated with lithium tantalate. A drive electrode 4 and a reflective electrode 5 are formed on a substrate 3 cut out from a Y plate rotated 36 degrees around the X axis of a single crystal in the Z axis direction, and a refractive index of 1.46± is formed on the substrate 3 by plasma CVD. A surface acoustic wave element 21 having a laminated silicon dioxide film 6 of 0.01 nitride, characterized in that the surface layer 16 of the silicon dioxide film 6 is removed by plasma etching using carbon tetrafluoride. This is a frequency adjustment method.

〔作用〕[Effect]

36°Y  XLiTaO3板を伝播する音速をvI、
屈折率が1.46±0.Olの二酸化シリコン膜を伝播
する音速をvz、電子ビーム薫着法による酸化シリコン
膜を伝播する音速をv3としたとき、それらの音速間に
は VI>V2>V、! の関係が成立する。
36°Y The speed of sound propagating through the XLiTaO3 plate is vI,
The refractive index is 1.46±0. When the speed of sound propagating through the silicon dioxide film of Ol is vz, and the speed of sound propagating through the silicon oxide film formed by the electron beam smoke method is v3, the relationship between these sound speeds is VI>V2>V! The relationship holds true.

従って、36 ’ Y −X LiTaO3仮より切り
出した基板の表面に電極を形成し、その上に二酸化シリ
コン膜を積層させると、該電極に適当な電流を印加して
発生する弾性表面波の速度は、二酸化シリコン膜を積層
しないものより遅くなり、該二酸化シリコン膜の上に酸
化シリコン膜を積層した素子の弾性表面波は、さらに遅
くなる。そこで、発振周波数が所望値より高(なるよう
に、二酸化シリコン膜、酸化シリコン膜の積層された弾
性表面波素子は、酸化シリコン膜の表層部を除去するこ
とによって、発振周波数を所望値に調整可能である。
Therefore, if an electrode is formed on the surface of a substrate cut out from a temporary 36' Y - , the surface acoustic waves of an element in which a silicon oxide film is laminated on the silicon dioxide film are slower than those in which a silicon dioxide film is not laminated. Therefore, the oscillation frequency is adjusted to the desired value by removing the surface layer of the silicon oxide film, so that the oscillation frequency is higher than the desired value. It is possible.

さらに、発振周波数が所望値より低くなるように、二酸
化シリコン膜の積層された弾性表面波素子は、二酸化シ
リコン膜の表層部を除去することによって、発振周波数
を所望値に調整可能である。
Further, in a surface acoustic wave element in which silicon dioxide films are stacked, the oscillation frequency can be adjusted to a desired value by removing the surface layer portion of the silicon dioxide film so that the oscillation frequency is lower than the desired value.

〔実施例〕〔Example〕

以下に、図面を用いて本発明による弾性表面波素子の周
波数調整方法を説明する。
Below, a method for adjusting the frequency of a surface acoustic wave element according to the present invention will be explained using the drawings.

第1図は本発明の第1の実施例による弾性表面波素子の
模式断面図、第2図は第1図に示す実施例において酸化
シリコン膜の厚さと発振周波数との関係を示す図、第3
図は本発明の第2の実施例による弾性表面波素子の模式
断面図、第4図は第3図に示す実施例においてエツチン
グ時間と周波数の変化率との関係を示す図である。
FIG. 1 is a schematic cross-sectional view of a surface acoustic wave device according to a first embodiment of the present invention, FIG. 2 is a diagram showing the relationship between the thickness of the silicon oxide film and the oscillation frequency in the embodiment shown in FIG. 1, and FIG. 3
This figure is a schematic cross-sectional view of a surface acoustic wave device according to a second embodiment of the present invention, and FIG. 4 is a diagram showing the relationship between etching time and frequency change rate in the embodiment shown in FIG. 3.

第1図において、弾性表面波素子11は36°Y−XL
iTa□z仮より切り出した圧電体3の上面の中央に駆
動電極4を形成し、駆動電極4の左方および右方位置に
反射電極5を形成し、その上に屈折率が1.46±0.
01の二酸化シリコン(Si Oz)膜6をプラズマC
VDにより積層し、その上にN子ビーム蒸着法によって
酸化シリコン(SiOx)膜12を適当な厚さに積層し
周波数調整したものである。
In FIG. 1, the surface acoustic wave element 11 is 36°Y-XL.
A drive electrode 4 is formed at the center of the upper surface of the piezoelectric body 3 cut out from iTa□z temporary material, and reflective electrodes 5 are formed on the left and right positions of the drive electrode 4, and the refractive index is 1.46±. 0.
The silicon dioxide (SiOz) film 6 of No. 01 was exposed to plasma C.
A silicon oxide (SiOx) film 12 is laminated to an appropriate thickness by an N-beam evaporation method on top of the VD layer, and the frequency is adjusted.

第2図において、横軸はSiOx膜12の厚さ(A)縦
軸は素子11の発振周波数(MHz)であり、測定に使
用した素子11は、厚さ3.75μmに積層させたSi
O□膜6の上に、SiOx膜12を積層したものであり
、例えば厚さ2000人のSiOx膜12を積層した素
子11の発振周波数は、SiOx膜12を積層する前よ
り約1.36MHzだけ低下するようになる。
In FIG. 2, the horizontal axis is the thickness (A) of the SiOx film 12, and the vertical axis is the oscillation frequency (MHz) of the element 11.
A SiOx film 12 is laminated on the O□ film 6. For example, the oscillation frequency of the element 11 in which the SiOx film 12 is laminated to a thickness of 2000 MHz is about 1.36 MHz lower than that before the SiOx film 12 is laminated. begins to decline.

そこで、第2図より素子11の発振周波数を例えば17
7MH7にしようとするときは、厚さ1500人のSi
Ox膜12を積層すればよいことになる。
Therefore, from FIG. 2, the oscillation frequency of the element 11 is set to 17, for example.
When trying to make 7MH7, Si with a thickness of 1500
All that is required is to stack the Ox film 12.

第3図において、弾性表面波素子21は366Y −X
LiTaOt板より切り出した圧電体3の上面の中央に
駆動電極4を形成し、駆動電極4の左方および右方位置
に反射電極5を形成し、その上に屈折率が1.46±0
.01の二酸化シリコン(SiOz)膜6をプラズマC
VDにより積層したのち、一般にアルミニウム(A6)
にてなる電極4の表呈部および、電極4を測定系に接続
するAlワイヤを腐食させないため四フッ化炭素(CH
4)または、適量の酸素ガス(02)を含むCI(4の
雰囲気中に高周波電界を印加したプラズマエツチングに
よって、SiO2膜60膜層0表層部16だけ除去する
ことで周波数調整したものである。
In FIG. 3, the surface acoustic wave element 21 is 366Y -X
A driving electrode 4 is formed in the center of the upper surface of the piezoelectric body 3 cut out from a LiTaOt plate, and reflective electrodes 5 are formed on the left and right positions of the driving electrode 4, and on top of the reflecting electrode 5, the refractive index is 1.46±0.
.. The silicon dioxide (SiOz) film 6 of No. 01 is exposed to plasma C.
After lamination by VD, generally aluminum (A6)
Carbon tetrafluoride (CH
4) Alternatively, the frequency is adjusted by removing only the surface layer 16 of the SiO2 film 60 film layer 0 by plasma etching in which a high frequency electric field is applied in an atmosphere of CI (4) containing an appropriate amount of oxygen gas (02).

第4図において、横軸はエツチング時間(min)。In FIG. 4, the horizontal axis represents etching time (min).

縦軸は素子21の発振周波数の変化率(%)であり、5
i02n莫6のエツチング条件を下記の表の如く試料表 1〜3について設定したとき、測定値をプロットしそれ
を実線で結んだ試料1.同プロットを破線で結んだ試料
2.同プロットを一点鎖線で結んだ試料3は、エツチン
グ条件(パワー)の差異によってエツチング速度が異な
り、エツチング時間に対し発振周波数の変化率は直線的
に変化(増加)する。
The vertical axis is the rate of change (%) of the oscillation frequency of the element 21, and 5
When the etching conditions for i02nMo6 were set for sample tables 1 to 3 as shown in the table below, the measured values were plotted and connected with a solid line for sample 1. Sample 2, which connects the same plot with a broken line. Sample 3, whose plots are connected by a dashed line, has different etching speeds depending on the etching conditions (power), and the rate of change in the oscillation frequency changes (increases) linearly with respect to the etching time.

第5図は本発明の第3の実施例として、前記第1の実施
例におけるSiOx膜に替えて五酸化タンタル(Tax
es)膜を蒸着したとき、該Ta2’s M!、の厚さ
と発振周波数の変化率との関係を示す図である。
FIG. 5 shows a third embodiment of the present invention in which tantalum pentoxide (Tax) is used instead of the SiOx film in the first embodiment.
es) When the film is deposited, the Ta2's M! FIG. 3 is a diagram showing the relationship between the thickness of , and the rate of change in oscillation frequency.

第5図において、厚さ50人のTaxes膜を被着し発
振周波数fo=175.75MHzまたは176.04
MHzとした弾性表面波素子は、周波数変化率が−0,
29%程度であるのに対し、厚さ100人のTaz05
膜を被着し発振周波数f o ” 175.98 M 
Hzまたは175.76MHzとした弾性表面波素子は
、周波数変化率が−0,58%程度となる。
In Fig. 5, the oscillation frequency fo = 175.75 MHz or 176.04 when a 50-thick Taxes film is applied.
MHz, the surface acoustic wave element has a frequency change rate of -0,
Taz05 with a thickness of 100 people is about 29%
After coating the film, the oscillation frequency f o ” 175.98 M
A surface acoustic wave element set to Hz or 175.76 MHz has a frequency change rate of about -0.58%.

第6図は本発明の第4の実施例として、前記第1の実施
例におけるSiOx膜に替えて窒化シリコン(Si3N
n)を蒸着したとき、該Si3N4膜の厚さと発振周波
数の変化率との関係を示す図である。
FIG. 6 shows a fourth embodiment of the present invention in which silicon nitride (Si3N) is used instead of the SiOx film in the first embodiment.
FIG. 4 is a diagram showing the relationship between the thickness of the Si3N4 film and the rate of change in the oscillation frequency when Si3N4 is deposited.

第6図において、厚さ1800人のSi+Na膜を被着
し発振周波数fo=175.88MHzまたは176.
23MI(zとした弾性表面波素子は、周波数変化率が
一〇、67%程度であるのに対し、厚さ3000人のS
t、N、膜を被着し発振周波数f o = 176、3
3 M Hzまたは175.86MHzとした弾性表面
波素子は、周波数変化率が−1,1%程度となる。
In FIG. 6, a Si+Na film with a thickness of 1800 mm is deposited and the oscillation frequency fo=175.88 MHz or 176.8 MHz.
The surface acoustic wave element with 23MI (z) has a frequency change rate of about 10.67%, whereas the surface acoustic wave element with a thickness of 3000 people
t, N, film deposited, oscillation frequency f o = 176, 3
A surface acoustic wave element with a frequency of 3 MHz or 175.86 MHz has a frequency change rate of about -1.1%.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明方法によれば、電極のパター
ン形状と無関係にSiOx膜、Taz05膜、Si、N
4膜を適当な厚さに例えば発振周波数を測定しなから被
着させるまたは、前以て被着したSiO□膜を適当な厚
さとなるように除去することで周波数調整するため、特
に高周波素子の生産性に優れ微調整を可能止した効果が
ある。
As explained above, according to the method of the present invention, SiOx film, Taz05 film, Si, N
4 film to an appropriate thickness, for example, by depositing the oscillation frequency without measuring it, or by removing the pre-deposited SiO□ film to an appropriate thickness, the frequency can be adjusted, especially for high-frequency devices. This has the effect of improving productivity and making fine adjustments possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例による弾性表面波素子の
模式断面図、 第2回は第1図に示す酸化シリコン膜の厚さと発振周波
数との関係を示す図、 第3図は本発明の第2の実施例による弾性表面波素子の
模式断面図、 第4図は第3図に示す実施例において二酸化シリコン膜
のエツチング時間と発振周波数の変化率との関係を示す
図、 第5図は本発明の第3の実施例におけるTa2es膜の
厚さと発振周波数の変化率との関係を示す図、 第6図は本発明の第4の実施例におけるSi3N4膜の
厚さと発振周波数の変化率との関係を示す図、 第7図は弾性表面波素子の概略構成を示す図、第8図は
36°Y −X LiTaO3板の説明図、である。 図中において、 ■は36 ’ Y  X LiTa0.仮、3は素子基
板、 4.5は電極、 6は二酸化シリコン膜、 11.21は弾性表面波素子、 16は二酸化シリコン膜の表層部、 を示す。 第 ず 口 第 霞 第 (口9 弾性表面波素子の周波数調整方法 3、補正をする者 事件との関係  特許出願人 住所 神奈川県用崎市中原区上小田中1015番地名称
 (522)富士通株式会社 代表者 山 本 卓 眞 4、代理人 郵便番号 211 住所 神奈川県用崎市中原区上小田中1015番地(イ
)                (コノ36’Y−
XLiT403板のal’F口第 g 図 5、補正により増加する発明の数 補正命令の日付 羊=嚇罎辛→−一 粘=ヰ≠障青合 なし 7、補正の対象 (1)明細書の「発明の詳細な説明」の欄(2)図面の
(第8図) 8、補正の内容 (1)明細書の第10頁第6行目と第7行目に記載のr
CH,JをrcF、Jと補正する。 (2)明細書の第10頁第15行目に表中に記載の「シ
ラン流量」をrCF、流量」と補正する。 (3)  図面第8図を別紙の通り補正する。 9、添付書類の目録 (1)補正図面 (イン X軸 (ロ) 36’ Y−XLITaθJ 叔/l ML明門口 6
 図
FIG. 1 is a schematic cross-sectional view of a surface acoustic wave device according to the first embodiment of the present invention, the second is a diagram showing the relationship between the thickness of the silicon oxide film shown in FIG. 1 and the oscillation frequency, and FIG. A schematic cross-sectional view of a surface acoustic wave device according to a second embodiment of the present invention; FIG. 4 is a diagram showing the relationship between the etching time of the silicon dioxide film and the rate of change in the oscillation frequency in the embodiment shown in FIG. Figure 5 shows the relationship between the thickness of the Ta2es film and the rate of change in the oscillation frequency in the third embodiment of the present invention, and Figure 6 shows the relationship between the thickness of the Si3N4 film and the rate of change in the oscillation frequency in the fourth embodiment of the invention. FIG. 7 is a diagram showing a schematic configuration of a surface acoustic wave element, and FIG. 8 is an explanatory diagram of a 36°Y-X LiTaO3 plate. In the figure, ■ is 36' Y X LiTa0. 3 is an element substrate, 4.5 is an electrode, 6 is a silicon dioxide film, 11.21 is a surface acoustic wave element, and 16 is a surface layer of the silicon dioxide film. No. 1 Kasumi No. 9 Frequency adjustment method for surface acoustic wave elements 3, relationship with the case of the person making the correction Patent applicant address 1015 Kamiodanaka, Nakahara-ku, Yozaki City, Kanagawa Prefecture Name (522) Representative of Fujitsu Limited Person Takashi Yamamoto 4, Agent Postal code 211 Address 1015 Kamiodanaka, Nakahara-ku, Yozaki-shi, Kanagawa (I) (Kono 36'Y-
Figure 5. Number of inventions increased by amendment. Date of amendment order. "Detailed Description of the Invention" column (2) Drawing (Figure 8) 8. Contents of amendment (1) r stated in lines 6 and 7 of page 10 of the specification
Correct CH,J with rcF,J. (2) The "silane flow rate" listed in the table on page 10, line 15 of the specification is corrected to "rCF, flow rate." (3) Figure 8 of the drawing will be corrected as shown in the attached sheet. 9. List of attached documents (1) Corrected drawings (in
figure

Claims (2)

【特許請求の範囲】[Claims] (1)リチウムタンタレート単結晶のX軸廻りにZ軸方
向へ36度回転させたY板から切り出した基板(3)上
に電極(4,5)を形成し、その上にプラズマCVDに
より屈折率が1.46±0.01の二酸化シリコン膜(
6)を積層した弾性表面波素子において、該二酸化シリ
コン膜(6)の上に、電子ビーム蒸着法によって酸化シ
リコン膜(12)または五酸化タンタル膜あるいは窒化
シリコン膜を積層することを特徴とした弾性表面波素子
の周波数調整方法。
(1) Electrodes (4, 5) are formed on a substrate (3) cut out from a Y plate that has been rotated 36 degrees around the X-axis of a lithium tantalate single crystal in the Z-axis direction, and the electrodes (4, 5) are formed on the substrate by plasma CVD. Silicon dioxide film with a ratio of 1.46±0.01 (
6) is characterized in that a silicon oxide film (12), a tantalum pentoxide film, or a silicon nitride film is laminated on the silicon dioxide film (6) by an electron beam evaporation method. Frequency adjustment method for surface acoustic wave elements.
(2)リチウムタンタレート単結晶のX軸廻りにZ軸方
向へ36度回転させたY板から切り出した基板(3)上
に電極(4,5)を形成し、その上にプラズマCVDに
より屈折率が1.46±0.01の二酸化シリコン膜(
6)を積層した弾性表面波素子において、四フッ化炭素
を用いたプラズマエッチングにより、前記二酸化シリコ
ン膜(6)の表層部(16)を除去することを特徴とし
た弾性表面波素子の周波数調整方法。
(2) Electrodes (4, 5) are formed on the substrate (3) cut out from a Y plate that has been rotated 36 degrees around the X-axis in the Z-axis direction of a lithium tantalate single crystal, and the electrodes (4, 5) are formed on the substrate by plasma CVD. Silicon dioxide film with a ratio of 1.46±0.01 (
6) Frequency adjustment of a surface acoustic wave device, characterized in that in the surface acoustic wave device laminated, the surface layer portion (16) of the silicon dioxide film (6) is removed by plasma etching using carbon tetrafluoride. Method.
JP63187704A 1988-07-27 1988-07-27 Frequency adjustment method for surface acoustic wave device Expired - Fee Related JPH0748626B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63187704A JPH0748626B2 (en) 1988-07-27 1988-07-27 Frequency adjustment method for surface acoustic wave device
US07/384,829 US4978879A (en) 1988-07-27 1989-07-25 Acoustic surface wave element
DE68921811T DE68921811T2 (en) 1988-07-27 1989-07-27 Surface acoustic wave arrangements.
EP89307660A EP0353073B1 (en) 1988-07-27 1989-07-27 Acoustic surface wave devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63187704A JPH0748626B2 (en) 1988-07-27 1988-07-27 Frequency adjustment method for surface acoustic wave device

Publications (2)

Publication Number Publication Date
JPH0236608A true JPH0236608A (en) 1990-02-06
JPH0748626B2 JPH0748626B2 (en) 1995-05-24

Family

ID=16210703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63187704A Expired - Fee Related JPH0748626B2 (en) 1988-07-27 1988-07-27 Frequency adjustment method for surface acoustic wave device

Country Status (1)

Country Link
JP (1) JPH0748626B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04258008A (en) * 1991-02-12 1992-09-14 Murata Mfg Co Ltd Surface acoustic wave device
JP2006513649A (en) * 2003-01-23 2006-04-20 エプコス アクチエンゲゼルシャフト SAW device having improved temperature characteristics
US7322093B2 (en) 2004-03-29 2008-01-29 Murata Manufacturing Co., Ltd. Method for producing a boundary acoustic wave device
US7327071B2 (en) 2004-03-02 2008-02-05 Murata Manufacturing Co., Ltd. Surface acoustic wave device
JP2010045752A (en) * 2008-08-12 2010-02-25 Tatung Univ High frequency surface acoustic wave device and substrate thereof
US8553391B2 (en) 2010-09-16 2013-10-08 Murata Manufacturing Co., Ltd. Electronic component
CN115781946A (en) * 2022-11-29 2023-03-14 山东大学 Compression type high-temperature piezoelectric sensitive cutting type of lithium niobate crystal, preparation and application

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS555924A (en) * 1978-06-27 1980-01-17 Ito Kogaku Kogyo Kk Composition for coating formed plastic material
JPS5833310A (en) * 1981-08-21 1983-02-26 Hitachi Ltd Surface acoustic wave device
JPS6177407A (en) * 1984-09-22 1986-04-21 Japan Radio Co Ltd Manufacture of layered structure surface acoustic wave element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS555924A (en) * 1978-06-27 1980-01-17 Ito Kogaku Kogyo Kk Composition for coating formed plastic material
JPS5833310A (en) * 1981-08-21 1983-02-26 Hitachi Ltd Surface acoustic wave device
JPS6177407A (en) * 1984-09-22 1986-04-21 Japan Radio Co Ltd Manufacture of layered structure surface acoustic wave element

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04258008A (en) * 1991-02-12 1992-09-14 Murata Mfg Co Ltd Surface acoustic wave device
JP2006513649A (en) * 2003-01-23 2006-04-20 エプコス アクチエンゲゼルシャフト SAW device having improved temperature characteristics
US7327071B2 (en) 2004-03-02 2008-02-05 Murata Manufacturing Co., Ltd. Surface acoustic wave device
US7322093B2 (en) 2004-03-29 2008-01-29 Murata Manufacturing Co., Ltd. Method for producing a boundary acoustic wave device
EP2383888A3 (en) * 2004-03-29 2012-08-01 Murata Manufacturing Co., Ltd. Boundary acoustic wave device manufacturing method and boundary acoustic wave device
JP2010045752A (en) * 2008-08-12 2010-02-25 Tatung Univ High frequency surface acoustic wave device and substrate thereof
US8553391B2 (en) 2010-09-16 2013-10-08 Murata Manufacturing Co., Ltd. Electronic component
CN115781946A (en) * 2022-11-29 2023-03-14 山东大学 Compression type high-temperature piezoelectric sensitive cutting type of lithium niobate crystal, preparation and application
CN115781946B (en) * 2022-11-29 2024-06-04 山东大学 Compression type high-temperature piezoelectric sensitive cutting type lithium niobate crystal, preparation and application

Also Published As

Publication number Publication date
JPH0748626B2 (en) 1995-05-24

Similar Documents

Publication Publication Date Title
US4456850A (en) Piezoelectric composite thin film resonator
US7019604B2 (en) Piezoelectric filter, duplexer, composite piezoelectric resonator, communication device and method for adjusting frequency of piezoelectric filter
JPH0236608A (en) Frequency adjusting method for surface acoustic wave element
JPS58153412A (en) Piezo-electric thin film composite vibrator
JPH0237815A (en) Surface acoustic wave element
JPH11284484A (en) Uhf band fundamental frequency crystal oscillator and its filter
JPS6068711A (en) Piezoelectric thin film resonator
JPH0365046B2 (en)
JPH0211043B2 (en)
JPH0640611B2 (en) Piezoelectric thin film resonator
US4232109A (en) Method for manufacturing subminiature quartz crystal vibrator
JPS60149215A (en) Composite oscillator of piezoelectric thin film
JPH01103310A (en) Surface acoustic wave element
JPH0131728B2 (en)
JP2002368573A (en) Superthin sheet piezoelectric vibrator and production method therefor
JPH0356013B2 (en)
JPS63120508A (en) Manufacture of piezoelectric resonator
JPS60116217A (en) Composite resonator
JPH0818388A (en) Surface wave filter element and its manufacture
JPH02301210A (en) Frequency adjustment method for surface acoustic wave device
JPS6127929B2 (en)
EP0594117B1 (en) Piezoelectric filter and its production method
JPS6234172B2 (en)
JP3505449B2 (en) Substrate for surface acoustic wave device and surface acoustic wave device
JPS6294010A (en) Manufacture of piezoelectric thin film resonator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees