JPH0234808Y2 - - Google Patents

Info

Publication number
JPH0234808Y2
JPH0234808Y2 JP1982127373U JP12737382U JPH0234808Y2 JP H0234808 Y2 JPH0234808 Y2 JP H0234808Y2 JP 1982127373 U JP1982127373 U JP 1982127373U JP 12737382 U JP12737382 U JP 12737382U JP H0234808 Y2 JPH0234808 Y2 JP H0234808Y2
Authority
JP
Japan
Prior art keywords
helium
container
pipe
coil
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982127373U
Other languages
Japanese (ja)
Other versions
JPS5933214U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP12737382U priority Critical patent/JPS5933214U/en
Publication of JPS5933214U publication Critical patent/JPS5933214U/en
Application granted granted Critical
Publication of JPH0234808Y2 publication Critical patent/JPH0234808Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

【考案の詳細な説明】 〔考案の技術分野〕 本考案は超電導マグネツト装置に関する。[Detailed explanation of the idea] [Technical field of invention] The present invention relates to a superconducting magnet device.

(考案の技術的背景とその問題点) 超電導マグネツト装置は超電導線および銅また
はアルミニウムなどの安定化材から成る超電導導
体を巻回してコイルを構成し、ステンレス等より
成る液体ヘリウム容器内に収納し、液体ヘリウム
中に浸漬して臨界温度以下の極低温に保持され
る。コイルは超電導状態になり超電導線の電気抵
抗が零になるため大電流を流すことができ、強磁
界を得ることができる。このようなことから核融
合、MHD発電などに広く利用されるようにな
り、コイルも大型複雑化の傾向にある。
(Technical background of the invention and its problems) A superconducting magnet device consists of a coil made by winding a superconducting wire and a superconducting conductor made of a stabilizing material such as copper or aluminum, and the coil is housed in a liquid helium container made of stainless steel or the like. , kept at a cryogenic temperature below the critical temperature by immersing it in liquid helium. The coil becomes superconducting and the electrical resistance of the superconducting wire becomes zero, allowing a large current to flow and producing a strong magnetic field. Because of this, they have become widely used in nuclear fusion, MHD power generation, etc., and coils are also becoming larger and more complex.

液体ヘリウムを容器に注入する場合は、液の蒸
発量を少なくするために、また急激な温度差によ
り発生する熱応力を抑えるため、低温のガスヘリ
ウムを送りコイルおよび容器を予冷した後に行な
う。通常この低温ガスヘリウムはヘリウム容器下
部に取付けられた注入管を利用して送られコイ
ル、ヘリウム容器を冷却し上部に設けられた液体
ヘリウム溜めとして一定容積の気相部分を有する
煙突部からガス回収管により回収される。この予
冷後、液体ヘリウムが注入管を通し所定量になる
までヘリウム容器内に送られ、注入終了後、励磁
となる。
When liquid helium is injected into a container, in order to reduce the amount of liquid evaporation and to suppress thermal stress caused by sudden temperature differences, the coil and container are pre-cooled by feeding low-temperature gas helium. Normally, this low-temperature gas helium is sent using an injection pipe installed at the bottom of the helium container, cools the helium container, and collects the gas from the chimney section, which has a constant volume of gas phase, as a liquid helium reservoir installed at the top. Collected by tube. After this pre-cooling, liquid helium is sent into the helium container through the injection pipe until it reaches a predetermined amount, and after the injection is completed, it is energized.

コイルの励磁中は、ふく射熱、各種配管および
支持脚からの伝導熱、電流リードの発熱などの定
量的な侵入熱のほか、超電導導体の僅かな動きに
よる電磁誘導等で発熱する。これらの熱により液
体ヘリウムが蒸発して補給を必要とする。補給は
注入管からではなく煙突の気相部に設けられた補
給管より行なわれる。この理由は、管を通ること
により圧力損失等で液体ヘリウムが一部蒸発し、
気泡を含んだ状態でヘリウム容器へ送られるた
め、ヘリウム容器下部に取付けられた注入管から
では気泡がコイルと接触し、冷却効果を低減させ
るためである。このため補給は煙突の気相部から
とされ、気泡をコイルと接触させることなく回収
するようにしている。これを第1図に示す。超電
導導体を巻回したコイル1はヘリウム容器3内の
液体ヘリウム2に浸漬し、ヘリウム容器上部には
一定容積の気相部を有する煙突3aが設けられて
いる。ヘリウム容器2は液体窒素または低温ヘリ
ウムガス等で冷却するふく射シールド4で包囲
し、真空容器5内で真空断熱し支持装置6で支持
している。ヘリウム容器3の下部に取付けられた
注入管7を通つて注入された液体ヘリウム2は、
励磁中において煙突気相部に取付けられた補給管
8により補給され、蒸発したガスヘリウムや補給
時にすでに気泡となつていたガスヘリウムは回収
管9を通つて回収される。
While the coil is energized, heat is generated not only by radiant heat, conductive heat from various piping and support legs, and quantitative intrusion heat such as heat generated by the current leads, but also by electromagnetic induction caused by the slight movement of the superconducting conductor. These heats cause liquid helium to evaporate and require replenishment. Replenishment is not done through an injection pipe, but through a replenishment pipe installed in the gas phase of the chimney. The reason for this is that some of the liquid helium evaporates due to pressure loss etc. as it passes through the pipe.
This is because the air bubbles are sent to the helium container in a state that includes air bubbles, so the air bubbles come into contact with the coil from the injection pipe attached to the bottom of the helium container, reducing the cooling effect. For this reason, replenishment is done from the gas phase part of the chimney, and air bubbles are collected without coming into contact with the coil. This is shown in FIG. A coil 1 wound with a superconducting conductor is immersed in liquid helium 2 in a helium container 3, and a chimney 3a having a constant volume of gas phase is provided at the top of the helium container. The helium container 2 is surrounded by a radiation shield 4 cooled with liquid nitrogen or low-temperature helium gas, and is vacuum insulated in a vacuum container 5 and supported by a support device 6. Liquid helium 2 is injected through the injection pipe 7 attached to the bottom of the helium container 3.
During excitation, gas helium is replenished by a replenishment pipe 8 attached to the gas phase part of the chimney, and evaporated gas helium and gas helium that has already become bubbles at the time of replenishment are recovered through a recovery pipe 9.

煙突気相部にはこれら補給管、回収管の他、図
示していない電流リードポート、安全弁ポート、
破裂板ポート、各種計測用ポート等が溶接で取付
けられている。そのため結局は煙突を必要以上に
大きくせざるをえないという欠点を生じている。
In addition to these supply pipes and recovery pipes, the gas phase part of the chimney has a current lead port, a safety valve port, and a safety valve port (not shown).
Rupture disc ports, various measurement ports, etc. are attached by welding. This ultimately results in the disadvantage that the chimney has to be made larger than necessary.

〔考案の目的〕[Purpose of invention]

本考案の目的は上記の従来技術のもつ欠点を除
去するために行なつたものであり、煙突を有効利
用することができ、しかも、ヘリウム気泡をコイ
ルと接触させることなく液体ヘリウムを補給する
ことのできる超電導マグネツト装置を提供するこ
とにある。
The purpose of the present invention was to eliminate the drawbacks of the above-mentioned prior art, and it is possible to effectively utilize the chimney and replenish liquid helium without bringing helium bubbles into contact with the coil. The object of the present invention is to provide a superconducting magnet device that can perform the following functions.

〔考案の概要〕[Summary of the idea]

上記の目的を達成するために本考案の超電導マ
グネツト装置は、真空容器を貫通しヘリウム容器
の下部近傍へ導かれた注入元管と、この注入元管
の先端から下むきに分岐しヘリウム容器の下部に
接続されたコイル注入管と、注入元管の先端と回
収管のあいだに接続され途中にバルブを有する気
泡回収管とを備えた構成とする。
In order to achieve the above object, the superconducting magnet device of the present invention has an injection source tube that penetrates the vacuum container and is guided to the vicinity of the bottom of the helium container, and an injection source tube that branches downward from the tip of the injection source tube and is connected to the helium container. The structure includes a coil injection pipe connected to the lower part, and a bubble collection pipe connected between the tip of the injection source pipe and the collection pipe and having a valve in the middle.

〔考案の実施例〕[Example of idea]

以下本考案の一実施例について第2図を参照し
て説明する。第2図において第1図と同一部分は
同一符号を付し説明を省略する。10は注入元
管、10aは注入元管10より下むきに分岐しヘ
リウム容器3の下部側面に斜めに取付けられたコ
イル注入管、10bは注入元管10より立上が
り、回収管9と接続された気泡回収管、11は気
泡回収管10b途中に設けたバルブである。
An embodiment of the present invention will be described below with reference to FIG. In FIG. 2, the same parts as in FIG. 1 are designated by the same reference numerals, and their explanation will be omitted. 10 is an injection source pipe, 10a is a coil injection pipe that branches downward from the injection source pipe 10 and is attached diagonally to the lower side of the helium container 3, and 10b is a coil injection pipe that rises from the injection source pipe 10 and is connected to the recovery pipe 9. The bubble recovery pipe 11 is a valve provided in the middle of the bubble recovery pipe 10b.

次に上記のように構成した実施例の作用を説明
する。予冷時の任意の低温ガスヘリウムは注入元
管10、コイル注入管10aを通り送られコイル
1、ヘリウム容器3を冷却し煙突3a気相部に取
付けられた回収管9より回収される。この時バル
ブ11は閉としておく。この予冷後、バルブ11
を開とし、液体ヘリウムを注入元管10、コイル
注入管10aを通り所定量になるまでヘリウム容
器3に注入する。気泡回収管10bとヘリウム容
器3は回収管9により同圧力となるため気泡回収
管10bにも液体ヘリウム2がヘリウム容器液面
と同高さで溜められる。この後、励磁となるが、
励磁中の液体ヘリウム補給は注入時と同一操作に
より行なう。問題となるヘリウム気泡であるがこ
れは、まつすぐ立上がつた気泡回収管10bを通
つて回収管9により回収され、コイル注入管10
aを通つてヘリウム容器3へ行くことは管が斜め
に取付いているためほとんどない。またそらせ
板、気液分離装置を設けてコイルへの気泡の混入
をさらに効果的に防止することも出来る。
Next, the operation of the embodiment configured as described above will be explained. Any low-temperature gas helium during precooling is sent through the injection source pipe 10 and the coil injection pipe 10a, cools the coil 1 and the helium container 3, and is recovered from the recovery pipe 9 attached to the gas phase part of the chimney 3a. At this time, the valve 11 is kept closed. After this pre-cooling, valve 11
is opened, and liquid helium is injected into the helium container 3 through the injection source tube 10 and the coil injection tube 10a until a predetermined amount is reached. Since the bubble recovery tube 10b and the helium container 3 are brought to the same pressure by the recovery tube 9, liquid helium 2 is also stored in the bubble recovery tube 10b at the same height as the helium container liquid level. After this, it becomes excited, but
Liquid helium replenishment during excitation is carried out in the same manner as during injection. The problematic helium bubbles are collected by the collection pipe 9 through the rising bubble collection pipe 10b, and then collected by the coil injection pipe 10.
Since the tube is installed diagonally, it is almost impossible for the helium to pass through a to the helium container 3. It is also possible to further effectively prevent air bubbles from entering the coil by providing a baffle plate or a gas-liquid separator.

〔考案の効果〕[Effect of idea]

以上のように本考案においては、励磁中の液補
給に際してヘリウム気泡をコイル側へ送ることな
く注入管より補給ができ、煙突から補給管を削除
することができる。このことにより、煙突を必要
以上に大きくしなければならないという欠点が解
消される。
As described above, in the present invention, when replenishing liquid during excitation, helium bubbles can be replenished from the injection pipe without sending them to the coil side, and the replenishment pipe can be removed from the chimney. This eliminates the disadvantage of having to make the chimney larger than necessary.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の超電導マグネツト装置を示す縦
断面図、第2図は本考案の一実施例を示す縦断面
図である。 1……コイル、2……液体ヘリウム、3……ヘ
リウム容器、3a……煙突部、4……ふく射シー
ルド、5……真空容器、6……支持装置、7……
注入管、9……回収管、10……注入元管、10
a……コイル注入管、10b……気泡回収管、1
1……バルブ。
FIG. 1 is a longitudinal sectional view showing a conventional superconducting magnet device, and FIG. 2 is a longitudinal sectional view showing an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Coil, 2... Liquid helium, 3... Helium container, 3a... Chimney part, 4... Radiation shield, 5... Vacuum container, 6... Support device, 7...
Injection pipe, 9...Recovery pipe, 10...Injection source pipe, 10
a...Coil injection pipe, 10b...Bubble collection pipe, 1
1...Valve.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 超電導コイルを収容するヘリウム容器を囲む真
空容器を貫通しヘリウム容器の下部近傍へみちび
かれた注入元管と、この注入元管の先端から下む
きに分岐しヘリウム容器の下部に接続されたコイ
ル注入管と、ヘリウム容器の上部に接続され真空
容器の外部へ導かれた回収管と、この回収管と前
記注入元管の先端とのあいだに接続され途中にバ
ルブを有する気泡回収管とを備えたことを特徴と
する超電導マグネツト装置。
An injection source tube that penetrates the vacuum container surrounding the helium container that houses the superconducting coil and is led to near the bottom of the helium container, and a coil injection tube that branches downward from the tip of this injection source tube and is connected to the bottom of the helium container. a recovery tube connected to the top of the helium container and led to the outside of the vacuum container, and a bubble recovery tube connected between the recovery tube and the tip of the injection source tube and having a valve in the middle. A superconducting magnet device characterized by:
JP12737382U 1982-08-25 1982-08-25 Superconducting magnet device Granted JPS5933214U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12737382U JPS5933214U (en) 1982-08-25 1982-08-25 Superconducting magnet device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12737382U JPS5933214U (en) 1982-08-25 1982-08-25 Superconducting magnet device

Publications (2)

Publication Number Publication Date
JPS5933214U JPS5933214U (en) 1984-03-01
JPH0234808Y2 true JPH0234808Y2 (en) 1990-09-19

Family

ID=30289308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12737382U Granted JPS5933214U (en) 1982-08-25 1982-08-25 Superconducting magnet device

Country Status (1)

Country Link
JP (1) JPS5933214U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6977145B2 (en) * 2018-03-12 2021-12-08 キヤノンメディカルシステムズ株式会社 Superconducting coil device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5724941A (en) * 1980-07-22 1982-02-09 Fuji Photo Film Co Ltd Color photographic sensitive material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5724941A (en) * 1980-07-22 1982-02-09 Fuji Photo Film Co Ltd Color photographic sensitive material

Also Published As

Publication number Publication date
JPS5933214U (en) 1984-03-01

Similar Documents

Publication Publication Date Title
US3358472A (en) Method and device for cooling superconducting coils
JPS6220303A (en) Forced-cooling superconducting coil apparatus
US6332324B1 (en) Cryostat and magnetism measurement apparatus using the cryostat
JP2018085446A (en) Pre-cooling method for superconducting coil and superconducting magnet device
JPH0234808Y2 (en)
JP2009267182A (en) Superconducting magnet
US3430450A (en) Apparatus for replenishing liquid helium in a cryostat from a storage vessel
JP2001077434A (en) Superconducting magnet
Nacher et al. Nuclear polarization enhancement by distillation of liquid− 4 3 He solutions
JPH0416028B2 (en)
Shiotsu et al. Effect of test heater diameter on critical heat flux in he ii
JPS6025202A (en) Superconductive electromagnet apparatus
JPS62110086A (en) Double-pipe magnet valve
JPS61208206A (en) Superconductive magnet
JPS58184775A (en) Heat insulating container for superconductive magnet
JPH02288207A (en) Forced-cooling superconducting coil device
JPS6161713B2 (en)
JP2007225229A (en) Method and device for cooling liquid
JPH054264Y2 (en)
JPS61199613A (en) Superconducting magnet
JP5438590B2 (en) Superconducting magnet device
JP2001066354A (en) Cryogenic container for superconducting quantum interference device storage
Wiegers et al. Compact PrNi5 nuclear demagnetization cryostat
JPS6335480Y2 (en)
JPS6229113A (en) Superconducting device